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Abstract--The location, type, and severity of external defects on 

hardwood logs and stems are the primary indicators of overall log 

quality and value.  External defects provide clues about internal log 

characteristics. More than 1,000 yellow-poplar defect samples have been 

collected to establish an external/internal defect databank. There are 

strong correlations among external indicators and internal features have 

been discovered.  The ability to determine the location and 

characteristics of internal log defects in real-time should improve the 

lumber production dramatically with respect to quality and quantity. A 

high-resolution laser log scanner was used to scan 162 red oak and 

yellow-poplar logs.  The processed laser images show most bark texture 

features and surface characteristics of the original log or stem. 

Defects with height differentiation from the background log surface are 

distinguished using the contour levels of a residual image. Simple shape 

definition rules combined with the height map allows detection of the 

most severe defects. 

 

INTRODUCTION 

Traditionally, before a hardwood log is processed it undergoes a 

subjective (visual) assessment, typically by  a mill operator.  The 

difference between high and low quality logs is determined by defect 

type, frequency, size, and location.  It is difficult to accurately and 

rapidly detect and measure defects, either mechanically or manually 

(Tian and Murphy 1997).  For every surface indicator there is usually an 

associated internal defect.  External defect indicators are bumps, 

splits, holes, and circular distortions in the bark pattern.  Bumps 

usually indicate overgrown knots, branches, or wounds.  Some bumps have 

a cavity or hole in the middle, indicating that the overgrown material 

has decay or is rotten. Circular distortions, or rings around a central 

flattened area, indicate a branch that was overgrown many years earlier.  

Surface defects progress from a pruned or broken branch to an overgrown 



knot characterized by a significant bump and then to a rotten knot or a 

distortion defect.  For some classes of defects, it is possible to 

accurately predict internal features based on external characteristics. 

 

Studies have demonstrated that the use of external or internal defect 

data improves cutting strategies that optimize log recovery or yield, 

i.e., preserving the largest possible area of clear wood on a board face 

(Steele et al. 1994).  The value of the lumber that can be recovered 

depends on the presence and location of defects.  This is especially 

true for hardwood logs.  In the production of hardwood lumber, boards 

are sawn to fixed thicknesses and random widths. The presence and 

placement of defects on the boards affect board quality and value, so 

much attention is focused on log surface defects during processing.  

 

Several scanning and optimization systems are available that aid in the 

sawing of logs into lumber. Two types of defect detection are used on 

hardwood logs: internal and external.  Various internal defect 

inspection methods have been proposed in the literature based on X-

ray/CT (Computer Tomography), X-ray tomosynthesis, MRI (magnetic 

resonance imaging), microwave scanning, ultrasound, and enhanced pattern 

recognition of regular X-ray images (Guddanti and Chang 1998; Schmoldt 

1996; Wagner et al. 1989; Zhu et al. 1991). CT and MRI systems provide 

excellent internal images of logs, but image acquisition is slow and 

expensive and variable moisture content and log size can present 

problems to the CT scanning device (Bhandakar et al. 1999). Currently, 

there is no known commercial installation of these methods. 

 

Laser-line scanners are commonly used in sawmills to gather information 

on external log characteristics, e.g., diameter, taper, curvature, and 

length (Samson 1993).  Optimization systems use the laser-profile 

information to better position the log on the carriage and improve the 

sawyer's decision-making ability.  These systems typically were 

developed for softwood, e.g., pine, spruce, fir log processing.  They 

are becoming increasingly commonplace in hardwood mills as well.  

 

Our research takes the three-dimensional log surface image and processes 

it to determine the location of the most severe external defects: 

overgrown knots, rotten knots, holes/gouges, and removed branches.  

These types of defects usually are associated with a significant surface 

rise or depression depending on the defect type.  The image is processed 

using a robust statistical approach to generate a height map of the log.  

Defects are characterized and located by a height change from the 

surrounding log area.  Many internal aspects of the defect can be 



predicted.  This system is currently under development and is expected 

to permit an inexpensive, automated approach to determining interior 

defect information. 

 

THE INTERNAL/EXTERNAL DEFECT RELATIONSHIP 

 

The Logger Databank is an unpublished USDA Forest Service database 

containing more than 20,000 logs of various hardwood species collected 

over a 40 year period by the Forest Products Laboratory and Northeastern 

Research Station. The databank contains size and location information 

for all side and end defect indicators. We used the databank to 

construct a random sample of approximately 33% of the total yellow-

poplar (Tulipifera liriodendron) defect population. For log grades 1, 2, 

and 3, 80% of all defects are in nine defect types.  According to the 

log grading rules the following log surface abnormalities are serious 

grading defects that lower quality and strength: bulges, bumps, burl, 

conk, holes, knots (sound, unsound, and overgrown), insect damage, bark 

distortions, pin, shot, spot, and flagworm holes (Ostrander 1965).  

