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ABSTRACT

Systems Biology is aimed at analyzing the behavior and

interrelationships of biological systems and is characterized

by combining experimentation, theory, and computation.

Dedicated to exploring current challenges, the panel brings

together people from a variety of disciplines whose per-

spectives illuminate diverse facets of Systems Biology and

the challenges for modeling and simulation methods.

1 INTRODUCTION

The goal of Systems Biology is to analyze the behav-

ior and interrelationships of functional biological systems

(Kitano 2002). Systems Biology is also characterized by

the synergistic combination of experimentation, theory and
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computation. Challenges for the future lie in each of these

areas. What follows is a series of commentaries from some

of the leading researches in the field on some of the current

and future challenges in systems biology.

1.1 The Critical Importance of Experimentalists

The application of reductionism in biology has proved to be

a highly successful strategy and has enabled us to uncover

the molecular details of biological systems in unprecedented

detail. So successful has been this approach that there

has been considerable skepticism as to the need for an

alternative approach such as systems biology. The real test

for systems biology is whether its application can generate

novel biological insight that cannot be uncovered by pure
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Part of the problem lies in the wide gap that exists

between the computationalists and the experimentalists. On

the one hand, the computationalists are unaware of the dif-

ficulties in experimental work while the experimentalists in

turn are unaware of the kinds of questions that computa-

tionalists could help them answer. Moreover, until recently

generating the appropriate data to fuel the computationalists’

appetite has proved extremely challenging for the experi-

mentalists. However, most of the technology for making the

required measurements is now in place. In particular, light

microscopy of single cell dynamics is a reality and enables

a researcher to track the concentration of a small number

of proteins in real-time. Using light microscopy and cell

counting techniques, large amounts of high resolution data

on a small number of observables can be collected. This is in

contrast to contemporary high-throughput approaches which

collect low resolution data on many observables which is

of limited use in building quantitative models.

Some of the most interesting and probably far reaching

experiments done in recent years is the work being carried

out by the growing single cell community, the work by

Alon and colleagues (Lahav et al. 2004, Geva-Zatorsky

et al. 2006) on p53 dynamics is extremely noteworthy in

this respect. This work illustrates how a combination of

experimentation and theory can lead to not only new insight

but also opens up a whole new set of questions, one of the

hallmarks of good science.

Although systems biology in its current reincarnation is

now over six years old, the success of the discipline still re-

mains patchy. There are noteworthy and significant success

stories such as the work on p53 (Lahav et al. 2004, Geva-

Zatorsky et al. 2006), the cell cycle models of Tyson (Sha

et al. 2003) or the growing field of synthetic biology (Kaern

and Weiss 2006), to name only a few. Another success has

been the slow but steady diffusion of the importance of dy-

namics into the mainstream molecular biology community.

For example, there is now much more emphasis placed on

teaching dynamics to molecular biology students than ever

before. All these developments are very welcome and are

opening up entire new areas of discourse and research in the

biology community. The reductionist approach will remain

an essential part of biological research, but along side this

the application of systems approaches should continue to

be encouraged with particular emphasis on drawing in more

experimentalists. The continued success of systems biology

largely rests with engaging the experimentalists with the

computationalists and therein lies the challenge.

1.2 Challenges in Theory Development

In the development of new theory, there are many interesting

challenges to be met. Some of these include the following.

We will never be able to comprehend cellular networks

in their entirety. In fact, viewing cellular networks in such a
1721
manner leads to the common remark that cellular networks

are complex. Often, the complexity arises because we

choose to see the entire network at once. In engineering

disciplines, especially electrical engineering, large systems

are modularized into distinct functional subsystems. Such

subsystems carry out a well defined, and relatively easily

understood function. By building a heterarchy of modules

it is possible to rationalize a seemingly complex device.

The difficult question arises, what is a functional mod-

ule in a biological network? There have been numerous

discussions of this issue in the literature (Hartwell et al.

1999, Tyson et al. 2003, Wolf and Arkin 2003) and a number

of common themes have emerged. A key idea is replace-

ment, where a module can be replaced without disturbing

the rest of the system behavior. With replacement comes

the notion of an interface, where a module has a defined

interface which is the point of contact between the module

and the rest of the system. Finally, the number of contact

points at a module interface will often be smaller than the

number of interactions internal to the module. This latter

aspect is of interest because it has been used to uncover

modules in complex networks. In particular, a common met-

ric (Newman and Girvan 2004) used to uncover topological

modularity in networks is based on this very idea.

