
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

THE ROLE OF COMPOSITION AND AGGREGATION IN MODELING

MACROMOLECULAR REGULATORY NETWORKS

Clifford A. Shaffer

Ranjit Randhawa

Department of Computer Science

Virginia Tech

Blacksburg, VA, U.S.A.

John J. Tyson

Department of Biological Sciences

Virginia Tech

Blacksburg, VA, U.S.A.

w

c

b

i

s

M

c

a

s

n

b

t

c

f

t

m

T

r

m

ABSTRACT

Today’s macromolecular regulatory network models are

small compared to the amount of information known about

a particular cellular pathway, in part because current mod-

eling languages and tools are unable to handle significantly

larger models. Thus, most pathway modeling work today

focuses on building small models of individual pathways

since they are easy to construct and manage. The hope is

someday to put these pieces together to create a more com-

plete picture of the underlying molecular machinery. While

efforts to make large models benefit from reusing existing

components, unfortunately, there currently exists little tool

or representational support for combining or composing

models. We have identified four distinct modeling pro-

cesses related to model composition: fusion, composition,

aggregation, and flattening. We present concrete proposals

for implementing all four processes in the context of the

Systems Biology Markup Language (SBML).

1 REGULATORY NETWORK MODELING

Macromolecular regulatory network models attempt to de-

duce the physiological properties of a cell from wiring

diagrams of its control systems. These networks of inter-

acting proteins are intrinsically dynamic. They describe the

molecular mechanisms by which a cell changes in space

and time to respond to stimuli, grow and reproduce, dif-

ferentiate, and do all the other remarkable tricks that are

necessary to stay alive and propagate the species.

A simple example of a regulatory network is the set of

reactions controlling the activity of MPF (mitosis promoting

factor) in Xenopus oocyte extracts (Marlovits et al. 1998),

which we refer to herein as the frog egg model (see Fig-

ure 1). Such networks are often represented as graphs where

vertices represent substrates and products (collectively re-

ferred to as species), and labeled directed edges connecting

vertices represent the reactions. Chemical reactions cause

the concentrations of the chemical species (Ci) to change

in time according to the equation
16281-4244-0501-7/06/$20.00 ©2006 IEEE
Figure 1: Pathway Diagram for the Frog Egg Cell Cycle

dCi

dt
=

R∑

j=1

bi jv j, i = 1, . . . ,N

here R is the number of reactions, v j is the velocity of the

jth reaction in the network, and bi j is the stoichiometric

oefficient of species i in reaction j (bi j < 0 for substrates,

i j > 0 for products, bi j = 0 if species i does not take part

n reaction j).

The full set of rate equations is a mathematical repre-

entation of the temporal behavior of the regulatory network.

odelers are faced with many computational problems: ac-

urately and efficiently solving equations when velocities

re characterized by widely varied time constants, finding

teady state solutions, estimating rate constants by fitting

umerical solutions to experimental data, and identifying

ifurcation points in the multi-dimensional parameter space.

A realistic model of the budding yeast cell cycle con-

ains about 30 differential equations with over 100 rate

onstants (Chen et al. 2004). The parameters are estimated

rom the cell-cycle behavior of over 100 mutants defective in

he regulatory network. Simulating the entire set takes a few

inutes on a desktop PC for one choice of kinetic constants.

o fit the model to the mutant data by nonlinear regression

equires thousands of repetitions of the full calculations. A

odel of such complexity (10-50 equations) is approaching

Shaffer, Randhawa, and Tyson
the limit of what a dedicated modeler can produce and

analyze with the tools available today. Beyond this size, we

begin to lose our ability even to meaningfully display the

wiring diagram that represents the model, let alone com-

prehend the information it contains. To adequately describe

fundamental physiological processes (such as the control of

cell division) in mammalian cells will require models of at

least 100-1000 equations. To handle this next generation of

dynamical models will require sophisticated software to au-

tomate the modeling cycle: network specification, equation

generation, simulation and data management, and parameter

estimation. Ongoing efforts such as the DARPA BioSPICE

initiative (DARPA 2005) and the DOE Genomes to Life

project (DOE 2005) aspire to support models at least one

order of magnitude larger than are currently used.

