CEUR-WS.org/Vol-3444/itb23_slpl.pdf

Creating Session Data from eTextbook Event Streams

Samnyeong Heo?!, Mohammed F. Farghally’, Mostafa Mohammed? and
Clifford A. Shaffer?

"Department of Computer Science, Virginia Tech, Blacksburg VA, USA 24061
?Department of Computer Science, Assiut University, Assiut, Egypt

Abstract

As more students interact with online learning platforms and eTextbooks, they generate massive amounts
of data. For example, the OpenDSA eTextbook system collects clickstream data as students interact
with prose, visualizations, and interactive, auto-graded exercises. A large class with a lot of system
usage could easily generate in excess of a million events during a semester. Ideally, instructors and
system developers can harness this information to create better instructional experiences. But in its raw
event-level form, it is difficult for developers or instructors to understand student behaviors, or to make
testable hypotheses about relationships between behavior and performance. In this paper, we describe
our efforts to break raw event-level clickstreams first into sessions (a continuous series of work by a
student) and then to meaningfully abstract the events into higher-level descriptions of that session. We
first bundle events into related activities, such as the events associated with stepping through a given
visualization, or with working a given exercise. Each such group of events defines a state. A state is a
basic unit that can characterize the interaction log data, and there are multiple types including reading,
slideshows, and exercises state. We hope that this process of creating semantic-level abstractions of work
sessions can be a useful step in the analysis pipeline to give us better insight into students’ learning
behaviors.

Keywords

eTextbooks, work sessions, clickstream data, student analytics

1. Introduction

Online educational resources are becoming increasingly sophisticated. Within CS, there is
widespread use of programming environments both for large and small programs (projects vs.
exercises), interactive exercises, and eTextbooks. One goal of these systems is to increase the
level of student interaction over paper textbooks, lectures (live or video), and paper homework
with slow feedback cycles. They can also reduce grading burdens for instructors, as the online
activities are typically graded automatically.

If we want to increase the level of student engagement with the material, monitoring the
actual amount of engagement and the details of the type of engagement are likely to be important.
Fortunately, these systems make it easy to collect detailed event-level data about how students
interact with the system, including the time distribution of the interactions (such as a little,
a lot, many small sessions, a few large sessions, etc.), and the behavior (do students read the

Fifth Workshop on Intelligent Textbooks, July 2023, Tokyo, Japan
Q hsn1017@vt.edu (S. Heo); mfseddik@vt.edu (M. F. Farghally); mkosman@aun.edu.eg (M. Mohammed);
shaffer@vt.edu (C. A. Shaffer)
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
w7 == CEUR Workshop Proceedings (CEUR-WS.org)

mailto:hsn1017@vt.edu
mailto:mfseddik@vt.edu
mailto:mkosman@aun.edu.eg
mailto:shaffer@vt.edu
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

material and then work the assessment, or do they go to the assessment and only look at the
material as necessary to get credit?).

On the other hand, the basic unit of data collection is not these higher-level semantic actions,
but rather an event such as a button click, typing a character or unit of text, opening or leaving
a page. A large class with a lot of system usage could easily generate in excess of a million
events during a semester. How can instructors or researchers hope to make practical use of this
fire hose of data?

In this paper, we describe our efforts to organize the event click stream from use of an
eTextbook system, first into individual “sessions” of use, and then into higher levels of abstraction
for the activity in the session.

2. Event Streams

Many researchers have used event stream data to assess students’ detailed learning processes
and progress to figure out how students were interacting within the infrastructure. For ex-
ample, Baker et al [1] analyzed these data to help students achieve better performance in a
class. Successful results from previous research and analysis open up new techniques and
opportunities for instructors to tailor their educational tools for learners. Tax et al. proposed
Mining Local Process Models (LPM) [2] to discover frequent behavior patterns in event logs,
typically between three and five types of events. Local process model mining focus on tracing
partial behaviors focusing on frequently occurring patterns. Carter et al. [3, 4] proposed the
Normalized Programming State Model (NPSM). The goal is to gain a better idea of students
learning process and to benefit from advanced predictions of students’ course performance.
The authors suggested a holistic predictive model of student performance which characterizes
student’s programming activity in terms of different states, and derived a formula that can pre-
dict students’ performance in a programming course. The authors investigated the relationship
between the paths that students take through the programming states defined by the NPSM
and their overall course achievement. They examined the correlation between the frequency of
the most common transition paths and students’ overall performance in a CS2 course.

