
NetEdit: A Collaborative Editor

Ali A. Zafer, Clifford A. Shaffer, Roger W. Ehrich, and Manuel Perez
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061

azafer|shaffer|ehrich|perez@vt.edu

ABSTRACT
We present a collaborative text editor named NetEdit. NetE-
dit uses a replicated architecture with processing and data
distributed across all clients. Due to replication, the response
time for local edits is quite close to that of a single-user ed-
itor. Clients do not need explicit awareness of other clients
since all communication is coordinated by a central server.
As a result, NetEdit is quite scalable (linear growth) relative
to purely distributed systems (quadratic growth) in terms of
number of communication paths required as the number of
clients grow. NetEdit uses an n-way synchronization algo-
rithm derived from the synchronization protocol of the Jupiter
collaboration system. Along with describing the editor, its ar-
chitecture and its synchronization algorithm, we present the
results of a usability study that evaluated the collaboration
awareness tools included in NetEdit.

KEYWORDS: Computer-supported cooperative work, col-
laboration, text editor, replication.

Introduction
The 1980’s and early 90’s saw several efforts to produce text
editors capable of supporting multiple simultaneous users.
Examples include GROVE [6], ShrEdit [4], and Jupiter [11].
Surprisingly, with the recent explosion of Internet use and the
availability of new programming environments that would
seem to be ideal for implementing collaborative applications,
there are few collaborative editors available currently. Notible
implementations include the REDUCE editor prototype [15]
and Microsoft’s NetMeeting [10]. NetMeeting (which is re-
ally an environment for allowing coarse-grained sharing of
single-user applications such as Microsoft Word) is mostly
notable not for its qualities as a collaborative environment,
but rather for the fact that its the first commercially viable
collaboration system and as such is exposing many new users
to the opportunities that collaborative tools can provide.

While we currently do not have many examples of collabo-
rative editors, a great deal of work has taken place in recent

years on the underlying infrastructure necessary for such ed-
itors to be successful. Recent work has shown that repli-
cated approaches are viable [2, 13], whereas the 1980’s typ-
ically saw centralized architectures. A great deal of progress
has been made on the synchronization algorithms necessary
for coordinating the various replicas, in particular a num-
ber of variations on the concept of operational transforma-
tions [6, 13, 12, 11]. In later sections, we will summarize the
issues and the various algorithms that have been proposed.

This paper describes NetEdit, a web-accessible collaborative
editor, its design and implementation, and a usability study
that evaluated its collaboration awareness tools.

An Overview of NetEdit
NetEdit provides three fundamental functionalities: central-
ized file and session management, unconstrained group edit-
ing of documents, and chat session management for commu-
nications between users and groups of users outside of the
document or editor session.

NetEdit (see Figure 1) allows two or more users to remotely
edit a document simultaneously. The editing is completely
unconstrained and users can insert and delete characters at
any location. In fact, two or more users could be performing
insertions and deletions at exactly the same position.

NetEdit supports collaborative awareness through the use of
two interface devices: the radar view and telepointers. Col-
laborative awareness can be defined as the knowledge of the
state or actions of other participants. Collaborative editors
generally use one of two styles of collaboration [8, 1]. The
first is WYSIWIS (what you see is what I see) which cor-
responds to tightly coupled group activity. NetMeeting is
an example of a system that enforces tight coupling of the
view, in that all participants see exactly the same part of the
document at all times. Due to this tight coupling, there is
not much need to distribute awareness information, as all the
participants are working at the same position or on the same
artifact. The second collaboration style is called location-
relaxed WYSIWIS and corresponds to the ability of partic-
ipants to each work in separate sections of the document.
Thus there is a need to provide appropriate widgets to make
them aware of each other’s activities.

Telepointers [8, 1] give an indication of the remote partici-

Figure 1: NetEdit’s main editor window.

Figure 2: NetEdit’s document session window.

pant’s pointer location. A variant of this is a telecaret (shown
in Figure 1) that corresponds to the caret position of the re-
mote participant. It is to be noted that a telepointer or tele-
caret is useful and needed only when the two remote partici-
pants are working in sections of the document that are close
enough for these pointers to be seen.

Radar Views [8, 1] provide the extent of view in the docu-
ment for each remote participant. A radar view compresses
the entire document into a miniature view and displays that in
a window. Each remote participant’s view in the document is
indicated by a shaded rectangle of his color on this window,
as shown in Figure 1.

Document and session management is provided by a central
server that holds the persistent copies of the documents. A
“session” is a single group that is editing a document. Users
registered to the system may freely join or create a session.
A user may be in multiple sessions at one time, and a session
is defined to include all users editing a specific document. A
separate window (Figure 2) is used to manage the user’s par-
tipation in sessions, and a separate editor window is created
for each session that the user is currently in.

NetEdit provides a chat window (Figure 3) that allows users
to broadcast messages to specific individuals currently on-
line in NetEdit, to all users currently online, or to all users
currently in the specified session.

Figure 3: NetEdit’s chat window.