2 BUILDING LARGE NETWORKS

There is a correlation between the size of a model and

the amount of biological information it represents. The

ability to construct large biological models provides the

potential for better insights into the workings of a cell under

investigation, if only we can handle the complexity involved.

Models that exist today are small compared to the amount of

information known about a particular organism or cellular

pathway/process. Modelers work on individual pieces that

are easy to construct and manage. Their ultimate goal is to

put these pieces together to construct a more complete picture

of the underlying molecular machinery of the organism.

Merging the pieces together will provide researchers with

more complete and biologically accurate models with which

to perform simulations. Currently this merging step is error

prone since it is done manually. When making large models

it is better to start from existing models in order to reuse

information from smaller models, rather than to start from

scratch. This is analogous to adding features to an existing

program rather than having to completely re-write it to

incorporate new functionality.

Modeling languages and tools help modelers construct

their models by providing a computational environment or

framework that minimizes the amount of human error during

the construction step. While modelers are currently able

to construct small to medium models by hand, the process

is simplified by using computational tools which not only

decrease the time taken to input a model but also ensure

that the modeler does not make mistakes during input. In

this paper we describe features that are intended to enable

modelers to create larger models than previously possible.

We describe four distinct processes to support construction

of larger models: Fusion, Composition, Aggregation, and

Flattening.

Model Fusion is a process that combines two or more

models in an irreversible manner. The identities of individual

models (called submodels) being combined are lost, however
1629
the aggregate information remains the same. Fusion enables

modelers to incorporate information from another model

into an existing model, thereby creating larger models.

Eventually, fused models will become too large to grasp

and manage as single entities. Large models will need to

be made up of distinct components to infer any meaningful

insight into their underlying biology. Thus, we view model

fusion as a useful tool for manipulating small to mid-sized

models, but not a viable solution in the long run.

Model Composition provides a potential solution to our

limited ability to comprehend larger pathway models. With

composition, one can think of models not as monolithic en-

tities, but as collections of smaller components (submodels)

joined together in a particular manner. A Submodel is a com-

plete model, not an element such as a species, parameter, etc.

Given two or more submodels, a composed model is built

by describing their inter-model relationships/interactions.

Composition is a reversible process, in that removing the

inter-model interactions that holds the composed model

together recovers the individual submodels.

We distinguish Model Aggregation as a restricted form

of composition. A collection of model elements is repre-

sented as a single entity (a “module”). A module contains

a list of input and output ports that link to internal species

and parameters. These ports define the module’s interface,

which provides restricted access to the components in the

module. The process of aggregation (connecting modules

via their interfaces) allows modelers to create larger models

in a controlled manner.

Model Flattening converts a composed or aggregated

model with some hierarchy or connections to one without

such connections. The result is equivalent to fusing the

submodels. However, the relationship information provided

by the composition and/or aggregation process should be

sufficient to allow the flattening to take place without hu-

man intervention (such intervention is needed in the fusion

process). The relationships used to describe the interaction

between the models and submodels are lost, as the com-

posed or aggregated model is converted into a single large

(fused) model. Flattening a model allows us to use existing

tools that have no support for composition or aggregation.

3 CONTEXT AND PRIOR WORK

The XML-based Systems Biology Markup Language

(SBML) (Hucka et al. 2003) has become widely supported

within the pathway modeling community. Thus, we choose

to present concrete implementations for the various mod-

eling processes through added SBML language constructs

that express the necessary glue that connects submodels

together. It is not necessary that our proposals be imple-

mented in SBML, but doing so provides clear reference

implementations in the same way that an algorithm is often

expressed in a particular programming language. Fusion is

Shaffer, Randhawa, and Tyson
presented in terms of a tool to aid modelers hand-compose

large models from smaller components, while flattening a

composed or aggregated model will result in a valid SBML

Level 2 model without our added language features.

A number of authors find that successful composition

or reuse requires components that were designed for com-

position or reuse (Davis and Anderson 2004; Garlan, Allen,

and Ockerbloom 1995; Kasputis and Ng 2000; Malak and

Paredis 2004; Spiegel, Reynolds, and Brogan 2005).

