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A Real-Time Robot Arm Collision Avoidance System

Clifford A. Shaffer, Member, IEEE, and Gregory M. Herb

Abstract— A data structure and update algorithm are pre-
sented for a prototype real-time collision avoidance safety system
simulating a multirobot workspace. The data structure is a
variant of the octree, which serves as a spatial index, An octree
recursively decomposes three-dimensional space into eight equal
cubic octants until each octant meets some decomposition criteria.
We use the N-objects octree, which indexes a collection of 3-D
primitive solids. These primitives make up the two seven-degrees-
of-freedom robot arms and workspace modeled by the system.
Octree nodes containing more than a predetermined number N
of primitives are decomposed. This rule keeps the octree small, as
the entire world model for our application can be implemented
using a few dozen primitives. As robot arms move, the octree is
updated to reflect their changed positions. During most update
cycles, any given primitive does not change which octree nodes it
is in. Thus, modification to the octree is rarely required. Incidents
in which one robot arm comes too close to another arm or an
object are reported. Cycle time for interpreting current arm
joint angles, updating the octree to reflect new positions, and
detecting/reporting imminent collisions averages 30 ms on an
Intel 80386 processor running at 20 MHz.

Index Terms— Collision avoidance, hierarchical data struc-
tures, octrees, tele-operated robots.

I. INTRODUCTION

HIS paper describes the use of a hierarchical data struc-

ture, the N-objects octree, in a collision avoidance safety
system for simulating a multirobot workspace. The goal is not
to perform robot arm path planning, but rather to support a
real-time safety system to warn of imminent collisions between
two robot arms or between a robot arm and another object.
In particular, our algorithm repeatedly tests a set of 3-D
geometric primitives (which collectively represent the robot
arms and their workspace, with the primitives for moving
objects expanded to include a safety buffer) to determine if
any primitives intersect. The algorithms described can be used
to provide a collision-avoidance capability for a variety of
robotics applications.

Our initial motivation for this work was to provide a real-
time safety system to support NASA’s tele-operated robot
arms on the proposed space station. A tele-operated robot
is one whose motions are dictated by an operator through
a controlling device. In this case a minimaster, which is a
scaled-down model of the arm, is manipulated by the operator
to move the robot arm. Given the working conditions of the
operator and the tasks being performed, the probability of
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an accident occurring is unacceptably high. Hence, a safety
system is needed that will prevent unintentional collisions.
Ideally, a collision avoidance system will insure the safety of
the robot arms without hindering the operator during normal
operation.

Each robot arm in our testbed has seven degrees of freedom,
with each link of the arm being nearly cylindrical in shape. The
workspace is not static—the system must accommodate move-
ment of both the arms and other objects. An important aspect
of our problem is that motions are not predetermined. Many
proposed collision avoidance and path planning algorithms
are based on access to information about future motion. In
contrast, our operating paradigm is one of receiving a current
position for moving objects, updating the representation of
the workspace to reflect that movement, and reporting any
imminent collisions. As a result, we cannot solve a problem
of continuous motion but rather must solve a series of static
collision detection problems based on current positions of
objects, possibly augmented with velocity information derived
from the recent history of object movements. A microprocessor
from a larger distributed robot control system may be dedicated
to the safety system, but we expect this to have modest
computational capability due to the requirements of reliability
testing for space flight.

From the above characterization of the problem, we see that
the safty system requires the following of its representation.
First, the representation must allow determination in real
time of imminent collisions. Second, the representation must
constantly be updated, adjusting to the movements of robot
arms and objects. Both updating and collision avoidance
checking must consistently be performed within the permitted
time period to be acceptable as a real-time safety system.
Third, the representation must be a reliable, but not necessarily
exact, model. That is, since we are trying to warn of and
avoid imminent collisions, exact representation of the objects
is not required—as long as the approximation does not lead to
missing imminent collisions, nor leads to reporting too many
false warnings.