NetEdit’s actual editing facilities are minimal in the proto-
type. Support is provided for adding and deleting text, and
for block cut, copy, and paste. This functionality is more
than sufficient to test most synchronization protocol issues,
including aggregation of network messages to reduce total
traffic delay. From a user’s point of view, it is sufficient for
simple memos and student assignments, but clearly needs to
be improved. Although NetEdit currently does not support
style formatting (e.g. bold, italic, etc.), the system architec-
ture does not prevent implementing these features.

NetEdit is written in Java. The editing window itself is built
on Swing’s JTextPane widget to hold the document, whose
default implementation for its Document interface has been
overridden to provide the core conflict management algo-
rithm and transformation engine.

System Architecture

NetEdit aims to provide editing speeds that do not appear sig-
nificanlty slower to the user than would a single-user text edi-
tor. Groupware systems are inherently distributed, with their
components having a protocol for communication between
them. Their architecture can range from completely central-
ized to completely replicated [7, 3, 2]. A middle ground be-
tween them corresponds to a hybrid architecture [3] that is
replicated but also has certain centralized components.

Centralized architectures use a single application program,
residing on one central server machine to control all input
and output to the distributed participants. All data and pro-
cessing reside on this central machine. Client processes at
each site are only responsible for passing requests to the cen-
tral program, and for displaying any output sent to it from
the central program. The advantage of a centralized scheme
is that synchronization is easy: State information is consis-
tent since it is located in one place, and events are handled at
clients in the same order because they are serialized by the
server. Its main drawback is latency, as the message corre-
sponding to any action must pass from the client to the server
and back again before response to the action is shown.

Replicated architectures execute a copy of the program at ev-
ery site. Data and processing are distributed to all the remote
participants. Thus each replica must coordinate explicitly
both local and remote actions, synchronizing all copies of
the document.

Replicas need only exchange critical state information to keep
their copy of the data current. While remote activities may
still be delayed, a person’s local activities can be processed
immediately. Processing bottlenecks are less likely – each
replica is responsible for drawing only the local view, unlike
the central model, which must update the graphics of all the
client’s screens. However, the cost of replication is increased
complexity as issues of distributed systems like conflict man-
agement, concurrency control, etc., must be handled.

Strictly replicated systems have an enormous growth in terms
of the number of communication paths; it grows at the rate of
��� � ����, where � is the number of clients in the system.
As compared to this, centralized systems have linear growth.
Thus, centralized systems are more scalable in terms of com-
munication requirements than replicated systems.

Semi-replicated hybrid architectures [3] contain both central-
ized and replicated components. In such systems, data and
processing are replicated at each client but the communica-
tion between them goes through a central authority. NetE-
dit uses such a semi-replicated architecture, with each editor
client holding a copy of the document and immediately pro-
cessing local actions. Actions are then passed as messages to
the central server, that then rebroadcasts these messages with
appropriate information for coordinating the various clients,
as discussed in the next section.

When the server starts, four service threads (ServerLogin,
ServerDaemon, Server Awareness Manager, and ChatServer)
are created. ServerLogin listens at a port known to the clients,
and it knows the ports at which the other services are listen-
ing. Each client establishes a socket connection with Server-
Login. After authorization, ServerLogin sends port numbers
of the other three services to the client, which can then estab-
lish direct socket connections with these services.

When the client establishes a socket connection with Server-
Daemon, the server creates a proxy (ClientProxy) that is re-
sponsible for maintaining the client’s view of the file hierar-
chy at the server. It executes requests like renaming a file,
deleting a file, opening a file etc.

ServerDaemon maintains the sessions that are currently ac-
tive. An EditServer object is created for each session. A
proxy for each client (EditClientProxy) is created at the server,
that maintains communication regarding insertion and dele-
tion of characters from the document. These proxies for
all participating clients together implement the core conflict
and consistency management server-side algorithm for group
editing. This algorithm is described in detail later.

Figure 4: NetEdit System Architecture.

Awareness information is transferred explicitly between server
and clients. Each client has a single proxy called ClientAware-
nessProxy at the server, regardless of the number of sessions
in which it is participating. This proxy is responsible for
transferring all the awareness information learned from other
clients to this client. The chat server’s architecture is similar
to that of ServerAwarenessManager.

On the client side, ClientDaemon first establishes a socket
connection with ServerLogin and gets the port numbers of
other services – ServerDaemon, ServerAwarenessManager
and ChatServer. ClientAwarenessManager is responsible for
distributing the awareness information updates, obtained from
ClientAwarenessProxy, to various graphical user interface wid-
gets – radar views, telecursors, participant’s list, etc., at the
client. It is also responsible for sending updates back to
ClientAwarenessProxy when the state of this client changes
– like scrolling to different part of the document, exiting a
session etc.

EditClient is a thread object forked for each document that
the user is participating in for editing. It communicates all
the insertions and deletions through a socket connection with
EditClientProxy at the server. The processing at both Edit-
Client and EditClientProxy, and the communication between
them, constitutes the core conflict and consistency manage-
ment algorithm that manages group editing.

Figure 5: A timeline for propagating four operations
across three clients.