Bulatewicz, Cuny, and Warman (2004) suggest using a

coupling interface for model coupling and provide a num-

ber of solutions, from a brute force technique to using

frameworks designed to support coupling. Liang and Pare-

dis (2003) describe a port ontology for automated model

composition. While automating composition is outside the

scope of our work, the ontology for representing ports is

useful in detailing the different roles and functions port

structures can take.

Proposals have been made within the SBML commu-

nity (Finney 2003, Ginkel 2003, Schroder and Weimar 2003)

that describe the mechanics of composition through addi-

tional language features for SBML, as we will do. The

common idea among the various pathway modeling com-

position proposals is to support the composition of larger

models from smaller ones (submodels). In all these pro-

posals a model can contain:

1. Submodels: Models can be contained within an

SBML document or can be externally referenced.

2. Instances: Models may contain one or more in-

stances or (copies) of submodels. Composed mod-

els represent a hierarchy of submodel instances

connected together.

3. Links: Models may contain directional links be-

tween objects (SBML components).

4. References: Components within a model can be

referenced from another model.

Finney (2003) proposed that a model can be com-

posed of instances of submodels, which themselves are

full-fledged models. Finney lists three ways of describ-

ing composition in SBML by creating connections between

components in different models using links, ports or direct

links. The <Link> structure connects two components

together directly. Finney’s <Port> structure creates inter-

faces of components within a model. The <Direct Link>

structure enables direct access to components within a sub-

model without having to define it beforehand. An example

is composing two models by creating a reaction between

them. Finney’s approach duplicates everything in one model

within another. Alternatively, modifying the existing SBML

element <simpleSpeciesReference> can make this connec-

tion, to allow referencing a component directly. In an

object-oriented analogy, submodels are analogous to class
1630
definitions and instances to object declarations. Two types

of connections are possible, one is analogous to pointers

(direct links) and the other to overloading parameters (links).

Weimar’s method of modularization (Schroder and

Weimar 2003) considers SBML <modules> and their de-

pendencies. Modules are defined as the smallest part of the

SBML definition, which can be removed independently of

other modules. There are two types of dependencies that

exist: syntactic dependencies are due to the XSD schema;

while semantic dependencies exist due to variations in in-

tuition in English text.

Ginkel (2003) describes features for creating modular

models that include: modules (encapsulated logical/physical

submodels) with the same set of elements as the SBML

model; namespaces (hierarchical names) to access and spec-

ify parts of modules; interfaces to integrate modules into a

larger model; model assembly consisting of model instanti-

ation and connection; and parameterization to adjust initial

and parameter values and compartments of model instances.

Ginkel considers separating the interface from the model’s

implementation by creating terminals representing inner

species to the outside or outer species to the inside. Links

establish connections between terminals of model instances,

which contain attribute information for species and reactions.

Ginkel’s proposed SBML extension has <listOfTerminals>

composed of a list of <terminal> elements that define model

interfaces. <ListOfLinks> contains lists of terminals and

species that should be connected together. The links es-

tablish mathematical equations. <SpeciesSpecification>

and <reactionSpecification> allow changing attributes, but

prevent the addition of new parts to the model instances.

A small number of tools exist that provide support for

composition (in the context of pathway models) in some

form or another. However none of these tools provides any

support for composition in SBML. Pathway Builder (Gilman

2003) skirts the issue of model composition: while a user can

arrange elements hierarchically in the diagram, the actual

model is kept flat. In ProMoT (Ginkel and Krasnyk 2002),

encapsulated modules are ordered in an object-oriented form

of inheritance. Terminals within models act as interfaces

and enable variables to be exported for use outside the

model/namespace they are in. Links exist connecting differ-

ent terminals and provide a rudimentary ability for model

composition in this manner. Teranode Design Suite (Li

2005) provides support for grouping models together as

model collections. Models in Teranode Design Suite are

analogous to compartments in SBML. Model collection is

therefore analogous to being able to link species in different

compartments to each other.