Quad- and octrees [31], [32] have been applied to spatial
problems in computer vision, robotics, computer graphics,
and geographic information systems as well as other related
disciplines. The octree is a hierarchical data structure that
recursively subdivides a cubic volume into eight smaller
cubes (called octants) until a certain criterion, known as the
decomposition rule, is met. This decomposition process is
often represented as a trec of out-degree eight as shown in
Fig. 1. Changing the decomposition rule gives rise to many
varieties of octrees. These different types of octrees have vastly
different capabilities, and as with all computer science applica-
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Fig. 1. An example region octree. (a) The object. (b) Its region octree block
decomposition. (c) The resulting tree structure.

tions, selecting the correct data structure is crucial to success.

The most well-known form of octree is the region octree.
It is most appropriate for defining the shapes of homogeneous
objects that are difficult to model with higher level primitives.
Beginning with a cube that encloses the set of objects to be
modeled, splitting occurs until each octant lies completely
within an object or is completely empty (see Fig. 1).

Another type of octree, which we refer to here as the N-
objects octree, has been used to speed ray tracing of images
to simulate realistic lighting effects [13], [14], [24]. The N-
objects octree subdivides space into octants, as does the region
octree. However, the N-objects octree stores a list of the
objects that inhabit each node. Beginning with a cube that
encloses all of the objects, splitting occurs until no more than
N objects lie in any leaf node.

We use the N-objects octree to serve as the indexing method
for the robots and their workspace for a number of reasons.
The N-objects octree provides a compact spatial index of the
world model. Its decomposition rule keeps the size of the N-
objects octree small, which, as described below, allows for
fast updating in response to movement. The N-objects octree
easily adjusts to changes in the workspace through the splitting
and merging of octants. Only objects sharing an octree node
may intersect, thus localizing imminent collision detection and
greatly reducing the number of intersection tests required.
Finally, small object motions rarely require that the structure
of the N-objects octree be changed. As a result, our system
operates with an average cycle time of 30 ms (and under 60
ms in the worst case) for our test simulations.

_ The remainder of this paper is organized as follows. Section
I present previous work related to our approach to colli-
sion avoidance and the N-objects octree. We describe our
safety system prototype in Section III. Section IV discusses
constraints in selecting the safety buffer size and explains
why our algorithm does not run afoul of the completeness
problem. Section V presents a series of experiments performed
to evaluate the efficiency of our method. Section VI presents
our conclusions and a number of open problems.
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1. PREVIOUS WORK

Many researchers have studied path planning problems in
both static and dynamic environments (for overviews, see
[33], [35]). With the expanded use of tele-operated robots in
space, manufacturing, and the nuclear industry, the problem
of collision avoidance has become a significant problem in its
own right. '

Cameron [4] offers three different approaches to determin-
ing collisions based on geometric modeling of the workspace.
In the first, the motion is sampled at a finite number of times
and interference detection between objects is performed at
each time step. In the second approach, models are created of
the objects and their motions in space time, and intersections
between these four-dimensional entities are detected. The third
approach models volumes swept out by the moving objects and
checks for intersections. Most researchers combine collision
avoidance with path planning, using either the second or third
of Cameron’s approaches. The method reported in this paper
is based on Cameron’s first approach.

One popular paradigm for path planning and collision
avoidance is to model the robot’s workspace in terms of the
robot arm’s configuration space [22], [23], [8]. Unfortunately,
the computational complexity of this approach grows rapidly
with the number of robot arms and the number of joints making
up the robot arms. In addition, this approach is not. suited
to a dynamic real-time environment. One advantage of our
representation is that, unlike configuration space approaches,
adding degrees of freedom to the robot arm either through
modifying the joints or adding new links will not significantly
affect the running time. A

The use of region octrees in three or four dimensions to
support path planning has been widely reported. Fujimura and
Samet [12] have studied using four-dimensional region octrees
(three spatial dimensions and time) to do robot planning.
Samet and Tamminen [30] consider conversion of CSG trees
to region bintrees (a close variant of the region octree)
for use in solving object intersections to support both path
planning and static intersection detection. Haywood [15],
Hong and Shneier [18], Herman {17], and Noborio et al.
[27], [21] have also considered the region octree for planning.
As a typical example of these, Hayward [15] describes a
collision detection tool based on region octrees for an off-
line robot programming system. It takes as input a geometric
description of a workspace and a robot trajectory and reports
where and when a collision would occur should the trajectory
be executed. Unfortunately, all of these region octree-based
proposals require availability of complete information on
future motion and thus are more appropriate to path planning
than to a collision avoidance safety system.