ChatClient creates the chat window and exchanges streams
of chat messages with with ChatClientProxy at the server.

Issues in the design of a concurrency control algorithm
The 1990’s saw major advances in the underlying commu-
nications protocols necessary to make such tools success-
ful. Probably the most significant advance, which makes
replicated and semi-replicated architectures such as NetE-
dit viable, is development of the concepts of the operational
transformation [5] along with recognition that consistency
includes a series of issues beyond simple syntactic consis-
tency between replicas [13].

Suppose there are three clients C1, C2 and C3 that are per-
forming the four edit operations O1, O2, O3 and O4 as shown
in Figure 4. Suppose that the edits are applied to the local
copy immediately after they are generated and sent to the re-
mote clients where they are applied in their original form,
without change of any kind. As a result the following incon-
sistency problems might arise.

Divergence Due to non-deterministic communication de-
lays, the messages might arrive and be executed in different
order at different clients. In Figure 5, the order of arrival for
messages is O1, O2, O3, O4 at C1; O1, O3, O2, O4 at C2;
and O4, O2, O1, O3 at C3. The operations could be inser-
tions and deletions and hence are not commutative. Thus the
state of the document at the three clients might well be differ-
ent if the operations are performed in different orders. This
is unacceptable for a group-editing tool.

Causality Violation As shown in the time-line diagram,
O2 is executed after the execution of O1 at C1. Thus O2 is
causally dependant on O1. As a result, it is necessary that this
order of execution be preserved at all the clients. However,
due to non-deterministic communication delay, it cannot be
guaranteed that the messages will arrive at each client in this
order. We use Lamport’s notation [9] for defining causal or-
dering relationships.

Causal Ordering Relation “�” Given two operations Oa
and Ob, generated at sites i and j, Oa � Ob if and only if

1. � � �, and the generation of Oa happened before the gen-
eration of Ob.

2. � �� �, and the execution of Oa at site j happened before the
generation of Ob.

3. there exists an operation Ox, such that Oa � Ox and Ox
� Ob.

Dependent operations Given operations Oa and Ob, Ob
is said to be dependant on Oa if and only if Oa � Ob.

Independentoperations Given operations Oa and Ob, they
are said to be independent (occurring simultaneously or con-
currently) if and only if neither Oa � Ob, nor Ob � Oa.
This can be expressed as Oa � Ob.

Note that divergence and causality violation can be solved by
enforcing a total ordering on the messages. This can be done
through the use of a central coordinator who time-stamps
each message before sending it to the clients who then exe-
cute the instructions based on this total order. This approach
does not have good responsiveness (due to round trip delay
before a local operation can be applied to the local docu-
ment), nor can it solve a third inconsistency problem known
as intention violation.

Intention Violation In Figure 4, O2 and O3 were generated
and applied when the document was in the same state at both
C1 and C2. O2 was generated without any knowledge of O3
and vice-versa, thus the two operations are independent. Due
to this concurrent generation of operations, the actual effect
of an operation at the time of its execution may be different
from the intended effect at the time of its generation. Sup-
pose the document at C1 and C2 before the execution of O2
and O3 is “ABCDEFGH.” Let O2 be insert[1234, 4] (inser-
tion of “1234” at offset 4). Let O3 be remove[2, 4] (delete
2 characters at offset 4 – the intention is removal of “EF”).
Executing these two operations and preserving the intention
of C1 and C2 should result in “ABCD1234GH.” However the
state at C1 would be “ABCD34EFGH” if we consider these
to be truely independent operations. This violates the inten-
tion of operation O2, as string “12” that it inserted is not in
the document, and also the intention of operation O3, since
“EF” remains present in the document.

Note that these three inconsistency problems are independent
of each other and the resolution of one does not guarantee the
resolution of others. The problems of divergence and inten-
tion violation are of different natures. Applying some serial-
ization technique can solve the former but the latter requires
transformation to the operations before they are applied to
the document.

Concurrency control algorithms in groupware systems
In this section we summarize some of the algorithms de-
veloped to solve the concurrency problems just discussed.
These algorithms all distribute processing and data. They use
optimistic concurrency control where the basic idea is to take
an operation executed in some past state and to transform it

in a way so that it can be applied to the current state.

dOPT Ellis et al. [5] presented dOPT, the first concurrency
control algorithm for group editing based on distributed op-
erational transformations. Their model has no central entity.
All clients have a copy of the document, and each updates its
own copy. Operations generated locally are sent to all other
clients. When a remote client receives an operation, the state
of its local document might be in conflict with the incoming
operation. Hence these incoming operations are transformed,
that is, their offset is changed (incremented or decremented)
depending on whether they are inserts or deletes and the type
of conflict. Since the processing of these remote and local
operations is distributed to all the clients, and the remote op-
erations get transformed when they occur concurrent to local
operation, this algorithm is referred to as distributed opera-
tional transformation (dOPT).