4 MODEL FUSION

Model Fusion is an iterative process to make larger models

by merging two or more submodels together. Unlike com-

Shaffer, Randhawa, and Tyson
position or aggregation (where submodels are not modified

but only referenced), fusion takes the the submodels and

actually combines them together. In fusion there is no glue

(additional SBML language constructs), which describes

how submodels are combined. The goal of fusion is to

combine submodels into a single unified model containing

all the information of the original collection, without any

redundancies that might occur across submodels in the orig-

inal collection. Our approach to fusion is to provide tools

that aid modelers attempting to perform the fusion process.

Consider two models, m1 and m2, each containing two

chemical species (A and B in m1, A and D in m2). They will

be fused together to produce model (m f). The modeler does

this by producing a mapping table for each of the eight SBML

component types. They are processed in the following order

to avoid conflicting dependencies: (1) Compartments; (2)

Species; (3) Function Definitions; (4) Rules; (5) Events; (6)

Units; (7) Reactions; and (8) Parameters. A column in a

mapping table represents a model and a row represents an

SBML component in that model. Duplicate names within a

model are not allowed, therefore a species name will only

occur once in any particular column. The first column in

the mapping table is reserved for the fused model and is

referred to as m f). The two actions available to the modeler

during fusion are:

1. define two or more SBML components to be equiv-

alent;

2. remove the link/association between two or more

SBML components (which have previously been

incorrectly linked together) across the different sub-

models.

The construction of the species mapping table using the

example models m1 and m2 is shown in Tables 1 and 2. The

other mapping tables are constructed using the same process.

Each row in the species mapping table corresponds to a

distinct species in some submodel. The modeler is able to

change the name of a species in m f , but is unable to change

the name of species in any of the other columns/models.

Suppose species name A appears in both models (m1 and

m2). m f initially assumes these are the same species in

both models (Table 1, Row 1). This might or might not be

correct, and can be changed by the modeler if desired. The

name of the species in m f can also be changed. Species B

and D each appear in only one model.

Table 1: Initial Species Map

m f m1 m2

1 A A A

2 B B

3 D D
163
Table 2: A Completed Mapping Table for Species

m f m1 m2

1 A1 A

2 C B D

3 A2 A

When a modeler defines two species with different

names to be equivalent to each other, their two rows are

combined. The resulting empty row is deleted, and the

modeler selects which name to give this fused species. In

our example the modeler defines a new species name C for

row 2 in the fused model. The resulting m f contains the

species A and C. If two species (say species A in m1 and

species A in m2) were incorrectly identified by the computer

as being equivalent to each other, the user can separate them

into separate species, each with distinct names. The results

of these changes are shown in Table 2.

5 MODEL COMPOSITION

Model composition describes the process of connecting

models, called submodels, together to generate a hierarchy

of models (called a composed model) that interact with each

other. Larger models can be thought of as a collage of smaller

submodels held together by new language features. The

language additions for SBML described in this section allow

modelers to compose models from submodels, and include

support for multiple instances of a given submodel. The

features both describe the hierarchy of the submodels, and

represent the interactions, relationships, links, and reactions

between the submodels.

To illustrate model composition, consider a large model

(called Global), composed of two submodels (A and B).

Model A contains the chemical species x and model B

contains the species y. It is now possible to make a new

reaction in the Global model that represents x → y, by

referring to x and y in A and B respectively. The Global

model consists of a model with only one reaction. The

names of reactants and products for that reaction refer to

the corresponding species in the two submodels.

Models can be composed together in a number of ways.

The first step is to assign or select the global model (the root

node in the model tree hierarchy), which can either be one

of the submodels or a new model. Once the global model

has been assigned, the next step is to specify its list of sub-

models using the <listOfSubmodels> and <submodels>

structures. After the list of submodels have been declared

in the global model, the modeler needs to instantiate the

submodels in order to use/access them using the <Instance>

structure. Finally, different components (species, reactions,

etc.) within either the submodels or the global model are

connected/accessed using <link> structures.
1

Shaffer, Randhawa, and Tyson
We adopt the following convention format to enable
modelers to uniquely identify SBML components (species,
parameters, etc) within a model or submodel.