A few researchers have explored solving a series of static
collision detection problems at discrete times. Cameron [4]
describes potential problems with this approach that result
from inappropriate sampling rates (we discuss this issue further
in Section IV). Roach and Boaz {2], [29] present the use of
region octrees to detect intersection at a series of discrete
times, although they do so to support path planning. First,
a plan to perform a given task is gencrated by the planning
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system. To ensure that no collisions occur, the planned motions
are sampled at discrete times and inter-object interference is
checked for. A region octree is constructed a priori for static
objects in the workspace. At each sample, a region octree is
constructed for each moving object and static intersections
tests are performed by parallel traversal of the octrees. Ng and
Sakata [26] represent the static workspace environment with a
region octree, and the moving robot as a series of cylspheres.
At each update cycle, each cylsphere is tested against the
octree for possible intersection.

Velocity and distance bounds are introduced in [7] as a
means of detecting imminent collisions. Given two objects
in space, we can determine the maximum velocity at which
they are moving toward each other and the minimum distance
between any two points on their surfaces. These bounds
are used to determine the minimum amount of time dt that
can elapse before these objects could possibly collide. The
collision detection algorithm works by tracking this relation
between each pair of solids in the world model. As the value
for dr approaches zero. for a pair of objects, an imminent
collision is reported. Simple enclosing solids are used as
fast intersection checks to improve efficiency. Foisy et al.
[9] improve on this approach by organizing the N 2 possible
collisions between the N primitives that make up the robot
and its environment in order of earliest possible collision. At
each time step, the primitive pair most likely to collide next
is checked and reinserted into the list.

Minimum distance algorithms are discussed in [19] as a
means of detecting imminent collisions in an off-line collision
detection system with graphical simulation facilities. As ob-
jects move, a minimum distance measure is used to determine
if any components of the pair of objects are about to collide.
To reduce the number of pairwise comparisons between the
components, each component was enclosed in a bounding box.
The minimum distance algorithm (which is computationally
expensive) was applied only to pairs of components whose
bounding boxes were “close.”

Yu and Khalil [36] present a system for collision avoidance
of a robot working in a fixed workspace that uses a world
model based on 3-D solid primitives. The robot and workspace
are modeled by means of simple primitives (i.e., spheres,
cylinders, parallelepipeds, cones, and planes). The authors
observe that, in spite of the simple methods used for modeling,
an “on-line” application based on testing the intersection of
the robot links with all obstacles at each control point is not
practical. In order to accelerate the calculation of the collision
detection algorithm, a table look-up procedure is used. Free
space is represented by discretizing joint space and is stored
in a table structure. This table is used to map the position of
a robot link to the obstacles that lie close to that link. Thus,
the number of intersection tests performed at each sample is
reduced.

Two very different approaches to real-time collision de-
tection should be noted. Borenstein and Koren [3] apply
the technique of potential fields in the form of a repulsive
force-field around obstacles to keep collisions from occurring.
Cheung and Lumelsky [7] use a skin of proximity sensors
to determine when the robot arm has come too close to

an obstacle—an approach radically different from the others
described here since it is based on direct sensing rather than
simulation of the workspace.

Many approaches have been reported for the general prob-
lem of collision detection and avoidance, a few of which
have been described above. Some of the systems are targeted
for off-line applications where system performance is not a
major factor and operator interaction is possible [15]. Others
are used in conjunction with planning systems to decide if
preplanned robot motions are collision free [5], [12], [21],
[27], [30]. Still others propose the use of custom hardware to
support a real-time system [20], [34]. We desire a system that
will provide real-time response with little or no interaction
with the operator. Furthermore, no advance knowledge of
robot arm movements will be available. Finally, a system
using specialized hardware is not acceptable in our particular
application due to the high cost of testing and accepting a
new computer for space flight.

1II. GENERAL DESCRIPTION OF THE ALGORITHM

Our approach to collision avoidance is to maintain a model
of the robots’ workspace and, as often as possible, update and
evaluate the model to detect imminent collisions. In effect, a
real-time simulation of the robots’ workspace is performed.
Imminent collisions are defined to be situations in which
moving objects are closer than a specified distance to another
object.

