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Abstract

We describe procedures for converting a macromolecular reg-
ulatory model from the most common deterministic formula-
tion to one suitable for stochastic simulation. To avoid error,
we seek to automate as much of the process as possible. How-
ever, deterministic models often omit key information neces-
sary to a stochastic formulation. In this paper we introduce
how we implement conversion in the JigCell modeling en-
vironment. Our tool makes it easier for the modeler to in-
clude complete details. Stochastic simulations are known for
being computationally intensive, and thus require high per-
formance computing facilities to be practical. We provide the
first stochastic simulation results for realistic cell cycle mod-
els, using Virginia Tech’s System X supercomputer.

1. REGULATORY NETWORK MODELING

Mathematical modeling of macromolecular regulatory net-
works in terms of ordinary differential equations has helped
to shed light on the detailed workings of the cell cycle and
other intracellular processes [3, 11]. However, deterministic
continuous models cannot explain some behavior of these
systems. Thus, modelers are beginning to employ stochas-
tic methods to improve the accuracy of the simulations, in
particular to account for the differences in outcomes that
appear in individual cells. The heart of such models are a
set of chemical reactions, and there are well-known stochas-
tic simulation techniques for sets of chemical reactions such
as Gillespie’s stochastic simulation algorithm (SSA) and its
variants [2, 6, 7]. Since there currently exist models of value,
it is natural to wish to run the existing models using stochas-
tic simulation algorithms, even if those models were created
with continuous, deterministic simulators in mind. Even in
the future, it might be that modelers will develop initial mod-
els using deterministic ODEs for their relative speed and sim-
plicity, before running a full stochastic simulation.

Unfortunately, ODE-based models are not cast in the right
form for direct simulation using stochastic methods. The val-
ues of species in ODE models are usually written in concen-
tration form, because concentrations are what experimenters
measure in the lab. However, stochastic simulations require
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the model to be in terms of population because they account
for individual molecules. Thus, a translation process must
take place. For large complex models that could have over
a hundred parameters, this process would be tedious and er-
ror prone to perform by hand. This might appear to be a triv-
ial issue, but there are two reasons why it is not. First, there
is non-trivial reasoning that must be applied to generate the
correct scaling functions. Second, this scaling requires care-
ful definition of units for all species, which is typically ne-
glected by deterministic modelers. In this paper we describe
our progress toward automatic conversion of models within
the JigCell system [9].

Gillespie’s stochastic simulation algorithm defines a
propensity function that accounts for the probabilities that
each reaction will fire. This takes the place of rate laws (ve-
locities) for the reactions in a deterministic formulation of the
model. Though they have different physical meanings, these
two formulations are closely connected and can be converted
one to the other. Our tools are also constrained by the fact that
they represent both the deterministic and stochastic forms in
the Systems Biology Markup Language (SBML) [8], which
is the defacto standard within the systems biology modeling
community today.

When building deterministic models, modelers often pre-
fer to use normalized or scaled values for species concentra-
tions, because often the modelers do not know the real value
of a species’ typical (characteristic) concentration or number
of molecules. Thus, before being converted to a stochastic
model, the model should be converted to real concentrations
first. These scaling factors are typically lost in a deterministic
model. Part of a conversion tool’s job is to help the modeler
correctly input these scaling factors.

Whether a model is written in terms of normalized con-
centration, real concentration, or population, it describes the
same reaction network. Thus, essentially we are identifying
the lost information that was not required for the ODE-based
model, and changing the form of information describing the
model. The key missing information typically is the definition
of the units for various constants and state variables. Model-
ers make implicit assumptions for unit definitions, and many
tools today do not support defining this information explicitly.
During the conversion process, it is important to enforce units
on every species and parameter, and always check unit con-
sistency inside the model. Unit definitions include any scaling
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factors involved in the corresponding variable. The explicit
definition of units is a necessary step in building large and
complex models.