<link>

<from object="comp1">

<to object="little">

<subobject="comp2">

</to>

</link>

We also describe this using the syntax ObjectIdenti-

fier.SubobjectIdentifier. This convention makes it possible to

refer to SBML components with the same name in different

models without having to change their names.

A composed model can contain one or more submod-

els within its structure. A <submodel> structure con-

tains a valid SBML model (an SBML <model> structure),

with its own namespace and can be a composed model.

Since there is no restriction on the number of submodels a

model can contain, a <submodel> structure is enclosed in a

<listOfSubmodels> structure. A simple example (Figure 2)

shows how model Big contains a submodel called Little,

and both models contains a single compartment (comp1 and

comp2 respectively).

Each <instance> refers to a particular <model>. An

<instance> indicates that a copy of a submodel is be-

ing instantiated within the current model. Models can be

composed of more than one instance of a particular sub-

model. The instance structure will use the XML Linking

Language (XLink) (DeRose, Maler, and Orchard 2001) to

refer to submodels, as it is a standard mechanism for linking

XML elements inside and outside a given SBML document.

XLinks describe links between XML documents. An in-

stance of submodel Little (called Submodel Little) can be

made in model Big in order to use/access submodel Little

in model Big. The <instance> structure contains attributes

id (the unique identifier for the <instance>), the XLink’s

type, and the XLink’s href (an XPointer string that points

to either an SBML model document or a model element

within the current SBML document). The type attribute

takes the values simple and extended. A simple link

is a link that associates exactly two resources, one local

and one remote. The direction of the link is from the for-

mer to the latter and thus is always an outbound link. An

extended link associates an arbitrary number of resources.

The participating resources may each be local or remote.

For our purposes we only need to link together two objects

(resources) and so the value of the type field will be simple.

A <link> links two entities in separate submod-

els of a composed model. A <link> should be able

to link two <species>, <parameters>, <reactions>, or

<compartments> to each other. A <link> is composed of

two fields: <from> and <to>. The <to> field references

an object (the to object) whose attribute values will be
1632
Figure 2: Submodel with Link Between Two Compartments

overridden by the object referenced by the <from> field

(the from object). The objects referenced by <from> and

<to> fields must be of the same type. Only those attribute

values that have been declared in the from object will be

overridden in the to object. This is somewhat analogous

in C/C++ to treating the to object as a pointer, and the

from object as its target. However, a to object can have

attribute values that are retained if no overriding attribute

value is declared in the from object. Note that if we have

two components inside a (sub)model we are still able to

link subobjects of the components using our object/suboject

naming convention. The following example shows how the

two compartments in Big and Little can be linked together

(Figure 2).

<model id="Big">

<listOfCompartments>

<compartment id="comp1" volume="1"/>

</listOfCompartments>

<listOfSubmodels>

<model id="Little">

<listOfCompartments>

<compartment id="comp2" volume="1"/>

</listOfCompartments>

</model>

</listOfSubmodels>

<listOfInstances>

<instance

id="Submodel_Little"

xlink:type="simple"

xlink:href="#xpointer(/sbml/model/

listOfSubmodels/model[@id=Little])"/>

</listOfInstances>

<listOfLinks>

<link>

<from object="comp1"/>

<to object="Submodel_Little">

<subobject object="comp2"/>

</to>

</link>

</listOfLinks>

</model>

Shaffer, Randhawa, and Tyson
The above example shows an href attribute where the

submodel Little occurs within the same SBML document.

If the submodel Little occurred in another SBML document

named temp.sbml in the current directory, the href at-

tribute of the <instance> structure would havetemp.sbml

prepended to it.

A <link> structure contains a merge attribute. A

value of true indicates a merge link; false indicates a

replacement link. To see the difference, consider models R

and T which each contain a chemical species called S1 with

different attributes. S1 in Model R has attribute A = 1.0.

S1 in Model T has attributes A = 2.0 and B = 3.0. Linking

S1 in R to S1 in T with a merge link uses S1’s attributes

from T .S1 that have not been declared in R.S1. Thus, the

result is that S1 has attributes A = 1.0 and B = 3.0 since it

keeps its old value for A and gains the definition for B. If

S1 in R is linked to S1 in T using a replacement link, then

only R.S1’s attributes are used. Thus, the result will be that

S1 will have attribute A = 1.0.

