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Abstract: A formula is provided to compute the number of new blocks resulting from the decomposition induced by a shift of 
a single quadtree node of arbitrary size by an arbitrary amount. A precise calculation is also presented for the average number 
of BLACK nodes required to represent a square of width 2 m in a region quadtree. 
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1. Introduction 

The quadtree (Samet, 1984a) is a hierarchical 

data structure which has proven useful in many do- 
mains, including computer  graphics and digital car- 
tography. In its most general formulation, the 

quadtree decomposes a data set that does not meet 
some criterion into four quadrants; each quadrant  
is then examined in turn to see if it meets the criteri- 
on, with further subdivisions occurring as neces- 
sary. Figure 1 illustrates the region quadtree, which 
is used to represent region data. Here the criterion 

is simply to split a block into four equal quadrants 
whenever it is not homogeneous. 

This note investigates the effects of a shift opera- 
tion on a square represented by a single node of the 
region quadtree. When an image is shifted (i.e., 
moved some number  of pixels parallel to the x and/ 
or y axes), the quadtree blocks may be subdivided 
as illustrated by Figure 2. These sub-blocks will be 
referred to as Jragments. For quadtree representa- 
tions of ' typical '  images, a shift may change the po- 
sitions and sizes of the blocks; however, the total 
number  of nodes normally remains about  the same 
(for an empirical study, see (Samet, 1984b)). This is 
due to the fact that the fragments of a block decom- 
posed as in Figure 2b will often merge with the flag- 

ments created by a neighboring block of the same 
color. Nonetheless, it is worthwhile to examine the 
number of fragments produced by shifting an indi- 
vidual block to understand the amount  of work 
that goes on behind the scenes during shifting oper- 

ations. 
This note presents a formula to determine the 

number of fragments created from a single region 
quadtree block of width 2" (before merging with 
neighboring blocks of the same color) if it is shifted 
by specified distances parallel to the x and y axes. 
Dyer (1982) has presented an analysis for the best, 

worst, and average number of quadtree nodes re- 
quired to represent a square of width 2" in an image 

of width 2". However, his calculation for the avera- 
ge case cost is only a close estimate. From our for- 
mula to calculate the number of fragments pro- 
duced by a shift operation, we can derive an exact 
calculation for the average number of BLACK nodes 
required to store the square. 

2. The shift formula 

We begin by defining a function F(X, Y, W) that 
expresses the number of fragments produced when 
a block of width W is shifted X units parallel to the 
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Figure 1. A region, its binary array, its maximal blocks, and the corresponding quadtree. (a) Region. (b) Binary array. (c) Block decom- 
position of the region in (a). Blocks in the region are shaded. (d) Quadtree representation of the blocks in (c). 

x axis, and Y units parallel to the y axis, for X,  Y, 

and W positive integers (X and Y are absolute  dis- 
tances). No te  that  the n u m b e r  of resulting frag- 
ments  is the same whether  the shift is to the left or  
the right. An impor t an t  p roper ty  of  the quadtree  is 
that  all shifts by any mult iple of the largest power  

of two that  is a factor  of the shift distance will result 
in the same n u m b e r  of  fragments.  In other  words,  
shifts of 1, 3, 5 . . . .  pixels, whose largest power  of  2 
factor is 2 °, will each result in the same number  of 
fragments.  In the same way, shifts of 2, 6, 10 . . . .  
pixels, whose largest power  of 2 factor  is 21, each 
result in the same number  of  fragments.  See (Li, 
1982) for a quadtree  node  minimizat ion  a lgor i thm 
that  takes advan tage  of this proper ty .  

We can state this p roper ty  formally by 

F ( X ,  Y, W)  = F(C  1 • 2 x, C2 • 2Y,2 i) = F(2x,2Y, U) 

where x, y, i, Ct ,  and C 2 a r e  positive integers, with 
x and y being as large as possible. Note  that,  since 
W is the width of a quadtree  block, W = 2 ~ for some 
integer i. For  convenience,  we will define x (or y) 
to be i when the block is shifted 0 pixels parallel to 
the x (or y) axis, since this is the same as shifting 
the block by a multiple of 2 ~ pixels. We now define 
a new f u n c t i o n f a s  

/ (x ,  y, i) = F(2 x, 2", T). 

Thus  we have 

F(X, Y, W) = f (x ,  y, i) 

where x, y, and i are defined as above.  The values 
x and y in f u n c t i o n f c a n  be viewed as the number  
of consecutive zeros on the least significant (right- 
most)  end of the binary representat ions for X and 
Y. 
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a) the block stored as 
a single node. 

b) a shift of the block 
by 1 pixel to the right. 
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Figure 2. Decompositions for a block of size 8 by 8 stored in a 
quadtree of size 16 by 16. 

