N B o A

AN OPTIMAL QUADTREE CONSTRUCTION ALGORITHM

"

Clifford A. Shaffer
Hanan Samet

Computer Science Department and
Center for Automation Research
University of Maryland
College Park, MD 20742

ABSTRACT

An algorithm is presented that builds a linear quadtree from
a raster image stored on disk in time proportional to the number of
nodes in the output quadtree plus the (relatively minor) amount of
time to read the raster. For typical 512X 512 pixel images, the new
algorithm: results in an order of magnitude or betier improvement
over traditional algorithms which insert each pixel separately and
require 2 merge routine to form larger nodes. These traditional algo-
rithms have an execution time that is proportional to the number of
pixels in the image. i

1. INTRODUCTION

Hierarchical data structures such as the region quadtree (es.,
Figure 1) are important representations in many domains. Quadtrees
and related hierarchical data structures are surveyed in [6]. For many
problems, using a quadiree means that the amount of work required
is proportional to the number of aggregated units (e.g., blocks) rather
than to the sizes of the aggregated units (e.g., the number of pixels in
a block). Quadtrees therefore have the potential for improved execu-
tion time efficiency. Nevertheless, raster to quadiree conversion
requires that every pixel of the raster be examined. For this reason,
previously reported quadtree building algorithms execute in time pro-
portional to the number of pixels in the image. This can be costly,
especially as in our case where the image is large and the quadtree is

-stored on disk. The linear quadiree representation [1,3] is useful for

efficient manipulation of quadtrees stored on disk. It is currently
being used to store images in an experimental geographic information

* system at the University of Maryland [7].

In this paper, we present an algorithm for building = linear
quadtree from a raster image stored on disk in time proportional to
the number of nodes in the output quadtree plus the (relatively
minor) amount of time required to read the input data. For typical
512512 pixel images, the new algorithm results in an order of mag-
nitude or better improvement over naive algorithms that insert each
pixel separately and require a merge routine o form larger nodes.

2. MPLEMENTING LINEAR QUADTREES

Before building a linear quadtree, every pixel in the underly-
ing array of the digitized image is assigned an address value (i.e., its
locational code). This address is formed by interleaving the bits of
the binary representation for the pixel’s z and y coordinates [3] {.g.,
Figure 2 where each = and y bit pair is represented by a single base-
1 digit). When the pixels’ addresses are sorted in increasing order,
the result is equivalent to a depth-first traversal sueh that quadrants

- are visited in the order NW, NE, SW, and SE. Node addresses are

generated by assigning to each nede the address of the least valued
pixel contained within the block it represents (e.g., the block labels in
Figure 1), Note that the block in the NW quadrant of the image has.
2 O value in the first position (indicating a NW branch), all blocks in’
the NE quadrant have a 1 in the first position, ete. The list of blocks
is stored in a B-tree [1,7).

In our application, the linear quadtree is disk-based ‘with only .

“This work was supported in part by the National Science Foundation
utter Grant DCR-8605357,

'CHZ_342-4/86/0000/0317$01.00 © 1986 IEEE

a small portion of an image in core at any given instant. Thus, the
time spent moving segments of the image to and from the disk is an
important factor. According to Comer [2], I/O accounts for the
majority of the time spent in manipulating B-trees. A buffer pool
helps to reduce the I/O time. The amount of time spent searching
for a key within a given B-tree page is also an important factor. For
algorithms such as the naive building algorithm discussed in Section
3, those parts of the system may take up about 98% of the execution
time.

A common quadtree analysis metric is the number of nodes
of the quadiree that are visited when performing an operation.
Operations performed on the liriear quadtree are different from opera-
tions performed on pointer-based representations. Many pointer-
based algorithms involve neighbor-finding {5], which is done by
ascending father links to the nearest common ancestor of the node
and its neighbor, then descending the tree to the neighbor. In con-
trast, for linear quadtrees, neighbors are found by computing the
address of the desired neighbor and then locating the actual node in
the list; this requires a search. Whether the node is a neighbor, or
any arbitrary relation, the node finding cost is still that of a single -
search. Not surprisingly, the two operations which consume the most
time when manipulating linear quadtrees are node search and node
insertion. Assuming a constant cost for inserting a node {an assump- .
tion supported by empirical tests}, a reasonable metric for algorithm

complexity ts obtained by simply adding the number of node searches

to the number of node insertions.

2. RASTER TO QUADTREE CONVERSION

The naive algorithm for converting a raster to a linear quad-
tree individually inserts each pixel of the raster into the quadtree in
raster order. The quadtree insert routine merges those pixels making
up larger .nodes. Previous algorithms presented in the literature [4]
have worked on this principle. Attempts at increasing efficiency con-
centrated on how to improve the insert routine. Table 1 contains the
execution times and number of node insertions required when such an
algorithm (marked as ‘old’ in the table) is applied to six test maps.
The execution times are nearly identical for raster images with the .