The <link> structure can link certain combinations of

differing SBML component types to each other, such as

species ↔ parameters and rules ↔ species/parameters. A

link can take a <species> structure as the from object and

a <parameter> structure as the to object, and vice versa.

An example of this type of link is found when composing

the two sample models sharing a degradation reaction CycB

(CycB →). In Model1 this reaction contains the modifier

Cdc20a, but in Model2, this species does not exist so the

reaction instead contains the parameter A. In the composed

model the species Cdc20a from Model1 will be linked to the

parameter A in Model2. The reason for this link is because

when Model2 was created, knowledge about Cdc20a was

not known so the modeler used the entity (parameter) A

in their model instead. When Model1 was created the

modeler had knowledge about the effects of Cdc20a on

CycB degradation. With this additional knowledge it is now

desirable to replace A with Cdc20a when composing (or

fusing) the two models together.

6 MODEL AGGREGATION

Naturally occurring molecular networks seem to arise from

simpler modules that carry out specific tasks and combine

together (Tyson, Chen, and Novak 2003). By allowing

modelers to substitute an aggregate for groups of reactions,

and enabling aggregated modules to be connected to one

another, we envision that model construction will become

faster and more intuitive. Modularization is defined here

as the process of grouping reactions together as a single

entity (a module) with a defined set of inputs and outputs.

Aggregation is the process of connecting modules together

(by linking outputs of one module to inputs of another)

in order to create a larger model (an aggregate of mod-

ules). The fundamental difference between aggregation and
1633
composition is the amount of access to model informa-

tion. The basic building blocks permitted for composition

and aggregation are the same – in both cases, a building

block is one or more reactions. However, in composition,

model information is not hidden. A modeler can link to

any variable or component in a submodel. In aggregation,

model information is hidden, and a modeler can only link

to variables or components that are explicitly made visible

by a given module.

Our models can be viewed as graphs with nodes and

edges, where reactions are edges and reactants, products,

and parameters are nodes. Interfaces allow access informa-

tion outside the model they occur in. A module is not a

simplification of the group of reactions (or their behavior);

it is purely representational and is used to aid better under-

standing of how parts of the model (the modules) interact

with each other. Like composition, we propose to imple-

ment aggregation by means of new language features added

to SBML. Most of the language features for composition

are used also for aggregation, with the addition of features

that allow us to define an interface.

Modelers need not know all reactions that exist within

a module to use it, only the list of inputs and outputs.

Constraints exist on what can be defined as an input or output

to a module. Inputs are parameters (with fixed values), while

outputs are species (any reactant or product in any reaction in

the module could be defined as an output). These constraints

ensure that a consistent set of differential equations will

always be produced from a network of modules.

To construct a module, a modeler would take a set of

reactions and group them together (e.g., by putting them in a

new submodel). The modeler then needs to define the input

and output ports for the module using the <listOfPorts>

structure (discussed below). The input ports can be one

or more of the parameters that appear within the set of

reactions. The output ports can be one or more of the

species that appear within the set of reactions. Once ports

are selected, a modeler can use the module by itself or link

modules together (by linking the output of one module to the

input of another modules) to create more complex models.

The link between two <port> structures is unidirectional

and is made using the <link> structure from Section 5.

An example of creating and linking modules together

to create a complex aggregated model is provided in the

following figures from Tyson, Chen, and Novak (2003). A

toggle switch (Figure 3.C), a type of two-way discontinuous

switch (also referred to as hysteresis) is an example of a

mutual inhibition signal response element. It is a model

that can be created by linking together two simpler models,

a linear response element (Figure 3.A) and a hyperbolic

response element (Figure 3.B). Figure 4 shows the same

components as icons with input and output ports. Note that

the toggle switch created in Figure 4 can now be made into

a new model with its own set of inputs and outputs (see

Shaffer, Randhawa, and Tyson
Figure 5), by defining its set of port structures. Here, S and

Q are signals, R and RP are responses. From the naming

convention mentioned earlier A.S refers to parameter R in

model A and B.R refers to species R in model B.