Many current approaches to modularization rely on

topological modularity, whereas in fact networks should be

functionally modularized. The problem of course is that it

is not known how to functionally modularize a network,

and therein lies a great challenge.

1.3 Computational Challenges

We will find the theoretical challenges reflected in develop-

ment and requests for computational methods of modeling,

simulation, and analysis.

If we assume that we can build biological systems in

a modular manner, modeling formalisms are required that

support this modularity, i.e., to compose models out of other

models. Thus, we need to develop standard representations

for building models from submodels and extending such

approaches to multicellular systems. The issues surrounding

standardization is largely sociological, technically many of

the problems can be and have been resolved, e.g., (Cuellar

et al. 2003, Hucka et al. 2003), the real issue is commu-

nity acceptance. Many of the problems, for example, have

been solved by the group who developed CellML and the

associated MLs. However, the solutions are very complex

and one wonders if a simpler approach is not possible.

Also, the question of semantically correct re-use of mod-

els still looms large (Novre et al. 2005). The re-use of

models requires understanding what information is needed

to support reuse and how it should be presented, devel-

oping mechanisms to collect and record this information,

understanding how to design for reuse, developing search
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tools to locate model components, and developing criteria

to decide when model reuse is desirable (Overstreet, Nance,

and Balci 2002). Thereby, an extensive use of ontologies

will only provide part of the answer.

To reduce a model’s complexity, the level of detail at

which subsystems are described might be chosen differently,

leading to multi-level modeling (Uhrmacher, Degenring, and

Zeigler 2005). If part of the model is described as a de-

terministic, continuous model and other parts as stochastic,

discrete event models, reliable hybrid methods for combin-

ing continuous with stochastic models become necessary.

Stochastic simulations of biological systems are known to

be computationally intensive. Approaches towards address-

ing this problem include partitioning the model and using

hybrid simulation methods, introducing improved schedul-

ing algorithms, applying parallel and distributed simulation

methods, or approximating future events (Burrage et al.

2005, Takahashi et al. 2004). The latter also leads to a

more abstract view on the scheduled events.

In addition to simulation, the analysis of models is also

important as it helps us explore the dynamics that are inherent

in a model and to compare it with our knowledge. However,

one of the most obvious gaps in the systems biologist tool

box are reliable and user friendly analysis packages. Most

prominent among the analysis techniques currently applied

is bifurcation analysis (Doedel, Keller, and Kernevez 1991).

However, analysis techniques based on verification methods

are increasingly attracting attention. Questions of whether

certain states can be reached and what the preconditions for

certain behavior patterns are questions that can be answered

in logic-based approaches (Kwiatkowska et al. 2006, Talcott

2006). However, these tools are currently only available for

a small community of experts, to make those, in addition to

simulation and animation tools, available in a user-friendly

manner will be important in establishing modeling and

simulation in wet-labs. It is to be expected that visualization

techniques will play a central role in this endeavor.

2 A GRAND CHALLENGE: FULL REACTIVE

MODELING OF A MULTI-CELLULAR

ORGANISM

BY DAVID HAREL

Biological systems can be modeled beneficially as reac-

tive systems, using languages and tools developed for the

construction of man-made systems. The Grand Challenge

I proposed in 2003 (see Harel 2003, Harel 2005) is to

model a full multi-cellular organism as a (hybrid) reactive

system. I suggest the C. elegans nematode worm as a pos-

sible example of a fitting animal, which is complex, but

very well-defined in terms of anatomy and genetics. The

challenge is to construct a full, true-to-all-known-facts, 4-

dimensional, fully animated model of the development and

behavior of this worm (or of a comparable multi-cellular
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animal), which is multi-level and interactive, and is easily

extendable - even by biologists - as new biological facts

are discovered. The proposal has three premises:

• That satisfactory frameworks now exist for reactive

system modeling and design.

• That biological research is ready for an extremely

significant transition from analysis (reducing exper-

imental observations to elementary building blocks)

to synthesis (integrating the parts into a compre-

hensive whole).

• That the true complexity of the dynamics of bio-

logical systems - specifically multi-cellular living

organisms - stems from their reactivity.