Two research groups working independently discovered a flaw
in dOPT [14, 12]. When two users are editing a document,
and one issues more than one operation concurrently with
an operation by the other user, the document might become
inconsistent. For example, O2 and O3 of Figure 4 are gen-
erated in the same state and can be transformed against each
other. Since O2 and O4 are generated from different states
of the document, they cannot be transformed against each
other. The dOPT algorithm did not take this into account and
did the transformation in both cases. Both groups proposed
solutions, as discussed below.

REDUCE REDUCE [14, 13] performs two types of trans-
formations to the incoming messages: inclusion and exclu-
sion transformations. Inclusion transformations transform
messages when they are generated from the same state of
the document. Exclusion transformations require more pro-
cessing since here messages are not generated from the same
state of the document. REDUCE maintains a history buffer
(HB) that keeps track of all the operations that have been ex-
ecuted and is used to perform the transformations.

As with dOPT, all clients maintain a copy of the document.
Local operations are distributed to all other clients. When a
new operation O at a client’s site is causally ready for exe-
cution, the following is done: First, all operations in HB that
causally follow this operation are undone to restore the doc-
ument in a state before their execution. Next, operation O is
applied to the document. Finally all the undone operations
are redone. This series of undo/do/redo operations must be
performed as a single transaction.

Jupiter The Jupiter collaboration system [11, 13] uses a
central server to coordinate communications, and a two-way
synchronization protocol that allows 2 participants to be in
sync with each other during editing. Jupiter’s implementers
suggest that one can use this 2 party synchronization pro-
tocol to achieve n-way synchronization. Jupiter uses a 2-
dimensional state space graph (Figure 6), instead of a history

Figure 6: A 2-dimensional state space graph.

buffer as in REDUCE, to keep track of paths to follow dur-
ing operation transformation. The state graph ensures that
the pair of messages undergoing transformation have origi-
nated from the same state of the document.

AdOPTed As with REDUCE and the dOPT, adOPTed [12,
13] requires no central coordinating entity. AdOPTed clients
maintain an N-dimensional interaction model graph to keep
track of all valid paths of operation transformations. This
N-dimensional interaction model graph can be viewed as a
generalization of the 2 dimensional state space graph in the
Jupiter algorithm. By choosing the right paths in this interac-
tion model, the algorithm ensures that any pair of operations
involved in the transformation originate from the same state
of the document.

REDUCE and adOPTed are completely distributed. Since in
a collaborative system no client has ownership of the docu-
ment, it is not clear in these approaches where the document
will be stored and maintained. Both systems are more re-
silient to failure as compared to the centralized Jupiter sys-
tem – a failure of one client does not affect the other collab-
orating participants.

Due to the distributed nature of REDUCE and adOPTed, they
are more complex than the Jupiter algorithm. REDUCE and
adOPTed require each client to know all the other partici-
pants in the system so as to to establish a communication
path with them. Thus, the number of communications paths
is quadratic on the number of clients. In comparison, Jupiter
uses a central server for communicating messages, and for
storing documents. However, the clients are not dumb termi-
nals, but need to do their part of processing to the messages
received from the server.

The NetEdit Consistency Algorithm
Our goal is a collaborative editing system that is simple, fast,
and scalable. The 2-way synchronization protocol developed
for Jupiter served as our starting point. We extended this two-
way protocol to a multi-way protocol. We used multiple two-
way component synchronization to achieve multi-component
synchronization protocol.

All the clients maintain a state-space graph [11] as shown
in Figure 5, and the server maintains a state-space graph for
each client. The state space is used so that each client-server

pair can maintain information of where the other is, relative
to it, in the editing process. Both the client and the server
pass through this state space as they process messages. Each
state is labeled with the number of messages from the client
and server that have been processed to that point. For ex-
ample, if the client is in state (2,1), it has generated and pro-
cessed 2 messages of its own, and has received and processed
1 message from the server. If the server and the client process
messages in the same order, then they will follow the same
path in the state space graph.

The algorithm labels each message with the state the sender
was in just before the message was generated. The recipient
uses these labels to detect conflicts. One can transform two
concurrent messages only when they are generated from the
same state of the document. Otherwise, special handling is
required.

The clients also maintain a buffer that contains operations
that have been generated and applied locally but have not
been acknowledged by the other party. The server maintains
one such buffer for each client.

Client Processing When the client receives a message, say
s1, from the server with state space value of (a1, a2) then it
searchs its buffer from the beginning (i.e. the oldest entry
in it) and start discarding those messages with state space
(b1, b2) from the buffer such that b1 � a1. These are the
messages that server has already received and processed.

The client then transform s1 with respect to the next message
(the first message after the discarded messages) in the buffer.
This is the message that was executed in parallel to s1 and
also when the document was in the same state. It might be
that there are no messages left in the buffer after discarding;
in that case we simply apply the message directly to the doc-
ument. Otherwise, call this transformed message s1 �. Next,
transform s1� with each remaining message in the buffer as
follows:

��� � transforms (��� , next message in the buffer);

Transformation [14] consists of changing the offset of the
message at which it is applied in the document, so that the
new offset is consistent with the execution of other concur-
rent local operations. As noted earlier, imposing a global
order on the operations can take care of convergence and
causality, but its not sufficient to preserve intentions. It is
necessary to transform independent operations with respect
to each other appropriately, as explained next.