Overlaying this information with defect population data, we determined 

the defect types that should be sampled from the forest. 

 

Two sites in West Virginia were selected for defect sample collection: 

West Virginia University Forest (WVUF) near Morgantown (elevation: 2300 

feet) and Camp Creek State Forest (CCSF) near Princeton (elevation: 2600 

feet).  The two sites are separated by 220 miles.  The number of defects 

obtained from each site by defect type is shown in Table 1.  In most 

cases, approximately equal numbers of each type of defect were obtained 

from each site.  The exceptions are the light distortion (LD) and 

unsound knot (UK) defects.  We did not collect LD defects from the WVUF.  

UK defects occured in much fewer numbers at CCSF than at WVUF.  Thirty-

three yellow-poplar trees were selected randomly from each site.  From 

each tree the number of defects of each type was counted and recorded.  

Random numbers were used to select which defects to choose from each 

tree.  The goal was to select three or four defects of each type 

available from each tree. The placement of defects on the tree often 

meant choosing one to the exclusion of others. 

 

For each defect sample, the diameter of the log inside the bark, bark 

thickness, and ring count are recorded. An alignment groove is milled 

into the top of the sample to indicate orientation and to provide a 

measurement point for calculating the penetration angle of the defect.  

Next, each sample was sliced into 1-inch-thick slabs.  On the surface 

and for each slab the defect width, length, and distance from defect 



center to the bottom center of the alignment groove are measured as is 

the height of the defect on the surface also is measured. A series of 

defect slabs is shown in Figure 1.  

 

Methods 

Using SYSTAT (Wilkinson 1988) a series of linear regression analyses 

were performed on the exterior/interior data series.  The independent 

variables included: defect surface width, surface length, surface 

height, diameter, height above ground, and growth rate. Although height 

above ground and growth rate usually would not be known when examining a 

given log, we included these variables to determine the effect if any on 

predicting internal characteristics.  The dependent variables are clear-

area-above-defect (thickness of usable wood above an encapsulated 

defect), penetration angle, total depth, halfway in width, and length. 

    

Each defect type was analyzed separately.  A stepwise function (p > 

0.15) was used to identify significant variables; the linear regression 

package was used to identify outliers.  The outliers were examined to 

determine whether the data could be corrected (data entry error) before 

exclusion. In all cases, the number of outliers removed from each defect 

class was less than 7% of each defect-class population. 

 

 

Results 

Surface features for most defects generally are correlated with internal 

features. The results from the stepwise multiple linear regression 

analyses are presented in Table 2. R2 values were best with the most 

severe defect types.  For sound, unsound, and overgrown knots, the 

models were effective in predicting total penetration depth of the 

defect and the cross-section dimensions at the midway penetration point. 

Another perhaps more important factor is the low mean absolute error 

(MAE). Even with slightly low R2 values, the error is sufficiently low to 

allow a somewhat accurate prediction of internal features.  For example, 

the MAE for overgrown knots is 0.240 inch.  Thus, the regression model 

predicts a size that is on average within ±0.240 inch of the actual 

size. 

For less severe defects, heavy, medium, and light distortions, total 

depth continues to be highly correlated with surface features and has a 

low MAE.  However, the halfway-in-width and length are not as strongly 

correlated with surface features as with the more severe defects.  A low 

MAE likely will allow prediction of internal features sufficient for 

grade recovery optimization. This assumption will be tested in future 

research.  



 

Adventitious knots and adventitious knot clusters also were examined, 

but most internal features were not strongly correlated with exterior 

features.  The results of these analyses have been omitted from Table 2.  

One may observe from this that the less severe the defect, the less 

correlation the internal features have with the external indicators.  

This may be due to longer encapsulation time (i.e., time since defect 

began to be overgrown by good wood) that has obscured external 

indicators.   

 

Rake or penetration angle is not as well correlated to surface features 

as other internal features for all defect types.  In the rake model, 

growth rate appeared as a significant variable.  It was omitted from 

these results as it is not immediately discerned from a surface 

examination of the log.  For the distortion defects, no surface 

variables were significantly correlated to rake.  Rake angle is 

approximately normally distributed with a mean of 21.87 and a standard 

deviation of 11.03, so it may be possible to use these values for the 

placement of the internal defect.  This possibility needs to be tested 

to discern how sensitive grade recovery is to the variable placement of 

the defect with respect to penetration angle. 