Figure 3: Toggle Switch

Figure 4: Iconified Toggle Switch

Figure 5: Iconified Toggle Switch with Input/Output Ports

The <port> (enclosed in a <listOfPorts> structure)
allows a modeler access to a particular species or parameter
in a submodel for aggregation. A <port> is composed of
two fields: id and target. The id gives a unique identifier to
the port. The target specifies a single species or parameter
by its SBML identifier or by an object reference. The syntax
for a port structure is as follows:

<listOfPorts>

<port id="PortId"

target="SpeciesId or ParameterId"/>

</listOfPorts>

Input and output ports are distinguished from each

other by their target type. <Port> structures are used in

conjunction with the other language constructs described in

Section 5. The <listOfSubmodels> and <listOfInstances>
1634
structures are used to define the layout of the aggregated

model. Connections between the submodels within the lay-

out is made using the <listOfLinks> structures (Section 5)

which can only connect <port> objects to each other.

7 MODEL FLATTENING

Model Flattening is the process of taking a model which

contains our additional SBML language constructs (i.e.

<listOfSubmodels>, <listOfInstances>, <listOfPorts>

and <listOfLinks>), and generating a valid SBML Level

2 model (i.e., with our language constructs removed). The

flattening process is done automatically, using the infor-

mation provided by the composition/aggregation glue to

perform the steps that otherwise are done by hand when a

modeler fuses models (as described in Section 4).

Flattening has three steps: separation, saving and res-

olution. During separation, first submodels are separated

based on the information within the <listOfSubmodels>

and <listOfInstances> structures. Then components are

separated one at a time in the same order as described

for fusion (Section 4). The information required to fuse

models together is encoded by our added SBML language

features used for composition and aggregation. This in-

formation is translated to create a single flattened model.

Once this is done the connections/links between models

is saved for reference during flattening. Finally, during

the resolution step the components of the submodels are

sorted/separated/assigned based on the model (or submodel)

they originated from. The resolution step in flattening is

similar to the resolution stage in fusion, except here it is

done automatically rather than by the modeler.

8 CONCLUSIONS

Model composition is widely viewed within the systems bi-

ology community as a prerequisite for building significantly

larger pathway models. Such scaling up is necessary for

building models of mammalian cells. However, we note that

none of these proposals have been published in the peer-

reviewed literature, nor to our knowledge have any been

implemented, whether in terms of SBML extensions with

suitable support tools, or in any other model representation

language. While some commercial tools might have more

or less support for various forms of composition, we are

unaware of any non-proprietary implementations for model

composition in this application domain. Model composition

for pathway models remains very much an open problem.

Our proposals for model composition are unique in

recognizing the distinctions between model fusion, com-

position, aggregation, and flattening. We have begun im-

plementing the fusion tool described above, and are imple-

menting the SBML language features necessary to support

model composition and aggregation. We hope to present

these tools to the modeling community in the near future.

Shaffer, Randhawa, and Tyson
ACKNOWLEDGMENTS

We thank the reviewers for their contributions to the clarity

of our presentation. This work was supported by NSF

Biocomplexity Program, Grant MCB-0083315, NIH Grant

1 R01 GM64339-01, DARPA and AFRL, Air Force Materiel

Command, USAF, under agreement F30602-02-0572.

REFERENCES

Bulatewicz, T., J. Cuny, and M. Warman. 2004. The potential

coupling interface: Metadata for model coupling. In

Proceedings of the Winter Simulation Conference, 183–

190.

Chen, K., L. Calzone, A. Csikasz-Nagy, F. Cross, B. Novak,

and J. Tyson. 2004. Integrative analysis of cell cycle

control in budding yeast. Molecular Biology of the

Cell 15:3841–3862.

DARPA 2005. DARPA BioSPICE website. <community.

biospice.org>.

Davis, P. K., and R. H. Anderson. 2004. Improving the

composability of DoD models and simulations. Journal

of Defense Modeling and Simulation 1 (1): 5–17.