The major contribution of our work is the combination of
a world modeled by solid primitives with an octree indexing
scheme that allows static collision detection to be performed
quickly enough to allow real-time sampling on a standard
CPU. Ours is the first reported attempt to apply a hierarchical
spatial index other than the region octree to collision detection.
The region octree is not well suited to this task since it requires
a relatively large number of nodes to represent the robot and its
workspace, resulting in increased processing time. By selecting
a more appropriate representation, we have made a significant
efficiency advance on the solution to our formulation of the
collision avoidance problem.

We represent complex objects as the union of simpler
primitives. The choice of primitives does not affect our method
of representation; however, the primitives used should reflect
a good balance between efficiency of primitive-primitive
intersection operations and the number of primitives required
to adequately represent the world model (which affects the
total number of primitive—primitive intersection operations
performed). Actual intersection tests for a given pair of prim-
itives are done analytically. While algorithms do exist to
compute the intersection of arbitrarily complex solids [28],
thus allowing the use of arbitrary shapes as primitives, we
use only primitives for which intersection tests can be done
quickly.

For our prototype, we have chosen cylspheres, cylinders
with spheres on each end, to represent each link in the robot
arms. The cylsphere both provides an acceptable approxima-
tion for the links and allows for efficient intersection tests.
Other objects in the workspace such as the experiment modules
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Fig. 2. Working environment used to test collision detection algorithms.

to be manipulated by the arms are not well modeled by
cylspheres, so our prototype also supports rectangular solids
as additional primitives. Each primitive in the model is con-
sidered a separate entity and is assigned a unique identification
number. A geometric description of each primitive and its
current position in the world is stored in a table and is accessed
through this ID. The use of cylspheres and rectanguiar solids
allows for a satisfactory representation of our world model
(shown in Fig. 2) with only 35 primitives. We expect that
the world model for a wide range of applications can be
represented with at most a couple of hundred primitives.

When primitives are used to construct more complex ob-
jects, such primitives may overlap, but no collision should be
reported. To handle this problem, the notion of compatible
primitives is introduced. Two adjacent primitives that make
up an object (such as consecutive links in a robot arm) will
never collide and thus are defined to be compatible. Due to
the small number of primitives required by our world model,
compatibility between primitives is represented by a two-
dimensional array in which the entry at row i and column j is
true if primitives i and j are compatible.and false otherwise.
Larger world models should use a more sophisticated approach
to storing compatibility information.

We now turn to the problem of collision avoidance. We wish
to detect imminent collisions, with the intention of avoiding
them. Thus, the safety system should issue a warning when two
primitives come “too close” to one another. During each time
step, we must check the current position of all primitives to see
if this has happened. When a certain distance between noncom-
patible objects is to be maintained, the standard technique for a
static environment is to extend each primitive by half the width
of the safety buffer in all directions. Since we are working with
a dynamic environment in which a few primitives move, but
most primitives are static, we instead extend moving primitives
by the full width of their safety buffer and do not extend
static primitives at all. An extended primitive is one that has
been enlarged to include its safety buffer. Whenever extended
(incompatible) primitives overlap, a collision warning can be

issued (the proper response to a collision warning is beyond the
scope of this paper). Criteria for determining the appropriate
safety buffer size will be discussed in Section IV.

To minimize the number of unnecessary intersection tests
between extended primitives during the collision detection
phase, an indexing scheme over the workspace is needed to
determine which extended primitives are close to each other
and which are not. The N-objects octree provides such an
index. Two extended primitives may intersect only if they
share a node in the N-objects octree. We have selected the N-
objects octree over other octree variants for efficiency reasons.
The standard region octree will require far too many nodes
to allow efficient update (as experienced by Roach and Boaz
[29]). The nonminimal division octree of Ayala et al. [1] and
the closely related polytree of Carlbom et al. [6], while an
improvement over the region octree, will likewise require
too many nodes and redundant intersections. We prefer the
approach of intersecting simple primitives analytically, with
the N-objects octree serving as an index to minimize the
number of intersection tests.