 

LASER LOG SCANNING TO DETECT EXTERNAL DEFECTS 

We used a portable demonstration laser log scanner to collect log 

surface data http://www.usnr.com/perceptron/products.htm.  The scanner 

had four laser-line generator/camera units stationed at 90-degree 

intervals around the log’s circumference. Triangulation was used to 

determine locations of log surface points covered by the laser line. A 

combination of 162 northern red oak (Quercus rubra) and yellow-poplar 

(Tulipifera liriodendron) logs was scanned.  These are two of the most 

common and important commercial species in the Eastern United States.  

The sample of logs scanned was obtained both from the forest and from 

local sawmills.  In general, logs from the forest are in better 

condition than those from sawmills due to less handling.  Also, forest 

logs have less damage with fewer and smaller areas of missing bark than 

mill logs. 

 

The log scanner recorded a laser line measurement approximately every 

0.78 inch along the logs length.  A transducer records the lineal 

position of the scanner accurate to 0.01 inch. The data set shown in 

Figure 2 consists of 1,290 three-dimensional Cartesian coordinates in a 

single plane or “cross section.”  The average distance between points in 

each cross section is 0.04 inch.  When a sequence of cross sections is 



assembled, a three-dimensional map of the log surface is obtained.  

Using OpenGL (a 3D programming data display environment), realistic 

views of the scanned log surfaces (Fig. 3) are rendered that are useful 

for visually examining log surfaces and defect characteristics. 

 

Data Processing 

To convert the 3-D log surface data to 2-D images for processing, a 

reference surface must be imposed on the log data.  Since logs are 

natural objects that are approximately circular or elliptical in cross 

section, we fit circles or ellipses to the log data, which together form 

a reference surface.  Defects that correspond to rises or depressions on 

the log surface can be detected using contour levels estimated from the 

orthogonal distances between the reference surface and any point of the 

cross section. 

 

Fitting quadratic curves (i.e., circles, ellipses) to 2-D data points is 

a nonlinear regression problem (Gander et al. 1994). Classic least-

squares fitting methods failed because the laser log cross-section data 

contain missing data and/or large deviant data points. In robust 

statistics, outliers are defined as data points that strongly deviate 

from the pattern formed by the majority of the measurements.  The laser 

data sets include outliers generated by dangling loose bark, duplicate 

and/or missing data caused by scanner calibration errors, unwanted data 

from the supporting structure under the log, and missing data due to the 

blockage of the log by the supporting structure. To overcome the non-

robustness of the least-square fitting, we resorted to the theories and 

methods of robust statistics (Hampel et al. 1986).  The nonlinear form 

of the circle equation prompted us to develop a new robust estimation 

method that is an outgrowth of the one proposed by Mili et al. (1996). 

 

Our nonlinear regression circle-fitting estimator is a generalized M-

Estimator, termed GM-estimator (Thomas et al. 2004).  It not only 

filters the errors in the measurements but also the errors in the circle 

model that are applied to a given cross-sectional data set.  For a log 

sample with 120 cross sections, an equal number of circles are fitted, 

forming a reference surface for the residual extraction.   Unlike the 

method described in Mili et al. (1996), our estimator minimizes an 

objective function that uses a weight function that levels off for large 

scaled radial distance between the associated data point and the fitted 

circle; it does this at every step of the iterative algorithm that 

solves the estimator. We tested the robustness of our estimator on real 

log data samples and found that the resulting fitted circles vary little 



among neighboring cross sections, yielding a smooth fit over the entire 

data of a log. 

 

Defect Detection 

The next step is to convert the three-dimensional, laser-scanned 

Cartesian coordinates into a two-dimensional, 256 gray-level image (Fig. 

4).  In this process, the log surface is unrolled onto a 2-D coordinate 

space.  In essence, this process creates a “skin” of the log surface 

representing the pattern of the log’s bark along with the bumps and 

bulges associated with most defects. Using the adjusted, fitted circle 

to each cross section, we calculate the radial distances between circle 

and log surface points, typically ranging from -0.5 to 0.5 inch. The 

radial distances are scaled to range from 0 to 255 and mapped to gray-

levels to create a 2-D image.  Originally the log data are not in a grid 

format.  As a result they are processed and interpolated linearly to 

fill any gaps between data points. 

 

To detect defects, we developed an expert system to accommodate the many 

possible defect sizes, heights, shapes, types, etc.  The main method 

incorporated in the algorithm is identifying defect areas via a series 

of elimination of non-defective areas among many potential candidates.  