Consider the operations O2 and O3 from Figure 4. Both
these operations have originated when the document is in
the same state at C1 and C2. Lets say the document con-
tains “ABCDEF” before the execution of either O2 or O3.
Also consider that O2 is insert[123, 2] and O3 is insert[abc,
4]. When C1 receives O3, the document at C1 after apply-
ing O2 but before executing O3 is “AB123CDEF”. Since

(1) O2 and O3 were independent operations, (2) Both O2
and O3 were generated from the same state of the docu-
ment and (3) the offset of O3 is greater than the offset of
O2, O3 needs to be transformed with respect to O2 at Client
C1. The transformation essentially consists of adding 3 (size
of O2) to the offset of O3. Thus O3 now gets transformed
into insert[abc, 7]. This when applied to the document gives
“AB123CDabcEF.” Similarly, at client C2, O2 will be trans-
formed with respect to O3 giving the final state of the docu-
ment at C2 as “AB123CDabcEF.” Thus we see that the inten-
tions of both O2 and O3 were preserved. Similar transforma-
tions are required for delete-delete, insert-delete and delete-
insert combinations. It is to be noted that when you have
delete as one of the operations, it might involve subtraction
as well.

The transformation of two operations is warranted only when
they originate from the same state of the document. To em-
phasize this point, consider operations O3 and O4. O3 has
seen the effect of execution of O1 but this is not the case
with O4. Hence these two operations in their original form
cannot be transformed.

The client applies the final transformed message to the docu-
ment in its current state. While it is transforming s1 with the
messages in the buffer, it also transform those messages (the
ones in the buffer, say c2, c3, c4 � � �) into c2 � , c3� , c4� � � �
and stores them accordingly in the buffer along with updated
state space values. That is, they are stored with their original
state space values except that the server component – the sec-
ond component of the 2-tuple – in each will be incremented
by one. The state of the client now goes from (x, y) to (x,
y+1). This procedure is repeated for all the messages that it
receives from the server (i.e., for remote operations).

The operations that are generated locally are applied to the
document directly and also stored in the buffer with proper
state values (i.e., the state the document was in when the lo-
cal operation was generated). After applying this local oper-
ation, the client moves from state (�,) to (�� �,).

Server Processing Assume that there are 4 clients (C1,
C2, C3 and C4) in the system and S1, S2, S3 and S4, respec-
tively, are proxies for them. Let the buffers of S1 through
S4 be named as q1, q2, q3 and q4 respectively. Suppose S1,
which maintains communication with C1, is in state (x1, y1).
Similarly S2, S3 and S4 are in states (x2, y2), (x3, y3), and
(x4, y4) respectively.

When message c1 comes from client C1 having state space
value (a1, b1), S1 will search its buffer (q1) from the begin-
ning (the oldest entry) and discard those messages that have
state space (u1, v1) from q1 such that v1 � b1. These are the
messages that client C1 has already received and processed.

The server transforms c1 with respect to the next message
(the first message after the discarded messages) in the buffer
q1 of S1. This is the message that was executed in parallel

to c1 and also when the document was in the same state. It
might be that there are no messages left in the buffer q1 after
discarding; in that case the server simply applies c1 directly
to the document. Otherwise, call this transformed message
c1�. Next transform c1� with each remaining message in the
buffer (q1) in order until the end is reached as follows:

�� � transforms (
�� , next message in q1);

The final transformed message (say m1) is applied to the doc-
ument in its current state. While transforming c1 with the
messages in the buffer (q1), the server also transform those
messages in q1 and restores them in q1 with updated state
space values. That is, the messages are stored with their orig-
inal state space values except that the client component – the
second component of the 2-tuple – will each be incremented.
The client component of the state for S1 is also incremented.

Add m1 to the buffers of C2, C3 and C4. The state stored
in q2 for message m1 would be (x2, y2). Similarly m1 in
q3 and q4 will have state (x3, y3) and (x4, y4) respectively
associated with it. This corresponds to the states for S2, S3,
and S4, respectively, when the message m1 was processed by
S1.

m1 will then be sent to all the clients, that is, m1 with state
value (x2, y2) will be sent to C2; m1 with state value (x3, y3)
will be sent to C3; m1 with state value (x4, y4) will be sent
to C4. S2 goes to state (x2, 	� � �). S3 goes to state (x3,
y3+1). And S4 goes to state (x4, 	���). All the above must
be executed as one atomic operation, that is, this processing
is completed before considering another editor operation.

At quiescence, S� must have state same as client C� for all
clients in the system.

The NetEdit Preliminary Usability Study
When users work in groups in the same physical space, they
are aware of each other’s activities through what they see
and hear. In a collaborative system the participants are geo-
graphically separated from each other, so workspace aware-
ness is an important functionality [6, 8, 7]. In NetEdit, tele-
pointers and radarview provide workspace awareness. to the
users. Apart from external modes of communication like the
telephone etc., the participants in NetEdit communicate with
each other through a chat window.