The N-objects octree (referred to hereafter simply as “the
octree”) consists of two types of nodes: internal nodes and leaf
nodes. Whether a particular volume in space is represented by
an internal node or a leaf node is time dependent. That is, a leaf
node may be split because of movements in the workspace and
thus becomes an internal node. The following record structure
in Pascal-like notation is used to represent both types of nodes.
Since our octree will be small and memory is not a bottleneck,
a node representation that is space inefficient -but minimizes
computing time has been chosen.

OctNode = record
{ Coordinates for corners of octant }
vertices : array[0..7] of Point;
{ Internal or leaf node }
isSplit : Boolean;
{ Pointers to node’s children }
children : array[0..7) of ]OctNode;
parent : |OctNode; { Node’'s parent }
{ Which child this node is of parent }
childNo : 0..7;
{ Number of primitives contained }
numObjs : integer;
{ Head of contained primitives list }
assocObjs : ObjList

end;

The first step in modeling the workspace is to build the
octree. We begin with the root of the octree as an empty
cube enclosing the workspace. Primitives are added to the tree
one at a time, and splitting is performed as directed by the
decomposition rule. The decomposition rule for our N-objects
octree is to split a node if more than N objects lie within it.
The value chosen for N is determined by the complexity of
the primitives supported and the denseness of the workspace,
although we found that our application is not sensitive to the
value of N (also see [25]). Fig. 3 shows a 2-D workspace
stored in an N-objects quadtree with N = 5.

Given a primitive and a node in which to insert it (initially
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Fig. 3. Decomposition for sample environment using a five-object quadtree.

the root), insertion proceeds as follows. If no part of the
primitive lies inside the node, then do nothing. If the node
is an internal node, then recursively insert the primitive into
each of the node’s children. If the node is a leaf and the number
of primitives already in the node is less than N, then add the
new primitive’s ID to the node’s object list. Otherwise, split
the node, inserting all of its primitives into the node’s newly
created children, and recursively repeat the insertion process
for the new primitive at each child. This split-insert process is
repeated until all leaf nodes contain no more than N primitives.
The following Pascal-like pseudocode formalizes the insertion
process.

{ Insert a primitive into a node. }
procedure InsertObj(objId: integer;
node: ]OctNode);
{ObjNodeIntersect returns TRUE iff the
primitive lies within the node.
AddObjToNode and RemoveObjFromNode
inserts and removes the primitive ID
from node’s object list, respectively. }
var child: Octant;
begin
if ObjNodelIntersect (objld,node)
then
if nodelisSplit then
for child := 0 to 7 do
InsertObj(objld,
nodelchildren( child])
else if nodelnumObjs< N
then AddObjToNode (objld,node)
else SplitInsert(objld,node)
end;

{ Recursively split and insert a primitive
into a node. }
procedure SplitInsert(objId : integer;
node :10ctNode);

var
objId: integer;
child: Octant;
begin

{ splitNode creates children and links
them to node }
SplitNode(node) ;
for each objld in nodelassocObjs do
begin
for child:=0 to 7 do
if ObjNodelIntersect(objld,
nodelchildren[ child])
then
AddObjToNode (objld,
node]children[child]);
RemoveObjFromNode (objld,node)
end; { for each objld in node }
for child:= 0 to 7 do
if ObjNodeIntersect(objld,
nodelchildren(child])then
begin
if nodelchildren{child) TnumObjs< N
then AddObjToNode (objld,
node]children[child])
SplitInsert(objld,
node] children[ child])

else

end
end;

Once the world model has been built, the safety system
operates as a continuous series of update/collision detection
cycles. At the start of each cycle, the system receives two sets
of joint angle values corresponding to the current configuration
of the two robot arms. These joint angles are measured relative
to a “home” position where every robot arm link is parallel
to a coordinate axis. Using these values, simple kinematic
nanﬁbnnaﬁonsareapphedtodemrnﬁnethecunentpoﬁﬁonof
each link in Cartesian space. For each arm, beginning with the
end effector and working backward toward the joint attached to
the base, we rotate each joint (and all joints dependent on it) to
the position specified by its corresponding joint angle. Rotating
a joint is performed by simply rotating the two end points
of the cylsphere that represents it. As a byproduct of these
transformations, the locations of objects currently attached to
the end effectors of the robot arms are also updated.