In the last seven or eight years I have been working

with students and colleagues on exhibiting the feasibility of

modeling biological systems as reactive systems, and the

results are very encouraging. We have done work on T-cell

development in the thymus, vulval cell fate determination

in C. elegans, embryonic development of the pancreas,

development of the lymph node, and generic cell behavior

(sample publications Efroni et al. 2003, Kam et al. 2002,

Fisher et al. 2005, Swerdlin et al. 2006).

Achieving this Grand Challenge could result in an

unprecedented tool for the research community, both in

biology and in computer science. We feel that much of the

research in systems biology will be going this way in the

future: grand efforts at using computerized system modeling

and analysis techniques for understanding complex biology.

And I truly believe that computer science, and especially

ideas from systems and software engineering, will play a

role in life sciences research of the 21st century similar to

the role played by mathematics in the physics of the 20th

century.

3 SCALING UP THE ANALYSIS – CAN WE USE

COMPOSITIONAL REASONING?

BY MARTA KWIATKOWSKA

In the context of biological processes, the term ‘complexity’

refers not only to non-linearity and emergent behavior,

but also the sheer size of the systems as measured by

the number of components and the complex pattern of

interactions between them. Though computational modeling

in biology has made tremendous progress in recent years,

the problem of scalability of the techniques to models of

realistic size remains a major challenge. The growth in

complexity is often exponential, and arises independently of

the representation: for example, in signaling pathways with

parallel state changes the number of differential equations

grows exponentially with the number of molecules, as does

the number of global system states in discrete stochastic

models. This pattern of increase in complexity cannot
2
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be simply addressed by enlarging the capacity of existing

machinery, but instead calls for a paradigm shift and more

sophisticated techniques.

Process calculi such as the stochastic pi-calculus (Pri-

ami et al. 2001, Regev and Shapiro 2004) have recently

been proposed as a convenient modeling framework for

biological processes, since they support a natural decompo-

sition into concurrently interacting modules, for example,

proteins reacting with other molecules, in a manner that

enables population- and individual-based models. An im-

portant advantage of process calculi is that, in addition to

conventional analysis by simulation, they admit automated

verification and falsification of models using techniques

such as probabilistic model checking (Rutten et al. 2004).

Process calculi are inherently compositional, though com-

positionality is usually only exploited for model description

and construction, not analysis. Thus, for example, a replace-

ment of a module with a smaller but provably equivalent

one is possible, but there is limited support for composi-

tional quantitative analysis that enables the derivation of

properties of the composed system based on the analysis

of individual components.

Compositional verification frameworks have been pro-

posed in the mid-80s (Pnueli 1985), but the results have

remained largely theoretical until recently. A well-known

paradigm for compositional reasoning is assume-guarantee:

starting from a decomposition of a system into compo-

nents, we verify each component separately by making

assumptions about its environment, and then discharge the

assumptions for the parallel composition, thus avoiding the

need to build a representation of the full model. This

reasoning is frequently circular: A is verified under the as-

sumption that the environment B behaves as expected, and,

symmetrically, B is verified under the assumption that A be-

haves as expected, but non-circular rules are also available.

Much progress has been made in automation of composi-

tional verification for the qualitative analysis of large-scale

systems (Cobleigh, Giannakopoulou, and Pasareanu 2003).

Unfortunately, these techniques are less well developed

in the case of stochastic, and more generally quantitative,

modeling frameworks where only partial solutions exist, for

example product-form (Hillston 2005); see also (Chatterjee

et al. 2006). Future progress in modeling and rigorous anal-

ysis of real-world biological processes can only be made

through advances in quantitative compositional analysis and

automation of the techniques.

4 THE CURRENT STATE AND FUTURE

PROSPECTS FOR STANDARDIZATION

BY MICHAEL HUCKA

With the increasing interest in computational modeling in

biology today, there has come an increasing awareness that

continued intellectual progress demands better sharing of
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data, models, software and knowledge. In recent years, this

has lead to a surge in efforts to establish common standards.

The fact that many of these efforts have become prominent

lately is not surprising for the fact that it is happening—after

all, standards for common information exchange are a facet

of virtually every other human endeavor—but perhaps more

surprising for its apparent suddenness. However, the timing

is probably easily explained simply by the combination of

critical mass (enough people now feel the pain of not having

standards) and the proliferation of information technology

in life sciences in the last decade.