.same number of pixels (and thus, node inserts), regardless of the

317

number of nodes in the eventual gquadiree. In other words, the
number of nodes in the output tree has little or no effect on the time -
required to execute the algorithm. Note that for the naive building
algorithm, the amount of time needed to read the picture data is
approximately 1% of the time necessary to insert every pixel.

Since the number of pixels in the raster representation for
our images is large in comparison to the number of nodes in its quad-
tree representation, it would be desirable to find an algorithm which
can reduce the number of node insertions required. An optimal algo-
rithm would, in the worst case, perform a single insertion for each
node in the quadtree. An algorithm with this worst-case performance
is presented in this section. It is based on processing the image in
raster-scan (top to bottom, left to right) order and, when necessary,
inserting the largest node for which the current pixel is the first
(upper lefbmost) pixel. Thus, there is no need to merge since 1) the
upper leftmost pixel of any block is inserted before any other pixel of
that block; and 2) it is impossible for four sibling blocks to be of the
same color,) ’

Table 1. Quadtree building algorithm statistics.
Map Number | Number Inserts Time (sees.)
Name Nodes | Old New 0ld New
Flood 5266 | 180000 |--2352 [-413.2-] *13.%
Top 24859 180000 { 12400 | 429.8 51.2
Land 28447 180000 14675 | 436.7 56.9
Center 4887 262144 2121 | 603.8 16.1
Pebble 44950 262144 | 20770 | 630.1 | 111.0
Stone 31969 252144 14612 1 629. 5 | 70 25'

At any point while the quadtree is being constructed, there is’

2 processed portion of the. image {corresponding to t.hose pixels
already scanned), and an unprocessed portion, Both the processed
and unprocessed portions of the quadtree are represented by nodes.
If it were possrble 1o know the “current values of all unprocessed pix-
els as they are currently Teprésented by the quadtree node Jist, then
it would ot be necessary to insert a_pixel with color ¢ from whlch a
previois largest.—node insertion ‘had. alrea,dy set. the containing node
for that piiel’ to éolor . We say that a node is scifve if at least
onte, but ot all, pixéls covered by tlie node” ha.ve been processed. The
eﬂic-lent. quadtree building algorlthm must keep track of all of suéh
active nodes. Given a 2" % 2" image, an upper bound on the number
of active nodes is 2"-1. This can be seen by observmg that any
given pixel can be covered by at most n active nodes - L.e,, 2 node at
each level from 1 éo n (correspondmg to’ the root) At any given
m.stam: “theré can be at most 27 active fodes at lev (i.e., nodes
} 2X2} This 8 trie because, for any gwen 1:i',' onl)r one

- attive dodes _along a row just processed Slmxlarly, ‘there ‘will be at
most PA act e nodes at level 2 and so on with 2% active nodes at
at level n (the root.)r Summmg

. Froru ‘these observatlo 15 an 1mproved quadtree building algo-
rithm ¢ari b& derived.” Assume the’ existence of a data structure that
keeps track of ‘the actlve qu tree nodes. For each pixel in the raster
scan traversal do the fo]lowmg If'thé pixel'is the same color as the
appropriaté active node, do nothing. Othérwise, inseri the largest
possible node for ‘which this is the first (1 e., the upper, Iel'tmost) pixel,
and (if it i€ not a'1x1 pixel node) add it to the set of active nodes,
Remove any active nodes for which this is the last (iower right) pixel.
The list of active nodes is represented.-by an array, referred to. as the
active node table contammg 2°-1 entries to sl‘.ore all potentiaily
acmve niodes.

The only remammg problem is to]ocate ‘the smallest. active
node in the table that: outaips a specified pixel. - For 2 given pixel P
in a 2")(2" image, 25 many as n nodes contmnmg P could be
active.. Mult.rple active nodes for a given pixel arise whenever 2 Dew
node is split to accommodate the insertion of a pnce] having a color
different from that of the current active node (e.., alter inserting
pixel 3 in Figure 3b).. Ea.ch .pixel will have the color of the smallest
active node that contains it, since the smallest node will be the one
roost recently inserted. Fmdmg the smallest active node that con-
tains. a given, pxxe] can. be done by searchmg, for a given column,
from the entry in the active node table represent.mg the lowest level
'upwards until, t.he first non—empty entr_v is found. However, this is
time consuming since it might require % steps.. Therefore, an addi-
tional one-dimensional array, referred to as the access array, 1s main-
tained to provide a pointer to the currently active node for tha.t
eolumn, in. the active node table The access array contains 21
records, " this bemg the maximum posstble number of active nodes
along a piven row of 2° pixels As active ‘nodes are inserted or com-
pleted (and deleted from the active node table) the active node table
and the access array are updated i