To test the usability aspects of NetEdit, we performed a pre-
liminary study. Our study goals were to:

1. Determine the efficacy of the awareness widgets during
group editing: were users able to correctly interpret their
change, were users distracted by them, etc.

2. Study the efficacy and level of use for the chat window. In
particular, was it sufficient for communication during the
group activity?

3. Determine the level of usability for other functionality in
the system.

Methodology To evaluate the effectiveness of the aware-
ness widgets and the assess the general usability of NetEdit
we conducted a formative evaluation with two groups of par-
ticipants. They were asked to collaborate in the creation of
a three-page document using NetEdit. We used observation,
self-reporting, questionnaire and discussions with the partic-
ipants to assess the usability of our tool.

Participants We used students in the Computer Science
department, both graduates and undergraduates. A total of
10 participants were used, divided into three groups. The
first group was used as a pilot test of our experimental proce-
dure. All three participants in the pilot group were graduate
students. The other two groups, one with three and the other
with four participants, were used for the formative evalua-
tion. There were 6 undergraduates and 1 graduate student.
All undergraduates at the time were registered in the Human-
Computer Interaction course being offered by one of the au-
thors (Perez). Eight of ten participants had not used a collab-
orative tool before.

Experimentalsetup Participants worked on Microsoft Win-
dows machines located in separate closed rooms. The only
way they could communicate with each other was through
the chat utility provided by NetEdit. An experimenter was
assigned to each participant to observe his or her activities,
and take notes from whatever was said during the course of
the experiment. The participants were asked to speak aloud
their intentions and any remarks they had while performing
the assigned task. All communication and editing activities
were logged.

Experimental Task The task assigned to the participants
was to write as a group a document no longer than three
pages. The topic of the document was their evaluation of the
usability of the interface of NetEdit. Each user was respon-
sible for doing the usability evaluation of one of the three
windows making up the system (Figures 1-3). Even though
each evaluated one window, the final document was to be or-
ganized based on the following eight characteristics.

1. Visibility, Mapping, Feedback
2. Whether responses from the system make sense
3. User control and freedom
4. Recognition rather than recall
5. Aesthetic and minimalist design
6. Ability to help users recognize, diagnose, and recover from

errors
7. Online help and documentation
8. Gulf of evaluation and execution

Hence this exercise made users work in a loosely coupled
manner when they were doing their own evaluation and in a
tightly coupled manner when they were putting together the
final report. The entire process was required to be completed
within 45 minutes. All participants were familiar with the
above usability principles.

Procedure Participants were introduced to the experimen-
tal design and given a demonstration of NetEdit, briefly de-
scribing its components and how they worked. The task was
then explained and the users were sent to their workstations
in different rooms. Each participant was assigned an exper-
imenter, who observed his/her activities and noted any re-
marks said aloud. The participants were asked to speak aloud
their activity/intentions while performing the task.

After about 45 minutes, participants were given a question-
naire that analyzed their experience with the system. Some
responses in the questionnaire and any eccentric activity we
observed were then discussed briefly with them.

Results The main results obtained from the evaluation are
discussed below. They are organized into categories: use of
the collaboration awareness, general editing facilities, social
structures observed, and use of the chat facility.

CollaborationAwareness The participants started by play-
ing around with the system. They liked radarview and also
found it useful during the editing process. Initially when con-
centrating on their own evaluation, radarview was used often
to determine what other participants were doing. Telecursor
gained importance when the groups started combining their
work together. One of the participants kept watching the tele-
cursors of other users to find out what they were doing and
infer their intentions.

We observed that participants spend some effort in determin-
ing who had written certain sections of a document before
they could address comments to that person. When the par-
ticipants wanted to communicate with each other about cer-
tain text written by someone, they had to first identify who
wrote that text, and then talk about that text. The initial
round of messages to identify the author added to the vol-
ume of messages being passed around without serving any
useful purpose. This is an aspect of collaboration awareness
that NetEdit did not support, and that users found ways to
compensate for via the chat window. However (see below),
this increased the dependency on the chat window and thus
caused some frustration for the users. A possible solution
would be to assign color to the text based on who inserted
that text.

General Editing Facilities Three users complained that,
whenever there were characters inserted or deleted from the
part of the document above the point where a user is work-
ing, the user notices a sudden movement of his cursor loca-
tion. This movement is especially significant when a newline
character is inserted. This is because the entire line of text,
along with his cursor, suddenly goes to a new line. When
this happens, he looses the context of his surrounding text
and gets confused.

This could be solved in two ways. One is a gradual change of
position so that sudden movement is avoided. For example,
in the cloud burst model [6] local operations appear in the

window immediately but a cloud appears over remote oper-
ations. The text associated with these remote operations is
then progressively revealed as the cloud starts fading.