Efforts to standardize model representation languages

— e.g., SBML (Hucka et al. 2003, Finney et al. 2006),

CellML (Hedley et al. 2001, Cuellar et al. 2003), BioPAX

(Bader et al. 2005, Strömbäck and Lambrix 2005) — have

been among the most successful. The Systems Biology

Markup Language (SBML) has had widespread acceptance

in its domain of mathematical models of biochemical net-

works, and BioPAX is now emerging as the leading standard

for representing pathways for exchange between databases.

Both show signs of continued increasing adoption in the

near future. Both are software-level standards, not intended

for direct human consumption. For the latter, the Systems

Biology Graphical Notation (SBGN) (Kitano et al. 2005,

SBGN Team 2006) is a very recent effort to begin working

on standardizing the icons and other visual notations used

in biological network diagrams. Given the natural predispo-

sition humans have towards using visual diagrams, SBGN

stands to garner more enthusiasm (and controversy) than any

of the other efforts at standardizing model representations.

If one has agreement on model representations (SBML,

CellML, or other), a natural next step is to want a centralized

database where models can be stored and found. This is

also a crucial enabler for scholarly publications, whose

editors can recommend that authors deposit their models

in the database much as is done for sequences in sequence

databases. BioModels Database (Le Novère et al. 2006,

BioModels Database Team 2006) is the now leading front-

runner in this area, having gained acceptance from Nature

and PloS so far, with more sure to come. Among the stand-

out features of BioModels Database are the employment

of human curators who verify and annotate every model,

and the use of a relational database allowing much more

sophisticated searches than would be possible in simpler

repositories of models.

In the software interoperability domain, efforts have

been somewhat less successful. Complex, general-purpose

computer software standards such as CORBA have fallen

out of favor, and simplified frameworks such as the Sys-

tems Biology Workbench (SBW) (Sauro et al. 2003) and

Bio-SPICE (Kumar and Feidler 2003), both of which were

designed for systems biology applications, have in truth only

seen limited levels of adoption from software developers.

This is unfortunate, because greater use of application com-
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munication frameworks would benefit users in being able

to work more easily with software tools. A coalition of

open-source developers standardizing around a system such

as SBW would be a welcome development for everyone.

It is worth noting that the successful efforts in these

areas have all been bottom-up, with communities forming

around common needs. This is likely to continue for some

time, as the rate of innovation and development of new

areas continues rapidly. As Quackenbush (2006) and others

noted recently, top-down standardization requirements are

almost certainly doomed to failure. Multiple special-purpose

standards developed by the communities who need them,

seem to be the direction in which we are headed for the

near future.

5 THE ROLE OF TOP-DOWN STUDIES IN

BUILDING COMPUTATIONAL MODELS

BY PEDRO MENDES

The construction of models of biochemical and cellular

behavior has been traditionally carried out through a bottom-

up approach, which is essentially a process of synthesis that

combines in vitro enzyme kinetic data and knowledge of a

reaction network to produce a dynamic model of the same

network. This process requires that the reaction network

be known and that it is possible to carry out the various

enzymatic reactions in vitro. This process of modeling

carries the implicit assumption that the reactions in vitro

proceed in a manner similar to in vivo, an assumption that

is not always correct. Such bottom-up modeling is thus a

process of synthesis that collects a great deal of detailed

enzyme kinetic or protein-protein binding data to form a

dynamic model of a biochemical network.

While bottom-up modeling has been a very successful

methodology, it is unfortunately not possible to apply it in

many circumstances. Conditions in which this method is not

appropriate or feasible are: a) when the reaction network is

not well known, such as in some signaling pathways or in

secondary metabolism; b) when the purified proteins lost

significant interaction partners (e.g., other proteins that are

bound to them in the cell and alter their function); c) when

substrates are not available in purified form, which is un-

fortunately a common situation. On the other hand, modern

genomic, proteomic and metabolomic advances mean that

the most abundant data sets are composed of snapshots of

cellular states at the molecular level. When these data are

obtained as time series they are trajectories that reflect the

cellular process of interest. Since these data are now easier

to obtain than traditional purified enzymological assays, at

least in the conditions listed above, there is a great need

to use these data for the construction of dynamic models.