OpenDSA [5] is an eTextbook used in a number of courses in the Computer Science department
at Virginia Tech and other institutions around the globe. It supports various computer science-
related topics including Data Structures and Algorithms, and provides algorithm visualizations,
interactive exercises such as small code writing problems, and proficiency exercises. The
platform collects a stream of learning process data and stores these in its database. This includes
event-level data such as when a user clicks a button, switches between pages, or gets a score on
an exercise. Additional information on the OpenDSA architecture can be found in [5].

Later in this paper, we discuss various behaviors that can be recognized from event streams.
We analyze data from at two different courses, that we label Data Structures and Algorithms
(DSA), and Formal Languages and Automata (FLA). The DSA course typically has hundreds of
students, and the FLA theory course typically has about 80 students. Most of the students in
these courses are undergraduates. In this paper, we primarily take our examples from log data
for a (FLA) course given in Fall 2020 and Spring 2021 and a Data Structures and Algorithms
(DSA) course given in the same semesters.

Since there are some qualitative differences in the eTextbook materials for these courses,
looking at the two lets us make some comparisons. The DSA materials are primarily a mix of
prose, visualizations, programming exercises, multiple-choice question banks, and proficiency
exercises that require manipulating a graphical representation of a data structure [5]. In contrast,
the eTextbook for the FLA course [6] relies heavily on the pedagogical instructional approach
known as Programmed Instruction, with variations known as Computer-Assisted Instruction
(CAI), and the Keller Plan [7, 8]. We implement this in the form of slideshows, known as PI
Framesets (and hence, a single slide is called a PI Frame). A PI frame generally contains only
a couple sentences of information. Many of the PI frames (ideally, over half) also contain a
question of some sort. These might be multiple choice (where there is one correct selection),
True/False, or a more difficult multiple choice variant where several of the possible choices have
to be selected to be correct. Often the questions are easy, with the primary purpose of forcing
attention to the material through some user interaction. Occasionally the questions force the
student to work harder to reflect on the information in the slideshow.

3. Abstracting Session Data

We find that higher-level understanding is hampered as much as helped by the overwhelming
mass of clickstream data to be analyzed. In order to get to the level of understanding student’s
semantic-level behavior, we need to organize and abstract the event-level data first. We find that
a key organizing unit of behavior is the “session”. A session is a period of use of the eTextbook.
But recognizing which events form a session is not trivial.

The ability to group raw events into sessions, and then to abstract those sessions into a series
of semantically meaningful actions should be a useful step toward answering many questions
about student use of eTextbooks. Here are a few examples.

« What kinds of study patterns can we observe? Specifically, what kinds of transitions
within modules can we observe?

« Which study behaviors will yield the best performance in a student’s overall grade in a
course?

While the purpose of this paper is not to show answer such research questions, our techniques
for session analysis should be a useful step in a general analysis pipeline.

3.1. Defining Sessions

Study sessions are defined to be a continuous stream of interactions without a significant time
gap. For example, one study session can start when a student opens the module and end when
the student closes it. There are exceptional cases we need to address when considering study
sessions. If a student leaves the module open for a while, meaning that we do not find a closing
window interaction, do we consider that the student keeps studying, or are they away from the
keyboard? If we set the time limit too short for deciding that the student is no longer working,
for example to 1 minute, the student might have been reading materials on the screen without
generating recognizable events. If we set the gap threshold too long, multiple days of records

can be considered as a single study session. We start with a value that we selected (and some
discussion below to support this choice), but our analysis software can easily redefine sessions
using another threshold.

Figure 1 shows the number of instances based on the time differences between two consecutive
events of a student. The figure disregards delta times less than 60 seconds due to its massive
volume, and it is convincing that a student was actively interacting if generated events are
recorded with less than a 60 second gap.

350 1

300 1

250 1

200 1

150 1

Number of Instances

100 ~

] 100 200 300 400 500 GO0
Delta times (seconds)

Figure 1: Histogram of delta time between two consecutive events of all interaction data in FLA for
Spring 2021. Delta times less than 60 seconds are not shown in the graph due to massive volume.

Delta time (for gaps > 60 seconds) has the 25th quartile at 88 seconds, 50th quartile at 163
seconds, and 75th quartile at 599 seconds, or about 10 minutes. We compared the results of
defining sessions with thresholds of 10 minutes and one hour, and checked how sensitive the
results are to these values. We find that the results are nearly identical for 10 minutes or one
hour (or anything in between), so we choose the threshold as 10 minutes in all analyses.

Before we cab gemerate user-sessions for a course, we first need to pre-process the raw event
data. In the case of OpenDSA, events of various types are stored in several database tables,
depending on the type and source. This is probably typical for many educational systems.
Ideally, all of the event types can be extracted for each individual user and placed in a consistent
timestamp order. In our case for the Formal Languages course, we might have a variety of event
types, such as those from proficiency exercises (shown in Figure 2) and programmed instruction
framesets (Figure 3). Both tables contain (anonymized) user IDs, timestamps, exercise names,
and other necessary information for the analysis.

After collecting the data from the various tables for a given course, we use a custom python
script to merge them into a single spreadsheet sorted by user ID and then by event time. Now we
have a massive sorted raw stream of data with all information about the students’ interactions.
The output raw data of the Formal Languages Spring 2021 course alone generates about 1,640,000
rows with 12 columns for 65 students.

id user question type time_done section_id sec_ex_id
2508 8680925 812 Characterizelanglp attempt 2021-02-01 18:19 143543.0 242940
2509 8680936 812 CharacterizeLlanglp attempt 2021-02-01 18:21 143543.0 242940
2510 8680940 812 CharacterizeLlanglp attempt 2021-02-01 18:21 143543.0 242940
2511 8680944 812 CharacterizeLlanglp attempt 2021-02-01 18:21 143543.0 242940
2512 8680947 812 CharacterizeLlanglp attempt 2021-02-01 18:21 143543.0 242940
2514 8680958 812 CharacterizeLlang2p attempt 2021-02-01 18:22 143543.0 242941
2515 8680961 812 CharacterizeLlang2p attempt 2021-02-01 18:22 143543.0 242941
2516 8680962 812 Characterizelang2p attempt 2021-02-01 18:22 143543.0 242941
2517 8680965 812 Characterizelang2p attempt 2021-02-01 18:23 143543.0 242941

2518 8680968 812 CharacterizeLang2p attempt 2021-02-0118:23 143543.0 242941

Figure 2: Example of odsa_exercise_attempts from Formal Languages

id user frame question correct created_at
1637 101248 812 LanguagesFS 0 0 2021-01-22 1:37
1638 101249 812 LanguagesFS 0 1 2021-01-22 1:37
1639 101250 812 LanguagesFS 1 1 2021-01-22 1:38
1640 101251 812 LanguagesfFS 2 1 2021-01-22 1:38
1643 101254 812 LanguagesFS 3 1 2021-01-22 1:39
1645 101256 812 LanguagesFS 4 1 2021-01-22 1:40
1649 101260 812 LanguagesFS 5 1 2021-01-22 1:40
1650 101261 812 LanguagesfFS 6 0 2021-01-22 1:40
1651 101262 812 LanguagesFS 6 1 2021-01-22 1:40
1652 101263 812 LanguagesfFS 7 1 2021-01-22 1:40

Figure 3: Example of pi_attempts from Formal Languages

3.2. Abstracting Sessions

Given a definition to determine events that comprise a session, we next would like to abstract
these into semantic-level behavior. We would like to recognize behaviors such as reading
content, navigating through slideshows, or solving exercises. Carter et al. [3] developed the
Normalized Programming State Model (NPSM), which characterizes students’ programming
activity in terms of the dynamically changing syntactic and semantic correctness of programs.
Inspired from the way Carter’s study defined programming activities as being in one of a small
number of states, we characterize a series of events on the same content element as a state, such
as document state, proficiency exercise state, and frameset state. Each event type is classified as
part of one of a few pre-defined states.

With raw events split into sessions, the next step toward semantic information is to combine

consecutive similar events within the session. We bundle the consecutive events for a single
interface element (a state) into a single row, and we keep track of the total time spent on the
events, the number of events, an event description, and the type of exercise. For example, a series
of clicks within a slideshow can be bundled into a single line, showing summary information
like the total time elapsed to complete these events and a total number of slideshow events
recorded consecutively.

Figure 4 shows an output of abstracted data after processing the raw event stream data from
Formal Languages in Spring 2021. The figure shows that user id 812 starts the first study session
on January 21st by opening Module 01.03 and then moving on to the LanguagesFS frameset. In
the short span of 4 seconds, the user generates one event associated with the window state and
three events associated with the frameset state. On January 22nd, the user starts the second
study session by opening the same module, working on the same slides for 43 seconds, then has
a window close followed by a window open 72 seconds later. Following that, the user spends
288 seconds interacting with the LanguageFS slide, generating 27 slide events. We can grasp
the idea of how frequently and how diligently students study over the semester by looking at
the abstracted interaction data. Of course, we can always refer back to the raw event stream
data when a deeper analysis is required, but the abstracted interaction data gives instructors a
higher level of understanding as to how students behave.

session user Event Event Description Start time End Time Action Time Type # events
2 812 document event "User loaded the... 2021-01-22 01:37:37 2021-01-22 01:37:37 NaN NaN 1
2 812 window event "User closed or ... 2021-01-22 01:37:37 2021-01-22 01:37:37 NaN NaN 1
2 812 document event "User loaded the... 2021-01-22 01:37:41 2021-01-22 01:37:41 NaN NaN 1
2 812 Window open "User looking at... 2021-01-22 01:37:42 2021-01-22 01:37:42 Reading time: 1.... NaN 1
2 812 FF event Attempted to sol... 2021-01-22 01:37:43 2021-01-22 01:38:26 43.0 seconds LanguagesFS 4
2 812 Window close "Useris nolong... 2021-01-22 01:38:30 2021-01-22 01:38:30 Away time: 72.0 sec NaN 1
2 812 Window open "User looking at... 2021-01-22 01:39:42 2021-01-22 01:39:42 Reading time: 12... NaN 1
2 812 FF event Attempted to sol... 2021-01-22 01:39:54 2021-01-22 01:44:42 288.0 seconds LanguagesFS 27
2 812 Window close "Useris nolong... 2021-01-22 01:44:46 2021-01-22 01:44:46 Away time: 18.0 sec NaN 1
2 812 Window open "User looking at... 2021-01-22 01:45:04 2021-01-22 01:45:04 Reading time: 36... NaN 1
2 812 FF event Attempted to sol... 2021-01-22 01:45:40 2021-01-22 01:47:41 121.0 seconds GrammarlntroFS 9

Figure 4: Abstracted interaction data from Formal Languages

3.3. Data Compression

One side effect of abstracting session data is that it greatly reduces the size of the information
represented. We characterize an approximate compression ratio between the number of rows in
event-level data and the number of rows in abstracted session-level data by presenting statistics
about how big these data sets are in terms of the number of rows. Table 1 shows the number of
rows for both raw and abstracted data, the compression ratio as well the total number of sessions
abstracted. The compression ratio was measured by calculating the percentage decrease.

of rows in raw data — # of rows in session data

Compression Ratio = * 100

of rows in raw data

About 90 percent of raw data is compressed into abstracted data for the Formal Languages
class, and 68 percent is compressed for the Data Structures course. We hypothesize that the
variability in the number of sessions depends on how steadily students study in one sitting. The
DSA material has more prose interspersed with exercises. The FLA material has most of the
information presented in Programmed Instruction framesets (slideshows). One basic behavior
that we observe is that students are more likely to attempt to complete a frameset in a single
session than they are to read the prose and do the associated exercises in a single session.

Table 1
Compression ratio statistics between a raw event stream data and abstracted data: number of rows.
Class Raw data Abstracted data Compression Ratio Total # of Sessions
FLA Fall 2020 763,320 101,437 86.7% 3442
FLA Spring 2021 1,638,155 126,412 92.3% 3490
DSA Fall 2020 447,153 140,332 68.6% 5242
DSA Spring 2021 298,138 92,969 68.8% 2543

4. Session Behaviors

Even the session-level data abstractions presented in Section 3 provide rather a lot of information
for an instructor to absorb. In this section we consider ways to utilize abstracted session data
by characterizing sessions into patterns of behavior.

We propose four example session behaviors that at least some students are likely to exhibit
while studying materials in OpenDSA, and discuss how to recognize those behaviors from
the session data. At this point we are not prepared to make judgements about relationships
between student performance in the class and any of these behaviors, we are just demonstrating
how abstracted session data can be used to recognize behavior patterns. A behavior is defined
as a stream of transitions from one state to another, and each state represents a collection of
associated events, such as a window transition state or exercise state. Researchers can use this
sort of session classification process to find dissimilarities in overall performance measures
between groups of students according to their study behavior.

Activity Sessions Behavior For our first example, we propose a behavior that would naturally
occur if a student opens a module and interacts with exercises or other activities such as
slideshows. We count the number of transitions from document state to window state and
followed by FF state (for PI framesets) or PE state (for other exercise types) for each student
during the whole semester. We can easily detect transitions between states for each unique user
ID from abstracted interaction data. For example, when a particular user triggers a document
event followed by opening a module event, we look to see if the user transitioned from the
window event to the FF event or PE event. If no other events are triggered between transitions,
we can assume that the user followed the pattern of jumping straight to an exercise. This might
be in contrast to opening a module and reading prose if there is any before trying to solve
exercises. Behaviors that we are not considering and therefore not counted include when a

student closes a module without interacting with exercises (we only consider modules that
have at least one exercise) or jumps between modules rather than completing one module.
Basically, we attempt to find how often the students engage with modules in a way that is
possibly learning behavior.

Figure 5:

Figure 6:

Reading Prose Behavior

cs5040_fall_2020

800

2]
=]

=]
=]

Number of Instances

R —

0 T y Y Y T
0 10 20 30 40 50 60 70 80 90 100

Reading time in seconds

Histogram of reading prose time for CS5040 Fall 2020

cs5040_spring_2021

1m0 120 130 140

600

500

&
=1

Number of Instances
=3
(=]

0 A — y 1 " Y
0 10 20 30 40 50 60 70 80 S0 100
Reading time in seconds

Histogram of reading prose time for C55040 Spring 2021

10 120 130 140

Examining only the number of sessions in which students engage

with exercises and slideshows is inadequate to evaluate students’ behaviors, so we also consider
time. A transition made from a document state to a window state or other states does not
guarantee that a student was reading prose because there are other factors that we need to
look for, such as students stepping away from the computer while keeping the module open.

We note that using scrolling events would help to figure out which section of a module the
individual was paying attention to so that researchers may investigate interaction logs with
more detailed information. Unfortunately, this feature was not available in OpenDSA when
we collected these data. Instead, we consider the estimated reading time, which is how long
students spend time in the text section before jumping into solving exercises or slideshows.

Another version of Reading Prose behavior come from Fouh et al. [9], who proposed that the
student reads the slide thoroughly if time spent on a each slide is between 8 and 15 seconds.
Less than 8 seconds means that students did not read the text on the slide and advanced to the
next slide, and greater than 15 seconds is that the student stepped away from the computer
while the slideshow was up. Though this research focus was explicitly on time spent in each
slide in a slideshow, we can borrow the idea of setting a threshold and investigating how long
students stayed in reading contents.

If a student makes a transition from module opening to PE event or FF event (the two exercise
types) within a given time range, we conclude that the person read the prose content. Any
transitions that happened in less than or greater than the threshold are not counted as we
specifically look for if individuals were actually reading. We draw two histograms of reading
prose time of both semesters of DSA classes depicted in Figures 5 and 6. We identify three
clusters by setting two dividing points as seen in the figures; 1) Not-reading behavior where the
reading time is less than 15 seconds, 2) Reading behavior where the reading time is in between
15 and 120 seconds, and finally, 3) Stepped Away behavior beyond 120 seconds which is assumed
that students leave the modules open and generate no further activities.