Another possible solution is to modify the JScrollPane and
JTextPane widgets that contain the document, so that they
grow both ways instead of just in one direction (downwards)
when characters are inserted. If characters are inserted above
the local user’s cursor position, the document would grow
upwards, so that the current group of lines being displayed
are not altered on the local machine. If the characters are
inserted below the local users cursor position, the document
would grow downwards, as it does now. This is an example
of where a scrollbar, as implemented in Java, is appropriate
for a single user, but fails when used in a multiple user appli-
cation.

Social Structures Observed Two different styles of work
were observed. The second-round group with three partic-
ipants made sections in the edit window and each person
worked on his own section. But they took some time to de-
cide on this organization. They were allowed to communi-
cate only through NetEdit’s Chat window. The frustration of
not being able to get themselves organized was clearly indi-
cated by their messages in the chat window. They had ini-
tially started preparing the document as if they were using a
single user editor. It took them a little while to realize that for
the group activity to be effective, they needed to work differ-
ently. It clearly showed that after some learning of not only
how to use a collaborative tool but also how to work remotely
in groups, the session can be productive. It all came down to
establishing a social protocol for editing the same document.

One user remarked that it was difficult during editing to have
to continually switch back and forth between the chat and
editing window. These observations were substantiated by
the responses from the questionnaire and the brief discussion
we had with the participants after the experiment. This had
an interesting effect, discussed below.

Editing started getting chaotic when they began combining
their evaluation into a single coherent document. Some par-
ticipants tried to move their work closer to the work of other
participants without realizing that these other participants were
trying to do the same thing. Thus all of them were trying to
move their text in between the text of other users. Although
there were a lot of chat messages between them so that they
could get synchronized, it seemed that communicating using
the chat window was too slow. By the time a user typed some
chat message and returned to the edit window, the state of the
document had changed. Hence the chat comments were no
longer valid. This caused a lot of irritation between partic-
ipants. To avoid switching back and forth between the chat
and edit windows, they started communicating using the edit
window itself. The document now started to look confusing,
as chat messages were inserted into their text.

Figure 7: Distribution of chat messages over time.

We explicitly imposed a structure on the group with four
users. One of the participants was instructed to act as a direc-
tor overlooking the activities of all the participants and guide
the preparation of the document. However, this group could
not get oriented and focused. One of the participants in this
group felt a need for the system to provide tools to automat-
ically know the intentions of his group members. It seemed
to us that since there were four participants (a bigger group
than the others), identifying and synchronizing the activity
was more difficult. The slow mechanism for communication
(chat messages) exacerbated the problem.

Use of the Chat Facility Figure 7 shows the distribution
for the number of chat messages against time during the ex-
periment, for the two groups in the study. The time on the
graph is divided in five-minute intervals. Thus Group 1 gen-
erated three messages during the first five minutes and seven
messages during the next five minutes. Group 1 had three
participants and Group 2 had four participants.

Group 1 began by investigating NetEdit, by exploring its
widgets, going through different options on various windows
etc. There were messages for deciding who would write
what and how they would later combine their evaluation. As
they proceeded with the activity, the number of chat mes-
sages kept increasing for the first 20 minutes. After this,
they began to combine their work and, surprisingly, the chat
activity started decreasing significantly. This is because the
users were getting annoyed by continually having to switch
back and forth between the chat window and the edit window.
They preferred to communicate with each other through the
edit window itself. That explains the low activity in the chat
window during the latter 20 minutes of the experiment.

Group 2 (the one with four participants and an imposed struc-
ture) started by discussing with each other how they would
get organized. This explains heavy activity in the chat win-

dow during the first five minutes. Then they went on to ex-
ploring NetEdit, its features, different windows etc. Even
with this group, we see a dip in the number of messages dur-
ing the latter part of the experiment since they again used the
document itself for communication. This group was less or-
ganized. They would chat for extended periods, then shift to
doing only editing, and then again come back to only chat-
ting and so on. They strongly felt the irritation of switching
between chat and edit windows.

There was a need for faster communication between partici-
pants. One solution to this problem is to have a chat window
attached to the edit window, specific to each session. This
would avoid having the users switch back and forth between
typing some text in the edit window and typing messages in
the chat window. Another option is to incorporate an audio
channel for communication. Furthermore, our collaboration
awareness tools need to be extended to include information
about the author of different sections of the document, as this
will eliminate one use of the chat window.

Future Work
This research brings to light many areas for future work.

Fault Tolerance NetEdit has a centralized architecture with
the processing distributed between clients and the server. If
the server fails, then the entire system must halt. There is
no secondary server that could mirror all the data and opera-
tions, and dynamically replace the faulty server. Mechanisms
for swapping in a new server must deal with the fact that,
while the switch is taking place, there could be operations
being performed by the clients.

Algorithm Extension The core algorithm, that manages
consistency of the document at all the clients, now processes
single characters. However, it is seen that multiple charac-
ters inserted or removed in succession, in a short period of
time, go through similar transformations. Hence it will be
interesting to modify this algorithm so that strings of arbi-
trary length, instead of single characters, can be transformed.
This might potentially increase the speed, as a lesser num-
ber of operations now needs to be processed, and also reduce
the memory space required, as a lesser number of operations
would be needed to be stored in the buffers.