Indeed, it could be argued that such a top-down modeling

strategy is closer to the spirit of systems biology exactly be-

cause it makes use of systems-level data, rather than having
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originated from a more reductionist approach of molecular

purification. Both these approaches are useful, though, and

I prefer to think of them as complementary approaches,

since each of them has their own advantages as well as

disadvantages.

The top-down modeling approach is essentially a sys-

tems identification problem, also known as an inverse prob-

lem. One is presented with the behavior of a system and

from that one desires to infer which molecules are involved

in interactions (network structure), how these interactions

proceed (kinetic laws), and by how much (kinetic parameter

values). Top-down modeling is an active area of research

and it would be fair to say that it is currently without a

general working solution. Despite the fact that there is an

abundance of publications on network reverse engineering

(e.g., Arkin and Ross 1995, de la Fuente et al. 2002,

Gardner et al. 2003, Laubenbacher and Stigler 2004), it

is fair to say that none of them have yet been applied to a

real set of “omic” data and unraveled a new biochemical

pathway and its dynamics. This reflects the difficulty of the

process, indeed a common feature of all inverse problems.

The biochemical network inverse problem is possibly one

of the hardest of all, due to the inherent nonlinearity of

biological systems. This is complicated by the nature of

current “omic” experiments, where the measured variables

largely outnumber the number of samples (states) collected.

This, in turn, leads to a severe under-determination that

implies that only a few of the variables can be used for

model construction.

It is appropriate to enumerate here the specific issues

involved in top-down model construction. These are techni-

cal problems that are in need of solutions if we are to be able

to use “omic” data directly for model construction. Given

a set of trajectories of the biological system in response to

environmental or genetic perturbations:

• Select a set of variables from the trajectories that

will serve as the basis for the modeling process;

these have to reflect the process of interest and one

hopes that they are indeed directly involved in it.

(Note that this is also an inverse problem in itself!)

• Given the trajectories and a selection of variables,

find out how these variables are related to each

other, ultimately representing the network of inter-

actions and/or reactions in which they are involved.

• Given the trajectories, a set of variables, and the

network formed by them, identify the rate laws

(or other transfer functions) that characterize the

interactions that compose the network. The result

of this process will often be in the form of a set

of equations (e.g., ordinary differential equations).

• Given a set of equations that characterizes a network

of some variables from measured trajectories of

the system, identify the numerical values of the
4
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equation parameters that best describe the system

(goodness of fit). This is often referred to as the

parameter estimation problem. Often, this step

may have to be solved simultaneously with the

previous one.

These four steps in the top-down modeling process

are described here in generic terms, but will take specific

forms depending on the mathematical modeling formalism

used. Often, this is in the form of ordinary differential

equations, but the top-down process is general and is equally

applicable with other formalisms. Their solution is likely

to involve optimization algorithms, since the solution to

inverse problems can generally be stated as an optimum of

an objective function. The parameter estimation problem is

the one that is better studied (Mendes and Kell 1998) and

is commonly addressed as a maximization of a likelihood

function, which usually translates into the minimization of

the difference between model and observations. It is an open

question whether the discrete modeling steps enumerated

above are amenable to be solved independently or if they need

to be solved simultaneously. While parameter estimation

can be carried out independently when the correct rate laws

of a model are known, it is probably not possible to infer

the rate laws themselves without simultaneously estimating

their parameter values.

It is clear that the development of a robust methodol-

ogy for top-down modeling is one of the grand challenges

of systems biology. The solution of the four problems

enumerated above will bring closer the realization of that

goal.

6 FROM WET LAB DATA TO COMPUTER

SIMULATION: PROBLEMS IN CELL CYCLE

MODELING

BY CLIFF SHAFFER AND JOHN TYSON

In the field of molecular systems biology, computational

models should be relevant to a defined set of experimen-

tal observations that provide information on the molecular

machinery underlying some aspect of cell physiology. This

experimental data set usually includes some combination of

biochemical measurements and physiological observations

on wild-type and mutant cells under normal and “perturbed”

conditions. The relevant data are usually quite diverse, in-

cluding accurate quantitative measurements (e.g., the half-

life of protein X is 13± 2 minutes), reliable qualitative

observations (e.g., mutants a and b are viable, but the dou-

ble mutant ab is inviable), and imprecise observations (e.g.,

enzyme Y is much less active under conditions P compared

to conditions Q). From this collection of information, it

is the modeler’s job to devise an appropriate mathematical

model that is reasonably consistent with the available data,

that provides some new insights into the underlying molec-
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ular mechanism, and that makes useful predictions about

novel experimental studies of the system.