When implementing the automatic conversion function, we
keep the following goals in mind. The toolkit should be smart
enough to automatically infer the correct units for parame-
ters and check unit consistency within the model. It should
be convenient for the modeler to input whatever information
cannot be inferred. Conversion between concentrations and
populations should be automatic once all necessary informa-
tion is available. It should be flexible so that once converted,
the model can be modified at will without any restriction that
might be implied from the original deterministic model. Jig-
Cell now achieves all these goals, and thereby greatly reduces
the work load when modelers move between deterministic
and stochastic models. Our technique allows us to do stochas-
tic simulations on significant models.

A stochastic simulation usually requires significantly more
computing resources than a deterministic simulation, and that
simulation must be run thousands of times to produce ensem-
ble averages. But the ensemble result is inherently easy to
compute in parallel. We report here our initial results from us-
ing a stochastic simulation package to do simulation of both
a small and a more detailed (and therefore larger) budding
yeast cell cycle model on a parallel supercomputer. We also
compare the time required by a deterministic simulation on
the same reaction networks to contrast the difference in the
computation time. To our knowledge, this is the first publica-
tion of stochastic simulation results on a non-trivial model of
the cell cycle.

2. A SIMPLE CELL CYCLE MODEL

To illustrate the process of converting from a determinis-
tic model to a form suitable for stochastic simulation, in this
section we introduce a simplified version of a published cell
cycle model [3].

The deterministic form of the model consists of six re-
actions, all of which use complex rate laws that systems
biologists have hypothesized as reasonable approximations
for more complex series of interactions going on within the
cell. We refer to models using such complex rate laws as
a “packed” formulation for the model. A stochastic model
ideally will be defined by a collection of simple mass ac-
tion (elementary) reactions. In our model, the packed form
uses Michaelis-Menten and Hill functions representing the
result of unmodeled elementary reactions. Though stochas-
tic models are usually written in terms of elementary reac-
tions, it is also possible to stochastically simulate reactions
with more complex rates. While this may somewhat under-
estimate the molecular noise, it suffices to demonstrate the
validity of our approach. The following is the deterministic
form of the model.
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In this model, Cdh1p is the phosphorylated form for Cdh1.
Parameter m represents the mass of the cell. The following
notation is used through out this paper. For any species S,
[S], denotes its normalized concentration, and [S] denotes the
real concentration. Ny denotes the number of molecules (pop-
ulation) of species S. ¥ or I is a parameter of a normalized
model. k and J are scaled versions of k or I, respectively, used
in the unnormalized model in terms of real concentrations.

This model includes typical reaction types, namely Mass
Action, Michaelis-Menten and Hill functions. However, in
practice modelers often use non-standard rate laws. For ex-
ample, reaction 6 is essentially a combination of Mass Action
and a Hill function, but the program cannot determine this.
For another example, in SBML, K, could be given an assign-
ment computing any expression, which breaks the assumed
meaning of the Mass Action reaction type. This behavior is
common in our larger models. Lastly, in SBML, it is possible
to define a parameter as a “species,” thus without checking
units it is impossible to distinguish between species and pa-
rameters. Therefore, the only reliable way to parse arbitrary
combinations of different reaction types is to follow the units
of species and parameters.

The original deterministic model is written in terms of nor-
malized concentrations, but lacks the following information
to be able to be converted: the units, including scaling factors,
of species; the units of parameters; and the initial volume of
the cell. It is easy to enter the initial volume. However, since
all species and parameters are inter-related by the reaction
network, it is not easy to make sure all the units, once entered
or changed, are consistent with each other. For example, if the
modeler wants to change the characteristic concentration of
Cycb by changing its scaling factor, he or she must remember
to change the units of Ky, %4 and I'5 correctly. It takes careful
reasoning to recognize that there is no need to change 5., K
or k7, though it seems that they are also connected with Cycb.
All of this would be a burden to determine by hand, but can
be automated.
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3. SOFTWARE TOOLS

Our conversion software is an extension of the JigCell
Model Builder (JCMB) [13]. JCMB is part of the JigCell
environment for developing and analyzing reaction network
models [1, 9]. JCMB allows users to enter their models into
a simple spreadsheet-like interface that organizes all the nec-
essary information in an easy-to-read form. Its organization
leads users to provide the complete information necessary,
and its series of internal checks helps to minimize errors in
complex models.