Funct ion .f has the following three properties, 

which can be easily verified by inspection of shifted 
blocks. 

(I) A block shifted by (X, Y) pixels will be repre- 
sented by the same number  of  fragments as a block 

shifted by (Y, X) pixels, i.e.,J(x, y, i) = f ( y ,  x, i). 

(2) If the size of the block is doubled,  and the shift 

amounts  along each axis are also doubled,  then the 
number  of resulting fragments remains the same. 

Generalized, this means that J(x, y, i ) = f ( x  + m, 
y + m , i + m ) .  

(3) If a block of width 2 i is shifted horizontal ly by 

a distance of c .  2 i for any integer c, that  block will 

not be decomposed.  In other  words,  when x > i, 

f (x ,  y, i) =.fli, y, i). 

Using these equalities, function j can always be 

rewritten such that 

f (x ,  y, i) = J(O, s, d) 

where s = rain(i, max(x, y)) - min(x, y, i), and d = 

i - r a i n ( x ,  y, i). We will now define a two-para-  
meter function•" as follows: 

/"(s, d) =J(0 ,  s, d). 

f '  formalizes the effects of (a) reducing x and y to 

be at most  i, (b) scaling the shift by reducing x, y, 

and i by rain(x, y, i), and (c) realizing that either x 

or y will now be 0. Thus, f ' ( s ,  d) represents a shift 

by 20 pixels along one axis and by 2 ~ pixels along 

the other axis on a block scaled to width 2 d. 

We now derive the closed form solution for func- 

tion/"(s, d) as follows. The shift producing the grea- 
test number  of fragments occurs when s = 0 (i.e., a 

shift by an odd number  of pixels along each axis). 

F rom (Dyer, 1982) we see that the number  of frag- 

ments in this case is 3(2 d+ ~ - d) - 5. Now,  look at 

Figure 2b which shows an example for the 

minimum number  of fragments as computed  by f '  

for d = 3 (i.e., when the block is shifted by an odd 

number  of pixels parallel to one axis, and by a mul- 

tiple of the block's  width parallel to the other axis). 

This best case occurs when s = d. For  each reduc- 
tion of  s by 1, we see that a row of blocks of size 

2 ~+~ is decomposed.  For  example, when shifting 

from Figures 2b to 2c, the BLACK block can be 
viewed as having its bo t tom 2 z rows removed, with 

these rows reappearing at the top of the block. Note  

t h a t . f ' ( d -  1, d), illustrated by Figure 2c, is a spe- 

cial case in that it always requires the same number  

of fragments as f ' (d ,  d), since there can never be a 

fragment of width 2 ~. Since the smallest fragment in 
Figure 2b is 4 x 4 pixels, no decomposi t ion results 

from this shift. When shifting from Figure 2c to 2d, 

the bo t tom 21 rows of the block are moved to the 

top of the block; the bo t tom 4 × 4 fragment of Fig- 

ure 2c is decomposed into 2 x 2 sized blocks in Fig- 

ure 2d. When shifting from Figures 2d to 2e, the 
bo t tom 2 o rows of the block are moved to the top; 

the bo t tom row of 2 x 2 fragments in Figure 2d is 
again split into quarters in Figure 2e. Thus,  for s = 
j, a row of 2 d J - 1 fragments is decomposed into 

four fragments each for a total increase of  g ( j ) =  
3(2 a - j -  1) fragments as compared  to s = j -  1. 
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To compute the value off(s, d), we calculate. 

f'(s. d) = Worstcase - ~ g(j) 
j - - 1  

s 

= 3 ( 2 d + l - - d ) - 5 - -  ~ 3 ( 2  a - j - l )  
j = l  

= 3(2~+ 1 _ d) - 5 -  3(2 d -  2 d - 2 -  s) 
= 3(2 d + 2 d - s _  d + s) - 5. 

3. Computing the average number of blocks needed 
to represent a square 

Given a square of width 2" in an image represented 
by a quadtree, we will now compute the average 
number of blocks required for random placement of 

the square. Dyer (1982) at tempted to calculate this 
average; however, his approach may overestimate 
by as much as 8m blocks. Thus, his final result is 
the approximation 0 (2  m + z _ m). Given the formu- 

la derived in the previous section for the number of 
fragments required to represent the block at a given 

position, we can generate the average number of 
fragments required by simply iterating this equation 
over all possible positions of the block. 