In building and testing such models, three issues must

be kept in mind. First, the model must be “bounded.” That

is, the modeler must decide what parts of the cell’s molecular

machinery are to be included in the model, and then how the

rest of the cell’s physiology serves as boundary conditions of

the model (inputs, demands, etc.). In this sense, the model is

a “module” with a well-defined interface to the remainder

of the cell’s internal machinery. The model itself might

be composed of sub-modules, and it might later become a

sub-module of a larger model that covers a larger collection

of data.

Second, the model must be “appropriate” to the available

data. It must contain variables that connect to all the available

observations on genes, proteins, metabolites, etc. If the

model is too simple, it will not be able to account for the

available data. If it is too complex, there will be insufficient

experimental observations to constrain the model. If the

model is “appropriate,” then it should be possible to estimate

the parameters of the model from the available data, and

to have some data “left over” to test the model. Also, an

appropriate model should be able to successfully predict the

outcome of novel experiments within the confines of that

part of the cell’s physiology being modeled.

Third, when building models, brute-force simulations

are usually insufficient to make progress, because the pa-

rameter space that must be searched, even for models of

moderate complexity, is enormous. The modeler needs

some analytical tools to explore the mechanisms first in

qualitative terms: steady state analysis, bifurcation analy-

sis, sensitivity analysis, network analysis, etc. These tools

help to define the general capabilities of a model and to

delineate regions in parameter space where the model is

likely to be successful in explaining the experimental data.

Our experience modeling eukaryotic cell cycle regu-

lation illustrates these issues. In the early 1990’s, only a

few parts of the molecular regulatory system were known

(CDK1, cyclin B, APC, Wee1, Cdc25), and the first models

were primitive but effective (Novak and Tyson 1993). Later,

as more genes and protein interactions were discovered in

the wet lab, the models became increasingly more complex,

sophisticated and successful, building incrementally on the

limited successes of earlier models. The most complete

model to date, for the basic cell cycle engine in budding

yeast (Chen et al. 2004) is composed of over 30 ODEs,

involving about 140 rate constants, and constrained by the

observed phenotypes of 130 mutant strains with aberrations

in different genes of the control system.

This level of complexity stretches the ability of expe-

rienced and dedicated modelers to build, analyze, simulate,

verify, and test their models by hand. For example, when

a model fails to account for all the observations in the
5
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experimental data set (as is almost always the case!), the

modelers must determine where the problem lies:

1. With the parameter set?

2. With the model itself? Maybe the molecular wiring

diagram is incorrect. Maybe some crucial molec-

ular interactions have been left out of the model.

3. With the experimental data? Maybe the unfitted

experimental observations are mistaken in some

way.

To make this decision, modelers need efficient soft-

ware tools for exploring parameter space automatically, for

modifying wiring diagrams quickly and accurately, and for

analyzing and simulating equations easily and reliably.

To these ends, we and other research groups (see for

example Sauro et al. 2003, Copasi 2006) have been develop-

ing software for building models, analyzing them, running

suites of simulations, comparing simulations to available

data, and automated parameter estimation. Our tools in-

clude the JigCell Model Builder (Vass et al. 2006) for cre-

ating and editing models, the JigCell Run Manager (Allen

et al. 2003) for organizing the various mutants, and the

JigCell Comparator (Allen et al. 2003) for analyzing the

goodness of fit between the experimental data and the sim-

ulation outputs. Such tools allow for the automation of

model validation procedures. Automated model validation

allows the modeler to institute validation checking early

into the model lifecycle, and to cheaply validate the model

at each step in its development. Our Parameter Estima-

tion Tool (Zwolak 2006) supports automatic exploration of

parameter space by local gradient-based optimization and

by global deterministic search algorithms (Panning et al.

2006). Oscill8 (Conrad 2006) is a user-friendly environment

for exploring the bifurcation structures of a model.