TabIe 1 contains execut.lon times of the new algorithm for

the same .maps used, to test the naive a]gorlthm The new algorithm

. often requlres far fewer calls to the insert routine. than E'.he number of
nodes_in_ the result.mg output tree. This is because some calls to

insert Eorce zode splits . to oceur, thereby i increasing. the number of
nodes in the tree. For example, consider Figure 3b where processing

pixel 3 causes the insertion of node B into the quadtree containing a

t level 1. Wil 'be ack Ve, giving at most a solid line of 2% 2

-single node, resulting in the creation of seven nodes. If the first pixel

inserted into node X is the same color as the original node (4 of Fig-
ure 3a), it will cause no a.ddit.lona] node insertion.

We illustrate. the’ new algorithm by consldenng how the
quadtree of Figure 1 is constructed. Table 2 traces the active nodes
at each ‘stage of execution. Each row in Table 2 lists the active

‘nodes after processing the pixel listed in column one. Pixel identifier

{a, 6) denotes a pixel in row ¢ and column & relative to an origin at

~ the image’s uwpper left corner. When processing the first pixe] of the

array, the entire quadiree is represented by a single WHITE node
(block A in Figure 4a). No other insertions oceur while scanning

" rows 0 and 1. When the first BLACK pixel (2,4) is processed, block

£ of Figure 4a becomes active.. When BLACK pixel (2, 5) is pro-
cessed, block B will be located in the active node table, since it is
the smallest active node containing that pixel. When BLACK pixel
(2,6) is. processed, block €' of Figure 4b becomes:active, since only
active WHITE blogk A .contains it at that point.. As.tow 3-is.pro-

- cessed, blocks B .and ¢ are deactivated when their lower right p1ers

318

are processed ‘When pixel {4,4). has been processed, the state is as
shown in F:gure 4c The blocks previously. labeled B and ¢ .are no
longer active, Pixel-sized block D at, {4,3),does.not become ‘active as
it contains no unprocessed pixels, and thus ‘only. blocks..A .and % .are
active at_this, time.. Figure 4d shows. the algorithm’s state.after. pro-
cessing pixel (6,6). Block H became active 'after processing pixel
{6,2). The block corresponding to pixel (8,5) has been inseried, but is
not active. Since the smallest block containing pixel (6,6) had been
BLACK, a new WHITE block has been activated {block I}. - Thus,
three active blocks (4, E, and I) contain pixel{(6;7), with the smal:
lest being block 1. As the final row is pmcessed all actnre nodes wnl]
be’ deact.wa.ted A deta:led algorlthm is'given in [8]

To undersiand why the new a.lgonthm is sitch ‘an lmprove-
mént over the old one, let us Hnalyze the cost of both algont.hms in
terms ‘'of thé number of insert operat.lons performed The't nalve’ algo-
rithm ‘examinés ‘sach pixel and inserts it'ints the quadtree Denotmg
an insert operatiofi’s cost by I, and" thie “6ost Tor the ‘time spent exa-
mining a pixel 35 ¢ ; the total cost is then 2% (¢ +7). ‘The new algo-
rithm ‘must also examme each pixel. HOWever, there will be at’ Tt
one insert operatmn for edch-of thie" NV nodes in the cutput quadt.ree
Therefore, the new algorithm’s cost i ¢ 2% TN where ¢ Is ery
small in comparison to f, and N is usually sniall in comparlson to
22" | In other ‘words, the quantity I- N “dominates the cost of the new
algorithm, yet is much less than 7:3™ The result is thit usifig the
new algorithmy réduces- the exécution time from Ofpixels) to O(nodes).

- Of course, this is achieved at the ¢ost of a slight increase in storage

requirements due to the need to keep track of the active nodes {at
most 2"—1" records for a 2%x2" 1mage) On the other hisnd, the
quadtree’s size durmg construction is likely to be sma]ler for the new
algorlthm sifieé no mergmg need be performed)

Tai;le 2. Trace table for act.:ve nodes in building example. ~ "~
Pixel Act:on ' Size Athe Nodes by Lovel |
- L _ | 3. 2, 1
(0,0) | insert WHITE node s ™ | 8x8'1 A |7
1 (2;4) | insert BiACK-node B - 2X2 | A ‘B
1{2;6) | insert BLACK node G 2x%2-| A BC
‘| (3,5) | remove:B from active . A [
(8,7) | remove C from active -] A 1
{(4,3) { insert BLACK- node D 4 Ix1 A
1 (4,4): | insert BLACK node E 4x4 AR
(5,2} 1 insert BLACK nede:F {Ix1sA | E
{5.3) | insert BLACK'node ¢ {:Ix1‘| A}'E
{6,2) | insert BLACKmode H. 2x2 A E ‘H
(6,6) | insert WHITE node I taxe2|A |'E HI
{7:3) | remove H from active” - |- i A PEI '
(7,5) { insert WHITE node J AX1 | A | EI
(7,7) | remove L, E, A from active | - o

The Iargesb-node-msertlon technique dlscussed above can be
used to - -improve - the pointer based raster-to-gadtres algorithm
described in [4]. That algorithm works bot.t.om-up, begmnmg with a
smgle node representing the raster array’s first plxeL.\ As each pixel

of the first row is scanned, the current pixel’s eastern neighbor is
located, Using the largest-node insertion technique we can devise an
analogous top-down algorithm which performs no merging. The algo-
rithm also minimizes intermediate storage requirements since no
space is needed for nodes that eventually would be merged and
removed. Hach pixel of the raster image is processed in raster scan
order. After processing the first pixel, the quadtree is represented by
2 leaf node of color ¢ corresponding to the root, As subsequent pix-
els are processed, if a pixel of a different color, say O, is encoun-
tered, then the current node is set to GRAY and given four children
with value €. The child containing the current pixel becomes the
current node. If the current pixel is the node’s first {(upper-left} pixel,
then the node’s value is changed to ¢'. Otherwise the split step is
repeated until the current pixel becomes the current node’s upper-left
corner. If the next pixel to be processed is beyond the cugrent node’s
eastern edge, then that node’s eastern neighbor is located. In this
way, RO unnecessary nodes are inserted, and no merging is per-
formed.)

4. CONCLUDING REMARKS

The techniques used in Section 3 can he applied to other
functions that create a linear quadtree in a “‘reasonable” order. A
reasonable order is one in which, for each node, the upper-left pixel is
the first pixel to be inserted for that node. This restriction is
satisfied by depth-first traversal (i.e., node address order), raster scan
order, and any other ordering where all pixels above and to the left
of the current pixel have already been processed. Some example
tasks to which our methods have already been applied include algo-
rithms for computing set operations (e.g., union, intersection,
difference} between two unregistered images represented by quad-
trees, as well as algorithms for windowing and matching of unre-
gistered images.

REFERENCES

1.. D.J. Abel, A B¥-tree structure for large quadtrees,'c"omputer
Vision, Graphics, and Image Processing 27, 1(July 1984}, 19-31.

2. D. Comer, The ubiquitous B-tree, ACM Computing Surveys 11,
2(June 1979), 121-137. -

3. L Gargantini, An effective way to represent quadtrees, Communt-
cations of the ACM 25, 12(December 1982}, 905-910. :

4. H. Samet, An algorithm for converting rasters to quadtrees, JEEE
Transaclions on Paitern Analysis and Mochine Intelligence 3, 1{Janu-
ary 1981); 93-85.

5. H. Samet, Neighbor finding techniques for images represented by
quadtrees, Computer Graphics and Image Processing 18, 1{January
1982), 37-57.

6. H. Samet, The quédtree and related hierarchical data structures,
ACM Computing Surveys 16, 2(June 1984), 187-260,

7. H. Samet, A. Rosenfeld, C.A. Shaffer, and R.E. Webber, A geo-
graphic information system using quadtrees, Pattern Recognition 17,
6{November/December 1984}, 647-6586.

8. C.A. Shaffer and H. Samet, An optimal quadtree construction
algorithm, to appear in Cemputer Vision, Graphics, and Image Pro-
" ecasing.

319

L] wooam il o qa LI 1§
100 na oo {00 L oo [ma {ma f e o | ws | one
[aa]¢] oog [z [vos {2 [ona | aa | vas | iz | ua
120 130 o0 |ox o |0 | oy IYII_ LIl Rt Rt
Oy 072 | 023 | 632 [ga3 | a2 I?l (1> IR EF]
500 210 211 300 20 10 | 200 | 201 5 210 |z | 300 | 2 § 30 | 2z
212 2'3 el o a2 N2 |z a0 a8 | A | .
3z0la21 U072 | 2e | 230 | o | 330 | ae1 fas0 | 2
220 230 - 330 -
- uro| x|y] 12 | &
3291 323 33 |3 iy | 2 ”’.
Figure 1. Example quadtree Figure 2. Interleaved pixel ad-

block decomposition. dresses for an 8 X8 array.

(]2

Figure 3. Left: node A is active after inserting a sing:le pixel of color
C. Right: the insertion of pixel 3 with color €' causes the creation
of active node B when pixels 1 and 2 have color C.

(a) ®)

() (@

Figure 4. The quadtree construction process for the image of Figure
L. (a) shows the state after processing pixel (2,4); (b) after pixel
{2.8); (<) after pixel (4,4); and (d) after pixel (8.8). -