Since we wish only to compute the number  of 
BLACK quadtree nodes required to represent the 
block, we need only consider shifts such that the up- 
per-left corner of the 2" block falls on some pixel of 
the original 2" block's space. A shift of X pixels for 

X > 2" will be identical to a shift of X MODULO 2". 
Thus, to determine the average number  of blocks, 
we need simply evaluate f over all shifts within 
a square of width 2". We will call this function 

AVG (m) for a square of width 2". 
Consider that for the set of all possible shifts, half 

of the vertical shifts will be by an odd number  of pi- 
xels, and half by an even number  of pixels. Like- 
wise, for the horizontal shifts, half will be by an odd 
number of pixels and half by an even number  of pi- 
xels. We see that 

AVG(m) = ¼1ool + ¼10El + ¼1EOI + ¼1EEl 

where I001, IOel, IEOI, and IEEI stand for the aver- 
age number  of fragments required by an odd verti- 
cal and odd horizontal shift, odd vertical and even 
horizontal shift, even vertical and odd horizontal 
shift, and even vertical and even horizontal shift, re- 
spectively. 

Recall from the previous section that, given a spe- 

cified shift parallel to one axis, a shift by any odd 
number of pixels parallel to the other axis will al- 
ways yield the same number  of fragments. Thus, if 
we calculate the average number of fragments over 
all possible shifts along an entire odd row (or col- 
umn), this average will be the same regardless of 
which odd row (or column) we are measuring. Fur- 
thermore, this value is also the average number of 

fragments resulting from all cases involving an odd 
y shift. For each odd row, we can derive the equa- 
tion to describe the average number of fragments as 
follows. One half of the horizontal shifts will be odd 
(i.e., x = 0). Since the value of y is also 0, the frag- 
ment count for these cases will be f (0 ,  m). One 
quarter of the horizontal shifts will have an x value 
of 1, counting f ( 1 ,  m) fragments, and so on. Finally, 
there is one pixel with horizontal shift of 0, for a 
fragment count of f(m, m). The row equation is 
then 

"-1( l ) 
ODDROW= i ~ o \ 2 i ÷ 1  .f(i,m) + .f(m,n). 

The average number of fragments for all shifts in- 
volving an odd y shift can also be written as 

½JOE I + ½100[. In a like manner,  one half of the col- 
umn shifts will also be odd. An identical argument 

yields 1leO I ÷ ½1ool as the contribution to the 
weighted average for the odd columns. Note that 
the contribution for the cases in which the shifts are 
both odd has been counted twice. This occurs one 

quarter of the time, and should be subtracted from 
the weighted sum of the contributions for odd rows 
and odd columns. We still need an expression for 
the case where both shifts are by an even distance. 
However, by property (2) of the previous section, 
this case is the same as calculating the average 
number of fragments required to represent a square 
of width 2" - 1. Thus, we get the recurrence 

AvG(m) = ½. ODDROW + ½" ODDCOL 

- ¼1ool + ¼AvG(m - l) 

= 2 . 1 f " - 1 [  l~\,~=o~,~':(i,m)) 

, ) + ~ .  f(m, m) 

-- ¼f(O, m) ÷ 1AvG(m -- l). 
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The factor 2 indicates that the expression is used for 
both rows and columns; the factor ½ indicates that 
half of the rows (columns) use this equation; the 
next factor is the row equation; the term ~f(0,m) 
corresponds to the contribution to the average for 
the cases in which both shifts are odd (which is sub- 
tracted because it was counted twice in the previous 
term); and finally, the last term takes care of the ca- 
ses in which both shifts are even. Changed to sum- 
mations, the equation for the average number of 
BLACK blocks is 

1 ( ,1Fl  ] 
AvG(m) : , : 1  ~ 4"-'\,~=oL ~ ' f ( i ' d )  

1 
+ ~ .  f(d, d) 

)1 
- ¼ .riO, d) + 4~ 

d = l ~  ( 5 " 2  a 3d 5) 

1 
+ ~ .  f(d, d) 

)1 
- ¼ .f(O,d)  + 4~ 

m 1 / 7 . 2 d  2 9d 3 ,  

: a ~ , ~ - a ~  -2 2 a 4 
+ 

4 1 
= 2 m+2 - -  3m + 

2" 4 m" 

I 

4" 

4. C o n c l u s i o n s  

We have derived a formula that yields the 
number of blocks required to store a node of size 
2" when shifted by (X, Y) pixels. We have also made 
precise the average case expectancy for the number 
of blocks required to store a square of size 2". Our 
calculation of this average agrees with the value of 
0 (2 "  + 2 _ m) calculated in (Dyer, 1982). 
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