The second step in the update process modifies the octree
representation to reflect any changes in position of the robot
arms. Three possible approaches to updating have been consid-
ered. The naive approach is to completely rebuild the octree for
each cycle, checking for possibie collisions as each primitive
is inserted into the octree. This might be a good idea if a
large portion of the workspace changed during each cycle.
However, due to the short cycle time (30-60 ms) combined
with restrictions on robot arm speed, we expect only small
changes in position during each cycle. Such changes rarely
require modification to the octree since the updated primitives
rarely move to new octree nodes. A second approach is to
delete and reinsert moving primitives. This approach requires
modification of a relatively small portion of the octree, but will
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cause expensive and unnecessary merges and splits. Objects
move very small distances during a short cycle time, and thus
a moving primitive is frequently reinserted into the same nodes
from which it was deleted. However, when such a node and
its siblings contain N+1 primitives, the nodes will be merged
when the moving primitive is deleted from the octree, only to
be split again when the primitive is reinserted.

A more efficient update process changes the structure of the
octree only when changes in the workspace dictate. The tree
structure changes only when a primitive exits a node (causing
the primitive to be deleted from that node) or moves into a new
node (causing the primitive to be inserted). These events, in
conjunction with the decomposition rule, may cause nodes in
the octree to merge or split. Further, when an primitive enters
a new node, that node must be a neighbor of a node in which
it currently resides (this will be discussed further in Section
IV). Two nodes are considered neighbors if they share a face,
edge, or corner. With this approach, octree updates work
as follows. First, locate all nodes that the moving primitive
resided in before it moved. For each of these nodes locate all
of its neighbors using neighbor finding techniques described
by Samet [31]. If the primitive has moved into a neighbor
node, then insert it at that node and split if necessary. Upon
completion, check if the primitive has exited any of the nodes
it resided in before the move. If so, then delete the primitive
from such nodes and try to merge them with their siblings.

Optimization of the neighbor finding process results from
locating neighbors only in the direction of primitive motion.
In fact, often the number of neighbors processed can be
reduced to zero. If a moving primitive’s bounding box remains
completely within a single node, then there is no need to check
for entry into any of the neighboring nodes. This quick check
can save a significant amount of processing time, particularly
if many small primitives are moving (e.g., the fingers of a
gripper).

The amount of computation needed for an update when a
primitive moves into a neighboring node can be further re-
duced. When a primitive moves into a neighbor, the algorithm
described above will insert the primitive into that node and
perform any required splitting. If the neighbor is split, the
algorithm will attempt to recursively insert the primitive into
all of the neighbors’ children (and possibly their offspring).
Due to restrictions in robot motion, we only need to update
the part of the neighbor that lies closest to the original node.
So, the primitive is inserted into only the leaf descendents
of the neighbor that lie on the common face, edge, or corner
between the two nodes.

When a single primitive lies in many nodes, there will be
some overlap in the neighbors of these nodes. This presents
a problem for our algorithm because it will visit the same
neighboring node multiple times. For example, if a primitive
moves into a node X that is a neighbor to three of the nodes
in which it currently resides, then our algorithm will process
. X three times. In fact, it will insert the primitive’s ID into X’s
associated object list three times when only once is necessary.
Furthermore, two of the nodes in which a primitive lies can
be neighbors, causing the algorithm to add the primitive to a
node’s associated objects list in which it is already stored.
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To prevent such anomalies, we augment our algorithm to
mark all nodes that have been visited while moving a primitive.
Each node in the octree includes the field lastCheckNo, which
stores an integer denoting the last update during which this
node was visited. The variable ThisCheckNo is used to denote
the current time step. When a primitive moves, each node
that is processed has its lastCheckNo assigned the value of
ThisCheckNo. Before processing a node, we first check its
lastCheckNo to determine if it has been processed. If This-
CheckNo is equal to lastCheckNo, then the node is ignored.
After processing a primitive, ThisCheckNo is incremented
by one. Using an unsigned 32-b integer, ThisCheckNo will
reset to zero after 4294967296 updates. At this point, the
octree should be traversed and every node’s lastCheckNo
reset. Assuming a 50-ms cycle time with 14 updates of the
octree required during each cycle (all seven links of both arms
moved), this occurs approximately every six months during
continuous operation.