DeRose, S., E. Maler, and D. Orchard. 2001. XML linking

language (XLink) version 1.0 W3C recommendation.

<www.w3.org/TR/xlink>.

DOE 2005. US Department of Energy Genomes to Life

website. <doegenomestolife.org/>.

Finney, A. 2003. Systems Biology Markup Lan-

guage (SBML) level 3 proposal: Model composi-

tion features. <www.sbml.org/forums/index.

php?t=tree&goto=171&rid=0>.

Garlan, D., R. Allen, and J. Ockerbloom. 1995. Architectural

mismatch or why it’s hard to build systems out of

existing parts. In International Conference on Software

Engineering, 179–185.

Gilman, A. 2003. PathwayBuilder. <biospice.lbl.

gov/PathwayBuilder/>.

Ginkel, M. 2003. Modular SBML proposal for an extension

of SBML towards Level 2. In Proceedings of 5th Forum

on Software Platforms for Systems Biology.

Ginkel, M., and M. Krasnyk. 2002. ProMoTDIVA.

<mpi-magdeburg.mpg.de/research/

projects/1002/comp_bio/promot/

distrib>.

Hucka, M., A. Finney, H. Sauro, and 40 additional authors.

2003. The systems biology markup language (SBML): a

medium for representation and exchange of biochemical

network models. Bioinformatics 19 (4): 524–531.

Kasputis, S., and H. C. Ng. 2000. Model composability:

formulating a research thrust: composable simulations.

In Proceedings of the Winter Simulation Conference,

1577–1584.
163
Li, Z. 2005. Teranode Design Suite. <teranode.com/

products/index.php>.

Liang, V. C., and C. J. J. Paredis. 2003. Foundations of multi-

paradigm modeling and simulation: a port ontology for

automated model composition. In Proceedings of the

Winter Simulation Conference, 613–622.

Malak, R. J., and C. J. J. Paredis. 2004. Foundations of

validating reusable behavioral models in engineering

design problems. In Proceedings of the Winter Simu-

lation Conference, 420–428.

Marlovits, G., C. Tyson, B. Novak, and J. Tyson. 1998.

Modeling M-phase control in Xenopus oocyte extracts:

the surveillance mechanism for unreplicated DNA. Bio-

physical Chemistry 72:169–184.

Schroder, D., and J. Weimar. 2003. Modulariza-

tion of SBML. <www.sbml.org/workshops/

ninth/VortragSBMLForum.pdf>.

Spiegel, M., P. Reynolds, and D. Brogan. 2005. A case

study of model context for simulation composability

and reusability. In Proceedings of the Winter Simulation

Conference, 437–444.

Tyson, J. J., K. C. Chen, and B. Novak. 2003. Sniffers,

buzzers, toggles and blinkers: Dynamics of regulatory

and signaling pathways in the cell. Current Opinion in

Cell Biology 15:221–231.

AUTHOR BIOGRAPHIES

CLIFFORD A. SHAFFER is an associate professor in the

Department of Computer Science since 1987. He received

his PhD from University of Maryland in 1986. His current

research interests include problem solving environments,

bioinformatics, component architectures, visualization, al-

gorithm design and analysis, and data structures. His Web

address is <www.cs.vt.edu/shaffer> and his email

address is <shaffer@cs.vt.edu>.

RANJIT RANDHAWA is a PhD candidate in the Depart-

ment of Computer Science. He received BS degrees in

Computer Science and Genetic Biology from Purdue Uni-

versity, and an MS degree in Computer Science from Vir-

ginia Tech. His research interests include software design,

systems biology, synthetic biology, computational biology,

bioinformatics and modeling and simulation. His email

address is <rrandhaw@vt.edu>.

JOHN J. TYSON is University Distinguished Professor

of Biological Sciences. He received his PhD in chemi-

cal physics from the University of Chicago in 1973 and

has specialized in theoretical cell biology since that time.

His current interests involve the gene-protein interaction

networks that regulate features of cell physiology such as

cell division, circadian rhythms, intracellular signaling net-

works, and programmed cell death. His email address is

<tyson@vt.edu>.
5

1636

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

	01:

