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ABSTRACT

We describe the current status of an ongoing research
eflort to develop a geographic information system based on quadtrees.
A linear quadtree encoding was implemented using a B-tree to
organize the list of leaves and allow management of trees too large to
fit in core memory. Several database query functions have been
implemented including set operations, region property computations,
map editing functions, and map subset and windowing functions. A
user of the system may access the database via an English-like query
language.

1. INTRODUCTION

The quadtree representation of regions (e.g., Figure 1), first
proposed by Klinger [5] has been the subject of intensive research over
the past several years (for an overview, see [0]). Numerous algorithms

bhave been developed for constructing compact quadiree
representations, converting between them and other region
representations, computing region properties from them, and

computing the quadtiree representations of Boolean combinations of
regions from those of the given regions. Quadtrees have traditionally
been implemented as trees which require space for the pointers from a
node to its sons. However, pointer-less quadtree representations (e.g.
linear gquadirces [4]) are superior when working with very large
quadtrees. In this case, the set of regions is treated as a collection of
leaf nodes. Each leaf is represented by use of a locational code
corresponding to a sequence of directional moves that locate the Jower
left pixel of the leaf along a path from the root of the tree. '

In this paper we describe the current status of an ongoing;
research effort to develop a geographic information system based on a
variant of lipear quadtrees. Quadtree encodings were constructed for.
area, point, and line features from maps and overlays representing a
small area of Northern California. A memory management system
based on B-trees [2] was devised to organize the resulting collection of
leaf nodes, allowing for the use of arbitrary sized maps within a
restricted amount of core memory. Many database functions were
implemented, including map editing capabilities, set operations, and
region property functions. Further details about this effort can be
found in [7,8].

The database used in the study was supplied by the U.S.
Army Engineer Topographic Laboratory, Ft. Belvoir, VA. The area
data consisted of three registered map overlays representing landuse
classes, terrain clevation contours, and floodplain boandaries, which
were hand-digitised at a resolution of 400 by 450 pixels and then
embedded within a 512 by 512 grid for quadtree encoding. A
geographic survey map for this areas supplied point data (house
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locations) and four sets of line data (s railroad line, a power line, a
city border, and a road network).

Note that the variant of the qaadtree that we use results in a
decomposition of space into equalsized parts. This is in contrast to
the point quadtree [3] and the k-d tree [1] where the decomposition is
governed by the input. The advantage of our variant of the quadtree
is that diflerent maps will be in registration thereby facilitating set
operations such as map overlay.

Our database system can be viewed as being made up of four
levels. The lowest level (written in C and discussed in section 2)
controls the interface between the disk Ble used to store the quadtree
data and the programs that are used to manipulate the images. The
second level, also written in C, implements map editing (discussed in
section 3) and other map manijpulations (discussed in section 5). The
interpretation of quadtree node values as features im a map is
discussed in section 4. The third level, written in LISP, controls the
interface between the C programs that manipulate the map and our
query language. User defined names and data items 2re maintained at
this level. The highest level is an English-like query language also
written in LISP and described in sectiom 6.

8. THE QUADTREE MEMORY MANAGEMENT SYSTEM

The quadtree memory management system (benceforth called
the kernel) is based on the quadtree encoding scheme illustrated in
Figure 2. The kev feature of our encoding scheme is that a preorder
traversal of the explicit tree will produce the nodes in ascending order
of their locational codes. Each node’s locational code is formed by
interleaving the bits corresponding to the z and y coordinates of the
pixel at the lower Jeft corner of the node. We store only the leaf
modes of the tree, sorted in ascending order of this address ficld. Any
pixel contained within a node will bave an address greater than that
of the leal's lower left corner, but less than that of the next node in
preorder. Therefore, given the address of any pixel and a list of leaves
ordered by their addresses, finding the leaf containing that pixel
reduces to searching » sorted list.

Given the linear ordering of leaf nodes and the fact that we
are storing files containing as many as 30,000-40,000 leaves, we
decided to organize the quadtree fles using a B-tree structure. The
kernel maintains a bufler pool in core and a B-tree in the disk fle.
The buffer pool need only store that portion of the tree in core for
which there is room. We expect that there will be strong locality of
reference - i.e. the Jeaf for which we are presently searching will very
likely be near the leaf we last found. Therefore, the buffer pool is’
maintained on a schedule that replaces the least recently used buffers:
first. The kernel also controls inserting, deleting and finding quadtree
node descriptors in the B-tree structure.

A quadtree node descriptor is composed of two 32-bit words.
The first word contains information on the leal’s position and depth in
the tree. In particular, it contains a 24 bit field which consists of the
address of the pixel at the lower left corner of the node formed by
interleaving the bits of its z and y coordinates. The remaining eight
bits indicate tbhe depth of the node in the tree. The second word
contains information about the data that the node represents. The
contents of the second word is not used by the kernel. Thus the
kernel is unaware of whether it is manipulating point, line, or area

212




data

Lo

R A

A quadtree file is made up of four parts. First, there is the
kernel's fixed-size header which contains information about the size of
the file and the B-tree structure. Second, there is a fixed-size block for
the user's header (further described in Section 3). The third part is a
list of comments. These comments are either generated by database
functions when a new map is created, or are inserted at the request of
the database user. Im cither case, they serve to document a map.
Finally, a quadtree file contains the B-tree pages that contain the
quadtree node descriptors.

The bulk of the quadtree file is made up of the B-tree pages.
FEach page is 512 bytes long (a convenient size for system read and
write routines). We store 60 quadtree node descriptors in each page.
The remaining space in the page contains information related to the
B-tree organization of the database.

3. THE QUADTREE EDITOR

The quadtree editor serves to facilitate the interactive

construction and updating of mape stored as quadtrees. Presently, it

is a subsystem enterable from the query language, but having its owa
command language. Rather than forcing the user to think in terms of
the tree structure, the editor’s tree manipulation commands make
references to logical units of the map (e.g., lines, points or polygons).
It allows the user to perform such operations as insertiag a line or
point, changing the value of a specified polygoa, or splitting a
specified polygon into more than one piece.

When many changes are to be made, the user may wish to see
the eflects of each step. Commands are provided to emable him to
examine all or part of the map at a selected window oe a display
device. This display is continuously updated as further map
manipulation commands are executed. Associated with each map's
quadtree representation is a descriptor termed the quadiree header.
There exist commands which allow the user to modify this header.
The header contains the size of the map, the tree type (arez, point, or
line), the coordinate of the lower left corner of the map in relation to
a global coordinate system. the rotation angle or tilt of the map from
the external horizontal, ana some information as to the type of data
(i.e. topography, landuse, house} that is being stored. A command is
also provided to enable the user to insert textual comments for
documentation purposes.

When the editor is invoked, the user gives the name of the file
to be edited. A temporary disk file is created on which all editing is
to be done. Another file is created to store the commands given by
the user. These files help protect the user from serious loes due to
system crashes or his own errors such as mistyped or unwanted
commands. They also enable him to abort the editing session withouat
damaging the original copy. If the file to be edited is an old one, a
copy is made in the temporary file. If & new map is to be created, then
a default header is installed and the map is initialised to be one
‘WHITE region.

The user of the quadtree editor views the map as a collectioa
of polygons (sets of contiguous pixels with the same value). Each
polygon (and hence each node making up the polygon) is a member of
2 “class”. This class could be an elevation range or a landuse type
such as “‘wheatfields.” Class information is recorded for each node by
use of a value field that is part of the node's descriptor.

Changes to region maps are made by use of the REPLACE,
CHANGE, and SPLIT commands as described below. These
commands are sufficient for any needed map modification. Line and
point mape can be modified via the INSERT and DELETE commands
as discussed in Section 4. The REPLACE command is executed by
traversing the entire quadtree. Those nodes with the old (class) value
have that value replaced by the new.

The CHANGE command is more complicated. It changes the
class value of only one polygon; however, other polygons of that class
may also exist. Thus, instead of traversing the entire quadtree, a
‘‘seed’’ node inside the polygoa is ‘‘grown™ by examining all of its
neighbors until the entire polygon has been processed.

The SPLIT command allows the user to draw an arbitrary
line, one pixel wide, of a designated value onto the map. The

arbitrary line is specified as a chain code. The intended use of the
command is to split a polygon into two or more separate parts. One
of these parts would then become a polygon of the same class as the
pixels representing the arbitrary line via subsequent invocation of the
CHANGE command. The pixels representing the arbitrary line would
then be part of this new polygon. Alternatively, the SPLIT command
can be used to make slight modifications of only a very few pixels,
such as correcting a slightly misplaced border of a polygon. This type
of correction could not be applied in any other way with the available
command set.

The SPLIT command operates by first inserting s one pixel
node into the tree corresponding to the first location given and thea
following the chaincode inserting nodes as it reads the code. A key
feature of our implementation of the SPLIT command is that the user
can observe the progress of the chaincode as he is inputting it. When
the backspace key is typed, the chaincode is undone by one pixel,
allowing for easy error correction

By repeated use of the three commands REPLACE,
CHANGE, and SPLIT, it is possible to a make any desired changes to
a region map. Clearly this is true since in the worst case the user
could construct an entire map from one pixel chaincodes.

4. POINT AND LINE REPRESENTATIONS

Quadtree representations for point and line data were also
developed. It should be noted that the same kernel (described in

Section 2) is used for manipulating quadtrees of all three data types.

When storing area data in region quadtrees, the value of a leaf
corresponds to the color of the region that contains the leaf. Since
there is no notion of color associated with either point or line data,
other interpretations are placed op the information stored in the value
portion of the leaf descriptor. The interpretation that = particular
routine makes of a leaf's value is dependent on the type of data that
is being stored in the quadtree. The database system stores the data
type of the map in the user beader which was described in Section 3.
The value field of a quadtree node is made up of a single word
32 bits long. For area quadtrees, this is a numeric value which can be
interpreted as BLACK/WHITE, a color value, or as the key for a
symbolic item such as landuse or elevation classes. In this last case,

‘further information describing the item might be part of the database.

For point data, nodes containing data points are interpreted as
containing the z coordinate (in the upper half of the word) and the y
coordinate {in the lower half of the word) of the point. A single word
32 bits long is sufficient to describe the coordinates of one point, as
the kernel limits the tree to a depth of twelve (i.e. s 4006 by 4006
pixel image). Nodes that do not contain s data point are represented
by the value WHITE.

Insertion of a point in a point data quadtree works as follows.
First, we find the leal that contains the point's location. If the leaf is
empty, then the point’s = and y coordinates are entered in the leal’s
descriptor. Otherwise, the leaf is split into its four sons, the old leaf's
point value is copied into the appropriate som, and insertion is re-
attempted. Deletion of a point in a point data quadtree is a matter of
finding the leaf that contains the point and then changing that leaf's
descriptor to that of an empty leaf. Next, we must check to see if it
is possible to merge the new empty leaf with its siblings.

The point data quadtree described above is termed a PR
quadtree [0] and is also used in {8]. It differs from the point quadtree
of Finkel and Bentley [3], in that the structure of the PR quadtree is
independent of the order of point insertion. This is a result of the fact
that PR quadtree leaves are always split into four congruent squares
(conforming to an area quadtree decomposition). In coatrast, the
splitting poiots for the point quadtree are the data points themselves,
thereby resulting in four rectangles that are not mecessarily equal in
size.

To store line data, we developed a variant of the edge
quadtree of Shneier [10] restricted by our 32-bit node value field.
Non-WHITE edge nodes contain exactly one line segment which
intersects two of the node's edges. When inserting a new line into the
tree, nodes which would not conform to this requirement are quartered
and re-processed as appropriate. When two or more lines intersect,
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the point of intersection will never contain only one line segment.
Special consideration must therefore be made for single pixel nodes (in
this case the intersect point). Such single pixel podes may also result
at the endpoints of a line segment that doesn’t begin or end on a
larger node’s boundary.

The value field of the edge quadtree leaf descriptor has four
subfields. The first subfield (one bit) indicates error values. The
second subfield (one bit) indicates whether or not the node contains »

lie segment. The third subfield (two bits) tells for all non-WHITE:

nodes which son a node is with respect to its father. By setting this
field, we guarantee that the leaf will not be automstically merged with
its brothers by the kernel’s insert routine. As this Beld is not set when
the leaf value is WHITE, four empty quadrants are actomatically
merged together.

The fourth subfield (28 bits) of the value field of the edge
quadtree’s Jeal descriptor contains different information depending on
whether or not the leaf corresponds to a single pixel in the map. If
the leaf corresponds to a single pixel, then the fourth subfield indicates
bow many lines pass through that pixel. Otherwise, ron-WHITE
nodes of a larger region contain exactly one line segment. We have 14
bits to encode each of the intercepts of the line with the edges of the
block in which it is contained. We use two bits to indicate which of

the four edges of the block the line intersects. The remaining 12 bits'

indicate the distance along the edge to the intercept. Thus we are
able to handle maps containing blocks as large as 4096 by 4096 pixels.
Insertion and deletion algorithms for edge quadtrees are

analogous to those of region or PR quadtrees. Insertion of s second.

line segment into a region described by a leaf that already contains
one line segment causes the leaf to be quartered. The informatioa
that was in the original leaf is distributed among the new leaves, and

-the insertion attempt is repeated. Deletion of line segments is simply”

a matter of deleting all the information that is specific to that line

segment. This means that nodes containing line segments are given.

the value WHITE and merged with their siblings if possible. Single
pixel nodes have the number of lines passing through them
decremented (with the value becoming WHITE when the number of
lines becomes zero).

8. " ATABASE FUNCTIONS

One of the basic functions of s geographic information system

is to indicate the name of the class or taining a given.
polygon con g » SIvER. Move displays a cursor at a giver point on the display device.

point. For some purposes, it is sufficient to describe a polygon by
listing any point contained within it, and its class value. At times, it
is necessary to be able to determine if two points which have the same
class value are indeed within the same polygon. For this situation, the
user can invoke a fanction which creates a unique polygon descriptor
from a point. This function uses & modified version of the polygon-
seced function used by the CHANGE function of Section 3. It
examines all of the nodes in the polygon and determines which node
has the lowest address. The pixel at the Jower left corner of this node
is used to describe the polygon. This is an expensive algorithm and
should only be used when absolutely necessary.

The database language allows the formation of a map that
corresponds to the extraction of a set of polygons from another map.
This is achieved by the SUBSET function to which the user gives 3
list of classes and polygons. The SUBSET function first traverses the
input tree, placing in the output tree any nodes whose value is that of
3 class on the list. Then for each polygon on the list, the polygon-seed
function is performed, placing all nodes of the polygon into the output
tree.

We have implemented functions that compute region
properties such as area and perimeter. In addition, we can compute &
minimum enclosing rectangle for a given subset of the map as well as
extract a square window from the map. A list of all the classes or
polygons in 8 map can be generated. As an example, such a list could
be used to compute the area of every polygon on the map.

Point and line mape can also can be used in conjunction with
some of these functions, although they may have slightly different
definitions. Given the coordinate values of a point, functions are
provided to indicate if it lies orn a data point or line of the input map.

The area of a point map is the number of points contained within it.
The area of a line map is the length of the lines within it. A special
regionsearch function is provided, similar to the window function,
which yields a map containing all of the points within a given radius
of a given point from the input point map. The window and enclosing
rectangle functions may also be applied to point and line maps.

We have also implemented set operations such as wnion and
intersection. Both upion and intersection may be applied to any two
maps of the same type (i.c. area, line, or point). In addition, a line or
point map may be intersected with an area map, yielding & line or
point map containing only those points or lines contained within the
non-WHITE regions of the area map.

8. THE QUERY LANGUAGE

The query language provides an English-like keyword-based
interface between the database user and the database system. It
allows a non-programming oriented user to access the database with a
more batural command language than LISP.

The query language is keyword-based. It operates by
translating a query into LISP function calls, ignoring any words not in
its vocabulary. This has the advantage that the user can insert noise
words and phrases (e.g., articles like “the” and “an") to give the
command a more natural appearance. This added fiexibility is bought
at the cost of more obscure error messages resulting from the
misspelling of s keyword. In order to allow the user to customize kis
interface with the database, there are commands that allow keywords
to be changed.

Table 1 presents a brief syntax of the query language in its
present form. The Plcase command is used to learn about the system.
The Use command changes the display device usage area. The
Measure command lets the user indicate whether coordinates will have
the referred map’s lower left corner as origin, or use the global
coordinate system's origin. The Enter command allows the user to
inform the system of new data files. The Displey command enables the
display of a map on the display device. The Let, Describe, and Forget
commands manipulate names of entities or keywords in the system -
eg., to rename items, describe items, or to remove items from the
system, respectively. Let and Forget allow the user to name or forget a
data item (e.g. assigning a name to a polygon description) as well as
renaming keywords of the query language. List returns a list of
polygons or classes from s map. Edil accesses the quadtree editor.

One of the key features of the implementation of our query
language is the ability to compose functions. Thus, where the Display
command requires a map, this could be either a map name, or an
expression which yields a map. For example, if we want to display
the intersection of the landuse class map with the region below 100
feet elevation, it could be done with the following command:

Display the intersection of land with the map formed from
levell in top on the Grinnell

where ‘land’ is the name of the landuse map, ‘top’ is the name of the
topography map, ‘levell’ is the elevation class from O to 100 feet, and
‘Grinn_ell' is the name of our display device.

7. CONCLUDING REMARKS

Our experience in developing a geographic information system
based on quadtrees demonstrates that such a system is feasible. The
potential advantage of using quadtrees, rather than conventional dats
structures, lies in the effliciency with which many types of queries can
be handled. In its current state, our system can handle s wide range
of queries. More capabilities will be added in the future. For the
operations that we have implemented 30 far, we never use more than
two input maps and one output map at the same time. However, the
system places no restrictions on the number of maps which can be
entered in the database. The map size is limited by the address space
available, which is a function of the node size. In the current
implementation, an individual map may not be larger than 4096 by
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4096 pixels. Larger regions can be represented by breaking them up
into smaller maps.
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Figure 1. An image (a), its binary array (b), its maximal blocks (c),
and the corresponding quadtree (d). Blocks in the image are shaded;
background blocks are blank.

- ________________________________________________________________________

Commands:

Please {explain} <eyntactic_unit> (}

Use {the Grinnell at} <window> {}

Measure {points from the lower left corner of} map {}
Measure {points from the} global {origin}

Enter <file_pame>> {into database}

Display <map> {ou Grinaell}

Display <map> {on Grinnell starting from} <point> {}
Display {the} value {of} <anumber> {}

Let <name> {} denote {} <object> {}

Let <pame> {} rename {} <map> {{

Describe {the type of this} <oame> {

Forget {about the meaning of this} <key_word> (}
List {all the} classes {on} <map> {}

List {al] the} polygons {on} <map> {}

Edit {} <map> {with the database editor}

Move {to} <point> {}

Other syntactic units:

<number> ::= {the} area {of} <map>
{the} perimeter {of} <map>

<poiat> ;= {where x =} <number> {and y =} <number>
{the point at the} cursor

<window> = <point> {extended} <number> {by} <number>
{the smallest} window {for} <map>

<map> :i==  {the} intersection {of} <map> {with} <msp>
{the} union {of} <map> {with} <map>
{the} windowing {of} <map> {with} <window>
{the} map {formed from} <cplist> {in} <map>

<class> = {the} class {of} <poly> "
{the} class {at} <point> {on} <map>

<poly> == {the} polygon {at} <point> {on} <map>
{the} unique polygon {at} <point> {on} <map>

<cplist> ::== <a list of polygons and classes>

Table 1. The syntax of the query language. Words enclosed in curly
braces {} are noise words and may be removed or replaced with any
other non-keyword. Words enclosed in angle brackets <> are
syntactic units, and are replaced by words or phrases matching their
definition. In addition to a variable name or integer value which
corresponds to the requested syntactic wnit in 3 command, some
syntactic units have further definitions as listed above. For example,
where <number> is requested, a number may be typed.
Alternatively, one of the two definitions givea above for <number>
may be used (with the first definition resulting in the area of the map,
the second definition resulting in the perimeter of the map).
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(b) The block decomposition
of the image from Figure 0a
with each block labelled by the
address of its lower left pixel.

{a) A 2% x 2% grid with

each pixel labelled with the
(base four) value obtained by
interleaving the y and z
coordinates of the pixel.

Figure 2. An example demonstrating the use of locational codes to
address blocks in an image represented by a quadtree.
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