JigCell inputs and outputs models in the SBML language.
While this is the defacto standard for models in systems
biology, and while SBML is rapidly developing to support
stochastic models, it still lacks certain key features. For ex-
ample, SBML cannot describe stochastic events. SBML also
has no direct method for allowing users to indicate whether
a given model is in a deterministic or stochastic form. Fortu-
nately, once a model is completely specified as described in
the next section, it is suitable for simulation by both deter-
ministic and stochastic simulators.

‘We use StochKit [10] to do stochastic simulation on the
converted models. StochKit is an efficient, extensible stochas-
tic simulation framework developed in C++. All simulation
methods in StochKit are based on Gillespie’s SSA and tau-
leaping algorithms. We have integrated StochKit as one of
the simulators available within JigCell.

4. APPROACH

In this section we first introduce general rules to convert
from deterministic to stochastic form, and then we introduce
how unit definitions provide the necessary information to ac-
complish the converting task.

4.1. Model conversion

In Gillespie’s algorithm, the propensity function for each
reaction replaces the rate law equation in the ODE model, and
is written in terms of numbers of molecules. They share the
same expression except when a reaction contains two or more
of the same reactants. For example, A+A — B’s propensity
function would be kNa(Na — 1). The deterministic reaction
rate law would be kNyN4 [6]. This is a minor issue, soO we
will focus on how to convert a model in terms of normalized
concentration to a model in terms of number of molecules.

For a species S, let cg be the scaling factor between its nor-
malized concentration and real concentration, thus

[S] = es[S]n ®)

Multiplying the concentration by volume will produce the
population,

Ns=VI[S] ®
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Here we define V = (cell volume) - (Avogadro number) to
get Ng in terms of number of molecules other than mole. De-
pending on the model, V could be a constant or a variable. c;
is a constant. Different species may have different values for
¢s. Consider Reaction (3). Its contribution to the differential
equation of Cycb is

dCychly _ K4 [Cycb],[Cdhl],

10
7 (10)
where ... represents contribution to the ODE from other re-
actions. The first step is to convert it to a model in terms of
real concentration.

d[Cycb] dccyep[Cyebl, . d[Cycb],
dt B dt O
Cycb] |Cdhl
el fcan
CCych CCdhl
U
= — —2_[Cych][Cdh1]
ccdnl

(1>

..— KJ[Cycb][Cdh1] (11)

The conversion involves transformation of species and pa-
rameters, but the form of rate law expression is kept, because
essentially it is just a scaling of the system. Parameters are
used to digest any constants introduced during the conversion
of species, and we shall see later that information for how to
transform parameters is embedded in their units.

The second step is to convert the model to population. For
any species S, the differential equation for population is

dNg  d(V[S]) [S] dv
- =V_=—=4[S]— 12
dt dt dt +18] dt (12)
For the fixed volume case, only the first term V% is not

zero and the conversion is similar to the first step. But when
the volume is changing, additional terms are required to make
the ODE for population complete and correct. Here we only
consider the fixed volume case. Then the model in terms of
population would be

dNCbe d [Cycb] kg
=V =...— =N N 13
It It % CycbIVCdhl ( )

Therefore, when changing the model from normalized con-
centration to population, the rate law equation (or propensity

. . K
function) for reaction 3 would be VZNCyd,Nth].