This is achieved by using measured and processed log data (converted for 

the defect detection algorithm), expert knowledge, and expertise in a 

stepwise fashion. The data resolution (0.8 inch per cross section) and 

the nature of external defect shapes restrict search scope in the 

algorithm.  

 

Two major steps are involved in the defect detection algorithm.  The 

first step consists of finding the most obvious defects and their 

external characteristics, including protrusion on surface, certain 

width-length ratio, area size.  Shape and characteristics were obtained 

from the samples collected for modeling the external/internal defect 

relationship. 

Because most severe defects have a localized height change, a height 

analysis of the residual image provides information on the presence of 

severe defects.  A substantial, localized, and abrupt surface rise or 

depression greater than 1.0 inch is almost always a defect.  Since the 

pixel values in the gray-level image represent radial distances between 

the fitted circle and the log surface, the analysis is straightforward.  

Using the gray-level image (Fig. 4) we generate a contour plot as 

depicted in Figure 5.  In the contour plot image, it is possible to 

discern areas containing likely defects based on height information 

alone. We developed an algorithm to generate the rectangles that enclose 



areas within a contour curve at the highest level.  The areas are 

selected depending on their sizes, five of the six surface defects were 

found using this method.  Figure 5 also presents a manually recorded map 

of the defects on the same log.  The defect types represented in the map 

include SKs (sound knots), OKs (overgrown knots), and a gouge.  A type 

of hole defect, a gouge is an area of missing wood usually created 

during felling or poor handling. 

 

Certain defects, particularly sawn knots, often are partially detected 

in the contour because they are relatively low-lying and flat. Thus, 

only a corner is enclosed in the highest contour. The second step of our 

algorithm uses a statistical expert system to examine the area 

surrounding such a small region for relatively straight-line segments.  

If the coverage of straight-line segments is sufficient, the defect area 

is adjusted to cover the entire defect surface rather than just a 

corner.   

 

Results 

In the first step of our algorithm, the most severe and obvious defects 

are identified.  They have a relatively significant height change on the 

surface (• 0.5 inch) and/or a relatively significant size (• 3 in. in 

diameter). We refer to such defects as “expected to be detected,” while 

the others are termed “unexpected to be detected” (Table 3).  We use 

this grouping because the log-data resolution, 0.8 inch per cross 

section, is not high enough to clearly detect defects whose diameters 

are smaller than 3 inches.  In addition, the current version of our 

system uses the contour image generated from the radial distances that 

provide a map of defect height change against the surrounding bark.  For 

certain classes of defects, our detection algorithm has a probability of 

detection of 81% (48 of 59) for the most serious defect classes.  

Further, it has a 36% detection rate for all defects and 19% false 

detection rate (14 of 73 identified defects).  

DISCUSSION 

Due to the presence of extreme outliers and missing data in the laser 

log data, robust estimation techniques are well suited to this 

application.  The developed programs can process an entire log-data 

sample by transforming the original log data set, which may contain a 

large number of missing and/or severe deviant data, into a sharper and 

cleaner image.  The quality of the resulting gray-level image lays a 

solid foundation for the remaining defect-detection process. Contour 

levels derived from the residuals allowed us to detect and further 

narrow the potential defect areas.  

 



The laser-log scanning system is effective in locating severe defect 

types. The external scanning system determines the diameter of the log 

at the defect and the width, length, and rise (if any) of the surface 

indicator.  These variables are required input to the external/internal 

defect modeling system.  We are working to combine the two systems to 

provide a simulated external whole log scanner that infers knowledge of 

internal defect structures based on external indicators. Additional 

enhancements to the system will require a laser scanner with an 

increased longitudinal resolution (0.1 inch between cross sections).  

Such scanners are currently available and would allow texture-based 

approaches to finding defects without a significant surface rise.  Also 

we may be able to correlate aspects of the surface texture with internal 

features, thereby improving the model’s predictive power for less severe 

defects.  
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TABLE AND FIGURE CAPTIONS 

 

Table 1.—Types and numbers of defects collected by site and overall 

Table 2.—Correlation results for yellow-poplar samples by defect type 

Table 3.–Statistics of the simulation of our defect detection system 

 

Figure 1.—Photo series showing processed defect sample 

 



Figure 2.—A data cross-section representing the circumference of a log 

on a 2-D plane 

 

Figure 3.–OpenGL rendered image of the laser scanned log data 

 

Figure 4.–Radial residuals generated by the log-unrolling process 

presented as a gray-level image. Light pixels represent protrusions from 

the log surface; dark pixels represent depressions.  This log is 

approximately 9 feet long with a diameter of 2 feet. 