Improving Efficiency While implementing this prototype,
we noticed two bottlenecks that affected the performance of
the system. One is the bandwidth used for passing messages
between clients. There are large numbers of small messages
that are being broadcasted to the clients. These messages in-
clude operations being performed by the users, awareness in-
formation such as change in caret position etc. One might ag-
gregate some of them and thus potentially improve the band-
width utilization. However, one needs to explore the opti-
mum point beyond which the response time becomes notice-
able by the remote users. Another bottleneck is the slow dis-
play refresh mechanism of the Java virtual machine. Some of

the widgets where this was noticeable were JTextPane (which
holds the document being edited), and JScrollPane (which
provides scrolling support).

Communication The editor is meant to be where the col-
laboration product is developed, not where the collaboration
takes place. Our preliminary usability study of NetEdit re-
vealed that the existing communication mechanism between
participants through a chat window is uncomfortably slow.
Various options to address this issue should be explored. For
example one could provide an audio channel between partic-
ipants in the same session and have a chat window for com-
municating with participants in other sessions, etc. These
two modes are suggested to avoid the user from getting over-
whelmed by audio messages.

Version Control Keeping track of different versions of the
document and reverting to an earlier version can be an im-
portant utility. However, it is difficult to determine to which
version one must roll back. Is it the version where only the
operations done by the local user must be reverted or is it the
version where both local and remote operations need to be
undone? The correct answer depends on the type of group
activity. For tightly coupled collaboration (such as brain-
storming a paper where all the participants are working very
closely), one might want to revert to a previous version undo-
ing both local and remote operations. However, if the collab-
oration is loosely coupled, where the participants are work-
ing in different parts of the document, one might want to
rollback to a previous version undoing only local operations.

Studying Group Mechanics Since the system does not as-
sume or impose any protocol for group activity, the partici-
pants can form the editing structure that suits them. These
structures could be decided explicitly at the beginning of the
session or could be formed implicitly as the group activity
proceeds.

REFERENCES
1. J. Begole, M.B. Rosson and C.A. Shaffer, Flexible

Collaboration Transparency: Supporting Worker Inde-
pendence in Replicated Application-Sharing Systems,
ACM Transactions on Computer-Human Interaction 6,
2(June, 1999), 95-132.

2. J.M.A. Begole, C.A. Struble, C.A. Shaffer, and R.B.
Smith, Transparent Sharing of Java Applets: A Repli-
cated Approach, Proceedings of ACM UIST’97, Octo-
ber 1997, 55–64.

3. P. Dewan, Architectures for Collaborative Applica-
tions, In CSCW, Trends in Software Series 7, M.
Beaudouin-Lafon (Ed.), 1999.

4. P. Dourish, and V. Bellotti, Awareness and Coordi-
nation in Shared Workspaces, Proceedings of ACM
CSCW’92, November 1992, 107–114.

5. C.A. Ellis and S.J. Gibbs, Concurrency Control in
Groupware Systems, Proceedings of the ACM SIG-
MOD Conference on Management of Data, May 1989,
399–407.

6. C.A. Ellis, S.J. Gibbs, and G.L. Rein, Groupware:
Some Issues and Experiences, Communications of the
ACM 34 1(January 1991), 38–58.

7. S. Greenberg and M. Roseman, Groupware Toolkits for
Synchronous Work, In CSCW, Trends in Software Se-
ries 7, M. Beaudouin-Lafon (Ed.), 1999.

8. C. Gutwin, S. Greenberg, and M. Roseman, A usabil-
ity study of awareness widgets in a shared workspace
groupware system, Proceedings of ACM CSCW’96,
November 1996, 258–267.

9. L. Lamport, Time, clocks and the ordering of events in
a distributed system, Communications of the ACM 21,
7(July 1978), 558–565.

10. Microsoft NetMeeting, April 2001. http://www.
microsoft.com/windows/netmeeting/
default.asp

11. D.A. Nichols, P. Curtis, M. Dixon, and J. Lamp-
ing, High-Latency, Low-Bandwidth Windowing in the
Jupiter Collaboration System, Proceedings of ACM
UIST’95, November 1995, 111–120

12. M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhauser,
An Integrating, Transformation-Oriented Approach to
Concurrency Control and Undo in Group Editors, Pro-
ceedings of ACM CSCW’96, November 1996, 288–297.

13. C. Sun and C.A Ellis, Operational Transformation in
Real-Time Group Editors: Issues, Algorithms, and
Achievements, Proceedings of CSCW’98, November
1998, 59–68.

14. C. Sun, X. Jia, Y. Zhang, Y. Yang and D. Chen, Achiev-
ing Convergence, Causality Preservation, and Intention
Preservation in Real-Time Cooperative Editing Sys-
tems, ACM Transactions on Computer-Human Interac-
tion 5, 1(March 1998), 63–108,

15. Y. Yang, C. Sun, Y. Zhang, and X. Jia, Real-Time Co-
operative Editing on the Internet, IEEE Internet Com-
puting 4, 3(May-June 2000), 18–25.