Generally speaking, let fy, fr, fu be the rate law function
for a reaction in normalized concentration, real concentration
and number of molecules. The rule for conversion is:
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where X represents an array of all the parameters or species
participating in the reaction, $ is the species whose value will
be changed by the reaction, and cg is its scaling factor. If more
than one species is changed by the same reaction, they must
have the same scaling factor. £ is defined from k by digest-
ing all the introduced scaling factors as shown in (11), thus

fr = fn-

4.2. Implementation

We think of the scaling factor as an integral part of a
species’ unit. In SBML, every species and parameter has a
value field and a reference to a “Unit Definition™ as its unit.
Modelers can define arbitrary “Unit Definitions” from a com-
bination of a list of “Units,” where “Units” are transforma-
tions of pre-defined base units [8]. For example,

{u} = (M 10° {up, })* (m210°2{up, } )2 ... (mp 10° {up, } ) (17)

where {u} is the “Unit Definition,” {up,} is the base unit,
(m;-10%{up, } ) is a transformation. This is a very broad def-
inition of unit, which one can take advantage of to store the
scaling factor and do model conversion.

For example, in a deterministic model of normalized con-
centration, one can assign the unit of Cych to be 50- 1077 -
Mole-L~!, in other words, 50nM. (In SBML, Unit Definition
can only be defined from base units, not from other defini-
tions, that is, it is not hierarchical. Thus, the model does not
have a direct unit of Molar.) The meaning of this unit defi-
nition is that one unit of normalized concentration equals 50
times one unit of real concentration (which we assume to be
nM). Thus, the scaling factor is 50.

When converting the model, instead of using different no-
tations for different meanings of species and parameter values
as shown above, there is always the same set of species and
parameters. What will be changed are the units and values of
species and parameters. Let the unit of a species or parameter
S be ug and the value be vg. In the first step of the conversion,
we need to change the unit of a species from normalized con-
centration to real concentration by removing the scaling fac-
tor from the Unit Definition, and multiplying it to the value
field of the species. If we think of the unit and the value as a
whole, we are only changing the form of the model.

To maintain the consistency of the units inside the model,
the units of parameters should be changed as well. In most
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cases, the unit of a parameter is determined by all the other
species participating in the reaction. Denoting the unit of
quantity g by u4 and the time unit by u;, we require

u% = ”f(A) (]8)
=5 = fug) (19)
Uy

Here S could be any form of a species, be it in concentration
or population, and f is the corresponding rate law function. A
denotes all the arguments of f.

Thus, we are able to infer the right unit of a parameter,
or how to change the unit of a parameter when changing the
units of the corresponding species. For example, from (11)
we can conclude:

UCych
Uy

Uy UCychUCdD1 (20)

21

Similar to species, any scaling of the unit of a param-
eter should be accompanied by the corresponding scal-
ing of the parameters’s value as well, otherwise the in-
tegrity of the model will be broken. Before the conversion,
gy =50""'nM~"min~". Converting to real concentration will

-1, 1
= Uy Ucdnl Uy

change it to ur = nM~'min~", and 50~! will be multiplied
to its value field. By examining units we are able to reason
the correct scaling of parameters as we did in (11).

If there are multiple parameters appearing in the same re-
action, such as Reaction (1), usually only the product result
of these units can be automatically inferred, and the modeler
must split the units between multiple parameters.

To convert the model from real concentration to popula-
tion, since Ny = V[S], we have:

(22)
(23)

ngttng = (vy-uy ) (vis-ugs) = (vvevis)) (uy -ugs))

= VNg = VW V[s], UNg = UVU[g]

So both the value and units of the species should be mul-
tiplied accordingly. By taking units into consideration we are
making sure that the converted model is consistent with the
original model.

Instead of adjusting the parameters’ units and values in re-
sponse to changes made on species, here we choose to com-
pensate for multiplication of species by V by adjusting the
rate law expression, as exemplified in (13) and (16), because
V is a variable in the model.