 

Figure 5.—Left: Computer generated contour plot of a log surface with 

the four most obvious defect areas marked with crossed rectangles 

labeled in the descending order of area size.  Right: Defect diagram 

illustrating the “ground truth.”  Note that only five small and/or flat 

defects were not detected. 

 



Table 1.—Types and numbers of defects collected by site and overall 

 

 Location   
 

Defect CCSF 
WVU 

Forest Total 
Adventitious knot (AK) 76 76 152 

Adventitious knot cluster (AKC) 59 68 127 

Bump (BUMP) 3 1 4 

Heavy distortion (HD) 74 58 132 

Light distortion (LD) 96 6 102 

Medium distortion (MD) 87 80 167 

Overgrown knot (OK) 89 79 168 

Overgrown knot cluster (OKC) 20 1 21 

Sound knot (SK) 47 46 93 

Sound knot cluster (SKC) 2 0 2 

Unsound knot (UK) 7 33 40 

Wound (WND) 14 13 27 

Total 574 461 1035 

  



Table 2.—Correlation results for yellow-poplar samples by defect type 

 D  Mean absolute

 es multiple R 

Surface length, DIB 0.823 0.395 - inch 

ependent  

Adjusted 

squared 

Defect variable Independent variabl error 

Sound knot 

Halfway-in 

length 

 Halfway-in width Surface length, DIB 0.811 0.242 - inch 

0.640 

10.90 - 

degrees 

0.510 0.544 - inch 

sound knot 0 0.

0 0.

0

8.

de

0 0.

ergrown knot 0 0.

idth Surface length, DIB 0. 0.240 - inch 

0.386 

8.

degrees 

0.810 0.366 - inch 

0.438 0.319 - inch 

Surface width, DIB 0.427 0.221 - inch 

N.S 

0.799 0.417 - inch 

-- N.S -- 

stortion DIB, surface width 0. 0.257 - inch 

dth 0 0.

-- N -- 

 Total depth 

Surface width, length, 

DIB 0.822 0.362 - inch 

 Clear area above Surface rise, DIB 0.206 0.764 - inch 

Light distortion 

Halfway-in 

length -- N.S -- 

 Halfway-in width Surface length 0.220 0.176 - inch 

 Rake angle -- N.S -- 

 Total depth 

DIB, surface width, 

length 0.775 0.334 - inch 

 Clear area above -- N.S -- 

 Rake angle Surface length, rise, DIB

 Total Depth Surface length, DIB 

Un

Halfway-in 

length Surface length, DIB .672 527 - inch 

 Halfway-in width Surface length .647 312 - inch 

 Rake angle Surface length, DIB .341 

118 - 

grees 

 Total Depth Surface length, DIB .712 601 - inch 

Ov

Halfway-in 

length Surface length, DIB .392 469 - inch 

 Halfway-in w 482 

 Rake angle Surface rise, length, DIB

156 - 

 Total Depth DIB, surface width 

Heavy distortion 

Halfway-in 

length Surface width, DIB 

 Halfway-in width

 Rake angle -- -- 

 Total depth DIB 

 Clear area above

Medium 

di

Halfway-in 

length 336 

 Halfway-in wi Surface width, DIB .329 163 - inch 

 Rake angle .S 

 



Table 3. –Statistics of the simulation of our defect detection system  

Expected Unexpected Grand Total         Number of 

defects  

            to be 

detected 

 

Defect Type 

Total Detected Total Detected Total Detected 
False

Knobs 32 28 34 6 66 34  

Sawn knots 19 19 19 2 38 21  

Others 8 1 50 3 58 4  

All Types 59 48 103 11 162 59 14 

 

 

 



 
 

Figure 1.—Photo series showing processed defect sample 
 



 
Figure 2.—A data cross-section representing the circumference of a log 
on a 2-D plane 
 



 
Figure 3.–OpenGL rendered image of the laser scanned log data 
 
 



 
Figure 4.– Radial residuals generated by the log-unrolling process 
presented as a gray-level image. Light pixels represent protrusions from 
the log surface; dark pixels represent depressions.  This log is 
approximately 9 feet long with a diameter of 2 feet. 



 
Figure 5.—Left: Contour plot of a log surface with the four most obvious 
defect areas marked with crossed rectangles labeled in the descending 
order of area size.  Right: Defect diagram illustrating the “ground 
truth.”  Note that only five small and/or flat defects were not 
detected.  Both plots were automatically generated by our programs. 
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