As has been stated earlier, ultimately models will be

too complex to understand without some form of struc-

turing into units. Model composition, where models are

decomposed into structural parts, will be required. Such

parts must be understood in terms of their interfaces to

other parts. We examine techniques for such modeling in

greater detail in (Shaffer, Randhawa, and Tyson 2006) in

these proceedings.

7 DATABASES, SCHEME-MATCHING, AND

ONTOLOGIES – FROM BIOINFORMATICS TO

COMPUTATIONAL SYSTEMS BIOLOGY

BY LENA STRÖMBÄCK

One important goal for systems biology is a complete under-

standing and description of the protein interaction network

underlying cell physiology, and how these processes con-

tribute to the function of the cells and organisms (Collins

et al. 2003; Hermjakob et al. 2004). To achieve this goal,
172
it is important that researchers can access and reuse each

other data from results from single experiments to mod-

els for analysis and simulations in a transparent way. The

tradition within the field is to publish results in databases

available on the Internet which makes the field unique by

making large quantities of data available. However, to strive

towards more automatic processing, there is a large need

for development of standardized descriptions, methods for

integration of data, and software components capable to

work on several standards.

Descriptions, or formats, for exchange of data have

developed from formats aimed at export of information

from one particular tool or database towards standardized

descriptions of how to represent information within a par-

ticular area. SBML (Hucka, Finney, and Sauro 2003), PSI

MI (Hermjakob, Montecchi-Palazzi, and Bader 2004), and

BioPAX (BioPax 2006) are good examples of this. In par-

allel to this there has been a development of biomedical

ontologies to allow standardization of concepts, e.g., GO

(Ashburner, Ball, and Blake 2000), and OBO (OBO 2006).

Currently, there is a merge of efforts where many of the

standards make use of ontologies. This can either be done

by making references to existing ontologies or by specifying

controlled vocabularies as part of the standard.

There is a large difference in scope between available

standards for systems biology (Strömbäck and Lambrix

2005). This is visible in terms of which concepts they cover

but also in terms of purpose of the formalisms, i.e., whether

the standard is intended for the recording of results, models

for simulation, or something else. This purpose determines

which terminology and sets of attributes are provided for

every concept within a standard. Standards that have been

created for a particular and well-defined purpose have often

been more popular than general standards, meaning that also

in the future it is probable that there will be parallel standards

with different purposes. This means that for a complete

understanding of the area, technology for schema matching

and alignments of ontologies will be of importance (Lambrix

and Tan 2005, Strömbäck 2006). Here, the integration of

ontology concepts within standards is an important aid for

matching and alignment of datasets.

There are currently many tools for analysis and simu-

lation of systems biology data. For data management and

storage, there is a limited number of specialized tools and tra-

ditional database technology is a good option. For standards

implemented in XML, there are in principle two options, ei-

ther a translation of data to a traditional relational database,

or to use the newer XML-database approach. The latter has

the benefit of allowing direct access of data on the XML

representation via the query language XQuery (Strömbäck

2005, Strömbäck and Hall 2006). This technology does,

however, require a detailed knowledge about the standard

from the user, which in many cases can be a drawback if the

user needs to work on data available in different standards.
6
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As a summary, we can see that the development of new

standards and ontologies within systems biology is very

important for reaching the goal of complete understanding of

interactions networks. For this, there is a need of transparent

flow of data from experiments to models which is supported

by recent development within the semantic web and database

community. This is though only a start; to reach the final

goal, further development within all fields discussed here

is required.
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Linköpings Universitet. She has a solid background in

working with databases and XML. She holds a PhD de-

gree in computer science within natural language processing

(1997). After her PhD, she worked at Nokia with research

and development of products for the information society.

This work included responsibility for European projects and

work with future standards in XML. Her current research

focuses on standards and tools for management of stan-

dards, mainly within the area of bioinformatics. Her e-mail

address is <lestr@ida.liu.se> and her Web address

is <http://www.ida.liu.se/˜lestr>.

JOHN J. TYSON is University Distinguished Professor

of Biological Sciences at Virginia Tech. He received his

PhD in chemical physics from the University of Chicago in

1973 and has been specializing in theoretical cell biology

since that time. His current interests revolve around the

geneprotein interaction networks that regulate features of

cell physiology such as cell division, circadian rhythms,

intracellular signaling networks, and programmed cell death.
0


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