To sum up, the converted model in terms of population is:

kymV
—

0 Cych 24)
K5\Neye,
Cycb o (25)
k//
+N ebNedn
Cycb+Cdhl 7 2" cani (26)
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old New
Species || Value | Unit | Value Unit
Cycb 0.0535 | 50nM | 48 molecules
Cdhl 0.0536 | 50nM 48 molecules
Cdhlp 0946 | 50nM | 852 molecules
Cdc20 0.111 | 50nM 100 | molecules

Table 1. Initial conditions of species in the model. Popula-
tion is calculated using V = 18molecules/nM, that is, cell
volume = 30fL.

old New
P. || Value Unit Value Unit
ki || 0.01 | 50nM/(min-ng) 5 nM /(min - ng)
m 1.5 ng 1.5 ng
Ky || 0.04 1/min 0.04 1/min
4 1 1/(50nM -min) | 0.02 | 1/(nM min)
Ky 10 1/min 10 1/min
ky 35 1/min 35 1/min
ks || 0.005 50nM /min 0.25 nM /min
K|l 02 50nM /min 10 nM /min
ke 0.1 1/min 0.1 1/min
J3 0.04 50nM 2 nM
Ju 0.04 50nM 2 nM
Js 0.3 50nM 15 nM
Table 2. Parameters in the model
k4Nean Neyeb
JaV+N
Cdhl SG Cdhlp @7)
KSNCan pNede20
BVFNcan
Cdhlp I canl (28)
/ kgVNé\'cb
ksv+ (s v)hzv%ycb
0 27O Cde20 29)
Cdc20 keNeago 0 (30)

The species and parameters before and after the conversion
are listed in Tables 1 and 2.

After setting up the units and getting the volume, the con-
version process is simply: 1) Change the form of species from
normalized concentration to population by examining their
units. 2) For any parameter that has normalized concentra-
tion involved in its unit definition, change it to real concen-
tration. 3) Change rate law equations by replacing every oc-
currence of a species S with % and multiplying the whole rate
law equation with V (refer to Equations (14-16)).

S.  SOFTWARE SUPPORT

It is typical that modelers build their deterministic mod-
els with no unit information. It is difficult to input units cor-
rectly. Thus, we added a tool to JigCell to facilitate this pro-
cess. In most cases, the modeler only needs to input the units
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of species by getting the typical (characteristic) concentration
of each species from the literature, and the program will auto-
matically fill in the units of parameters for the modeler using
Equation (19).

The conversion tool consists of two components. The first
is unit checking, which checks unit consistency inside the
model and automatically fills in the units of parameters when-
ever they are able to be inferred. The tool prompts the mod-
eler to input any necessary information. The second is model
conversion, which converts the model by changing the value
and units of species and parameters and adjusts the reaction
rate law expression.

There are three places where JigCell will check the unit
consistency inside the model. If all of these are satisfied then
the model is ready to be converted, and the conversion pro-
cess will guarantee the units of the converted model are still
consistent. The three places are:

e Every two quantities (a parameter, a species, or the result
of a sub-expression) connected by + or — in the rate law
equation must have same units.

All species whose value is changed by some reaction
must have the same units (excluding enzymes or any
modifiers because their values are not changed by the
reaction).

The unit of the calculation result of the rate law equa-
tion must be equal to the unit of the reaction rate, as in
Equation (19).

Conversion takes two steps, as introduced above. The first
step moves the scaling factor from the unit to the value
field to change the model into real concentration. The sec-
ond step changes the concentration of species into number of
molecules by multiplying each species with V, and adjusting
the rate law according to (16).

The conversion can be done automatically because: 1) the
program can get all the information to convert the model,
2) the program can reason the correctness of the information,
and 3) the conversion process can be done in polynomial time.

6. EXPERIMENTS

We used StochKit [10] to do stochastic simulation of the
converted models. StochKit supports a variety of simula-
tion methods based on Gillespie’s SSA and tau-leaping algo-
rithms. We did experiments using the basic SSA algorithm,
which is the most accurate but slowest simulation method.
However, so far as we know, advanced simulation algorithms
based on SSA will accelerate the simulation speed by less
than an order of magnitude. So our simulation results give
an indication of the computational resources needed to do
stochastic simulation on the cell cycle model. For Gillespie’s
algorithm, the space complexity is O(N + M), where N is the
number of species and M is the number of reactions.
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StochKit can generate the trajectory of a single simulation
or an ensemble result of many simulations. A single trajec-
tory might be used to see the dynamics of the model, and the
ensemble result is used to collect statistical data such as a his-
togram of the value of some variable at a certain time point.
The ensemble simulation is easy to compute in parallel since
any two cell that do not have a descendant relationship can be
simulated simultaneously, which is true in most cases.