To validate the accuracy of the time threshold for the Reading Prose behavior, we investigated
several modules independently. We used the top six most-used modules by students that contain
both prose and exercises. Figure 7 shows the load-to-exercise time (time difference between
the initial module opening to the first exercise event) histogram for a module on Shell Sort. In
addition to the histogram of the Shell Sort module, all other histograms have shown a cluster
that falls between 15 seconds to 120 seconds. Given the consistency of how the clusters were
formed in different modules with various lengths of prose, we determined to use that time range
as the threshold for the Reading Prose behavior. According to this figure, most students are not
reading the explanation for Shellsort prior to jumping to work the exercise, as most of them
spent less than 15 seconds between opening the module and doing the first exercise event.

In our abstracted interaction data (see Figure 4), the column named “Action Time" shows the
time difference between two consecutive events. If the column value contains the “Reading
time" string, it indicates the time between opening the module and clicking on the exercise.
We can take advantage of the value to count the number of times students read prose before
moving on to the exercise states, which is considered to occur when the “Reading time" is in
the threshold range.

Credit Seeking Behavior Our third behavior example is called “Credit Seeking". Previous
studies [9, 10] identify such credit-seeking behaviors that differ from and possibly are in conflict
with learning behaviors. These include jumping straight to the exercises without reading the
text, clicking through slideshows as quickly as possible, and skipping to the end of slideshows.

Our third behavior focuses on recognizing credit-seeking behavior, especially the not-reading

Load to Exercise time for Shellsort

20 1

10
0 i ll B T T

0 10 20 30 40 50 &0 70 B0 90 100 110 120 130 140
Reading time in seconds

Number of Instances

Figure 7: Histogram of reading prose time for Shell Sort Module

patterns. In contrast to our second activity type "Reading Prose", we are interested in finding
students who did not read a majority of the text and skipped directly to the exercises. Instructors
may give assignments to complete an OpenDSA module. To be specific, students earn credits
from completing slideshows and solving exercises, not from reading the material. While
instructors typically believe that reading the material is essential to learning, spending time on
this might conflict with a student’s goal of getting credit with the minimal effort.

Referring back to the histograms from Figures 5 and 6, we use 15 seconds for DSA data as our
threshold to identify credit-seeking behaviors whether students skip directly to the exercises. A
similar approach from the reading prose behavior is used. We measure the total time a module
was opened before a transition was triggered to engage with exercises. If it is less than the
threshold of 15 seconds, we consider that as a credit-seeking pattern and record the number of
patterns that occurred for each class student.

Note that our rule for recognizing “credit seeking" behavior is not exactly the inverse of
“reading prose" behavior, because in both cases we rule out sessions over our threshold that we
assume indicates the student is away from the computer. We cannot predict which behavior
students are following in those cases. Future analysis that includes scrolling events can hope to
distinguish this more accurately.

Pl Credit Seeking Behavior We also propose a pattern of behavior related to completing
PIFrames, which is PI Credit Seeking behavior. Modules for the FLA text tend not to have prose,
but instead have nearly all content contained in Programmed Instruction framesets. PIFrame
slides typically contain a brief text statement supported by visual components. Sometimes a
frameset deals with complex material. Although PIFrames have been proved to be an excellent
instructional method [6], a student may find the topic unattractive, especially for mathematical
material. Students might be tempted to skip to the next slide without adequately reading and

understanding the presented context. Since PIFrames do not allow skipping without answering
the question on the slide, such students are motivated to just guess the answer. The chances
are higher if the framesets are graded based on completion, meaning if students reach the end
of the frameset then they earn full credit. Baker et al. [11] suggests that students who engage
in the gaming system behavior learn only 2/3 as much as students who do not engage in such
behavior.

We use a threshold of 8 seconds to determine the number of times students skipped a slide
without reading a text statement by iterating through the interaction data and count the number
of times the frameset events for the same exercise are recorded within 8 seconds. Instead of just
counting raw occurrences of PI Credit Seeking behavior, we also consider the amount of effort
the students put into doing PIFrames. Otherwise a student might be recognized as having the
most credit seeking behavior if the person simply interacted with PIFrames more than anybody
else in the class. To prevent such cases, we consider the ratio of the total number of PIFrame
related events and how many of those events are identified as a credit seeking behavior.

5. Conclusion and Future Work

We were able to achieve some success in abstracting session descriptions by simply joining
together similar events. For the Spring 2021 Formal Language course, we were able to extract a
total of 1,638,155 rows of raw interaction data from the database and abstracted that to 126,412
rows of bundled events, making up 3490 total sessions. This is a reduction below 10%, and
also represents breaking the events into something more manageable by human analysts. The
average session contains 470 raw and 36 abstracted events. With some effort, human analysts
can recognize various patterns of behaviors in the sessions, and from the numbers of sessions
for an individual.

While hands-on interaction with the session data can hopefully lead to meaningful hypotheses
worthy of testing about what is successful and unsuccessful behavior, the actual testing requires
more automation. Our next step was to automatically recognize and compare specific session-
level behaviors. We hope to use clustering algorithms to automatically classify session types as
described in Section 4. From these clusters we can hope to correlate them to course outcomes,
and human analysts can hope to make semantic meaning out of the session clusters. This
information can then lead to design changes in the eTextbook presentation or advice to students
that can improve learning outcomes.

Adding scrolling data to the event stream might also significantly aid understanding of the
session behaviors. Interaction events within exercises are under the control of the exercise
creator, and so we are able to capture those events relatively easily. Scrolling is a browser-level
event, and so less accessible to eTextbook creators. However, we are are now experimenting
with open-source libraries for extracting scrolling events, and will make these part of session
analysis in our future work.

References

(1]

(2]
(3]

R. S.J. d. Baker, E. Duval, J. Stamper, D. Wiley, S. B. Shum, Educational data mining
meets learning analytics, in: Proceedings of the 2nd International Conference on Learning
Analytics and Knowledge, LAK 12, 2012, p. 20.

N. Tax, N. Sidorova, R. Haakma, W. M. van der Aalst, Mining local process models, Journal
of Innovation in Digital Ecosystems 3 (2016) 183-196.

A.S. Carter, C. D. Hundhausen, O. Adesope, The normalized programming state model:
Predicting student performance in computing courses based on programming behavior, in:
Proceedings of the Eleventh Annual International Conference on International Computing
Education Research, ICER ’15, 2015, p. 141-150.

A.S. Carter, C. D. Hundhausen, Using programming process data to detect differences in
students’ patterns of programming, in: Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, SIGCSE 17, 2017, p. 105-110.

E. Fouh, V. Karavirta, D. A. Breakiron, S. Hamouda, S. Hall, T. L. Naps, C. A. Shaffer, Design
and architecture of an interactive eTextbook — The OpenDSA system, Science of Computer
Programming 88 (2014) 22-40.

M. Mohammed, C. A. Shaffer, S. H. Rodger, Teaching formal languages with visualizations
and auto-graded exercises, in: Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education, SIGCSE 21, 2021, p. 569-575.

B. Lockee, D. Moore, J. Burton, Foundations of Programmed Instruction, Handbook of
Research on Educational Communications and Technology (2004) 545-569.

F. S. Keller, Good-Bye, Teacher..., Journal of Applied Behavior Analysis 1 (1968) 79-89.
E. N. Fouh Mbindi, Building and evaluating a learning environment for data structures and
algorithms courses, Ph.D. thesis, Virginia Tech, http://hdl.handle.net/10919/51951, 2015.
D. A. Breakiron, Evaluating the Integration of Online, Interactive Tutorials
into a Data Structures and Algorithms Course, Master’s thesis, Virginia Tech,
http://hdlL.handle.net/10919/23107, 2013.

R. Baker, A. Corbett, K. Koedinger, Detecting student misuse of intelligent tutoring systems,
in: 7th International Conference on Intelligent Tutoring Systems, volume 3220, 2004, pp.
531-540.

	1 Introduction
	2 Event Streams
	3 Abstracting Session Data
	3.1 Defining Sessions
	3.2 Abstracting Sessions
	3.3 Data Compression

	4 Session Behaviors
	5 Conclusion and Future Work