We report here the simulation results for two cell cycle
models on Virginia Tech’s parallel supercomputer System X.
Both models are converted directly from the corresponding
deterministic models. The first model is the simplified cell
cycle model introduced above. The second one is a full-sized
cell cycle model [3] consisting of 97 reactions.

In SBML, one can define events to change the state of the
system upon triggering when some condition is met. For our
simplified model, the mass of the cell is fixed and there are
no events. But for the full-sized model, mass is growing and
there are events defined to divide the cell. Events for the de-
terministic model and corresponding stochastic model should
be the same. However, practically they are different due to
the random nature of stochastic simulation, as illustrated in
the following example. A typical deterministic event is:

if (A > threshold)
then {event is triggered}

Here ”>" means rising above a threshold.

To make the event work successfully in stochastic simula-
tion, it has to be rewritten to tolerate the situation where the
value of A oscillates around the threshold. For example:

if (A < minimum)
then {minimum A}

(minimum < certain low value

AND A > threshold)
then {event is triggered;

if

minimum

A}

The current version of SBML does not support using ran-
dom numbers to describe random events. Thus our stochastic
simulation of the cell cycle model has to divide the cell in
a fixed fraction. Except for manually editing the events, all
other parts of such a complex model are automatically con-
verted by JigCell, including all the reactions, rules, species,
parameters and their units.

‘We note that these models do not yet represent a fully real-
istic stochastic model, because 1) usually a realistic stochas-
tic model also needs modifications of the reaction network
itself, which is not the topic of this paper, and 2) we haven’t
collected all the scaling factors for these models. However,
we do have most of the scaling factors for the full-sized
model, which are calculated from the data given in [4] and [5].
Among 47 species in our model (different activation status of
a protein are considered different species), five of them are ac-
tually introduced auxiliary variables. We do not yet know the
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Figure 1. End point distribution of the simplified model

characteristic concentration for four of them (Cdhl, Cdhli,
Bub2 and PPX). For these species we arbitrarily set their scal-
ing factors as 100, but all the others are computed with the
right unit information found in the published literature. The
volume of the cell is set to be 50fL. Some compromises were
made during calculation because there is no simple one-to-
one relation between our model and their data, but all in all,
this is the most detailed stochastic model we have seen and
we think with such a model we can start to compare stochas-
tic simulation results with experimental data.

The points of this experiment are 1) validate the (auto-
matic) conversion of deterministic models to stochastic mod-
els, which is a necessary step in building realistic stochastic
models, 2) demonstrate the computational resources needed
to simulate these significant models and 3) explore statistical
features in simulating them.

For the simplified model, we did 10,000 independent simu-
lations of a cell starting from the same initial point (each sim-
ulation is called a run), and collected the state of the model
at 200 minutes of simulation time. Fig. 1 shows the distribu-
tion of the end point state. The stochastic simulation provides
a much richer description of the cell state at this time than a
deterministic simulation, which would produce a single value
for each species. The whole simulation took 145 seconds. We
used 100 worker processors (2.3 GHz PowerPC 970FX) in
parallel, each doing 100 simulation runs. The total time for
all the worker processors was 12,305 seconds.

The full-sized model represents the current state-of-the-
art in cell cycle simulation. We first compare the trajectories
for deterministic and stochastic simulations on the converted
model (see Figs. 2 and 3). Conversion to actual populations
allows the modeler to examine the performance of the model
not only in terms of abstract dynamics but also in real pop-
ulation numbers that can be compared to experimental data
for easier model verification. The figures show representative
species of the model as well as the mass. The two formula-
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Figure 2. Deterministic simulation result of the converted
full-sized model. (Mass is scaled 1000 times.)
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Figure 3. Stochastic simulation result of the converted full-

sized model. (Mass is scaled 1000 times.)

tions match well. Populations for species range from below
100 molecules to over 10,000.

To examine statistical features, we did 10,000 independent
simulations of the full-sized model starting from the same ini-
tial point, and collected the mass at birth after the third cell
division (we discarded the first two divisions to winnow out
the influence of the initial point). Fig. 4 shows the distribution
of mass at birth. The mean mass at birth is 1.20, compared
with 1.21 from the deterministic simulation (both numbers
are normalized). The coefficient of variation (CV) of mass at
birth is 2.96%. The whole simulation took 3862 seconds. We
used 100 worker processors in parallel, each doing 100 simu-
lation runs. The total time for all the worker processors were
382,267 seconds.

Noticing that both the characteristic concentration and cell
volume are rough, which means the population of the stochas-
tic model is not very accurate, we tried to perturb the popu-
lation of the system to see how sensitive the simulation result
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spent on simulation on different populations.

is. Our method is to uniformly scale every population of the
species. Fig. 5 illustrates how the result will change on dif-
ferent populations. The mean of mass at birth (not drawn) is
quite stable. When the population becomes larger, the mean
has a trend of decreasing extremely slowly from 1.21 to 1.20.
Population has a larger impact on CV, which seems to be
changing exponentially. Time spent on simulation grows lin-
early when the population gets larger. This result suggests
the possibility that when the population of the system is very
large one could save time by cutting the population while not
hurting the statistical characteristics very much.

StochKit can be configured to use the standard C Library
random number generator random() or the third-party ran-
dom number generator SPRNG2.0 [12] (which is used by de-
fault). We found that these two generators will produce dif-
ferent simulation results. Compared with SPRNG, random()
produces a long tail of outliers, which represents some rare
events. The mean is 1.21 which is almost the same, but CV for
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Stochastic Time Deterministic
Model Wall | Total | Avg./run Time
Simplified 145 12305 1.23 0.029
Full-sized | 3862 | 382267 38.2 0.311

Table 3. Time for stochastic and deterministic simulation
(measured in seconds)

random() becomes 6.02%, which is larger than for SPRNG.
One might wonder whether SPRNG generates these same
events after running long enough. We have done dozens of
experiments on each random number generator with 10,000
runs for each simulation. Every time, random() will produce
the outlier events, but SPRNG never does.

Table 3 shows timings for both versions of the cell cy-
cle model, for both deterministic and stochastic simulations.
LSODAR is used as the integrator for the deterministic simu-
lation, and was run on an Intel Pentium 4 2.6GHz CPU. The
deterministic simulations use the same stopping criteria as the
stochastic simulations (200 time units, or the third division).
In these simulations, both the deterministic and stochastic
models describe the same reaction network. Thus, the com-
parisons give some indication for the difference in the com-
putational resources needed. Not surprisingly, even a single
run of the stochastic simulation (run on a single processor of
System X) takes much more time than the deterministic sim-
ulation. However, multiple runs of the stochastic simulation
(to gather ensemble statistics) can be computed in parallel.

7. CONCLUSIONS AND FUTURE WORK

It has been an open question for some time whether there
are true differences between the “deterministic form” of a
model and its “stochastic form”. Our work on conversion of
models shows that a fully specified model contains the infor-
mation necessary to perform both stochastic and determinis-
tic simulations, and that traditionally modelers have merely
taken shortcuts when defining the deterministic form. As we
have explained, much of our “conversion process” is in fact a
requirement for full specification of all details of the model,
including precise specification of units.

We introduced in this paper an automatic conversion pro-
cess, which requires little expertise in biology or modeling to
perform the conversion. We have performed the first stochas-
tic simulations of a full-sized quasi-realistic cell cycle model
that we are aware of. This opens the way toward studying
noisy molecular level behaviors of cell cycles using stochas-
tic models. Our next step is to make the full-sized model more
realistic by enabling random division of the cell.
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