When a primitive moves, we must quickly locate what nodes
contain the primitive. This is done using location links. The set
of location links for a primitive is a linked list of leaf nodes in
the octree. Each primitive’s description contains a pointer to
one of the leaf nodes containing the primitive. This leaf node
in turn contains an object list entry with a pointer to another
leaf node in which the primitive lies. A sequence of links is
formed that includes every leaf node containing that primitive.
When a primitive enters a leaf node, the node is added to the
primitive’s location list. Similarly, when a primitive exits a
leaf node, the node is removed from the primitive’s location
list. During an update for a moving primitive, each node on
the primitive’s location list is processed.

The third step of the safety system cycle is collision
checking. After a primitive moves, all primitives in all nodes
that contain it are checked for possible collisions. In the octree,
multiple moving primitives may reside in the same node or a
moving primitive and a static primitive may share more than
one node. To eliminate any redundant intersection tests, we
keep track of which pairs of primitives have been checked
for collisions during the current cycle. Thus, a complete
intersection test between a pair of primitives will be performed
at most once (although our update algorithm may check several
times to see if a given pair has been tested). .

Intersection tests are an essential part of the collision
avoidance system. Tests between primitives are performed to
determine possible collisions. Tests between primitives and
nodes are performed to build and update the octree. Additional
primitives can be included by simply adding the appropriate
intersection tests. To improve the efficiency of all intersection
tests, a standard bounding box test is performed first in hopes
of quickly ruling out an intersection. For more complete details
on our intersection operations, see [16}. The following Pascal-
like psuedocode provides a more formal description of the
updating and collision detection process.

{ Update the octree when a primitive has
moved. }

procedure UpdateObj(objld : integer);

{ ObjId is the label for a primitive.
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Location of objld is a member of the
set of nodes containing that primitive.
ObjNodeIntersect determines if a
primitive lies in a node.
CollisionInNode determines if a
primitive collides with (intersects) any
of the primitives in a node, by simply
performing a primitive-primitive
intersection check against each such
primitive. GetUnCheckedNeighbors returns
a list of all neighbors of a node which
have not been visited during the current
update. BoundingBoxInsideNode determines
if a primitive’s bounding box lies
completely inside a node.
NeighborInDirection determines if a
neighbor lies in the direction of the
moving primitive. DeleteObjFromNode
removes a primitive’s association with a
node and performs any possible node
merging. }
var
location : 1OctNode; { A node in which
primitive resides }
neighbor : 10ctNode;
nbrs : NeighborList;
begin
ThisCheckNo := ThisCheckNo + 1;
{ Check intersections in node already
containing objld }
for each location of objId do begin
if CollisionInNode(objld, location)
then HandleCollision; { Send Warning }
locationTlastCheckNo := ThisCheckNo
end;
for each location of objld do begin
{ Check nodes objld moves into }
if not BoundingBoxInNode (objld,
location)
then begin
GetUnCheckedNbrs (location, nbrs);
for each neighbor in nbrs do
if NbrInDirection(neighbor) then
if ObjNodelntersect (objld,
neitghbor)
then UpdateNbr (objld, neighbor)
else neighborilastCheckNo :=

ThisCheckNo
end;
if not ObjNodelntersect(objld,
location)
then { Primitive moved out }

DeleteObjFromNode(objld, location)
end
end;

{ Update a node that a primitive has just
moved into. }

procedure UpdateNbr(objl/d : integer;
neighbor : 0ctNode);
var child : Octant;
begin
if neighbor]lastCheckNo <> ThisCheckNo
then begin
if neighborlisSplit then
for each child of neighbor on common
face, edge, or corner do
UpdateNbr (objld,
nodelchildren( child])
else begin
neighborlastCheckNo == ThisCheckNo;
if ObjNodelntersect (objld, neighbor)
then begin
if CollisionInNode(objld,
neighbor) then
HandleCollision { Send warning }
else if neighborinumObjs < N
then AddObjToNode(objld, neighbor)
else UpdateSplitInsert(objld,
neighbor)
end { if ObjNodeIntersect }
end { else }
end { for }
end;

{ Recursively split and insert a primitive
into a node during update. }
procedure UpdateSplitInsert(
objId : integer; node : [OctNode);
var
objId :
child :
begin
SplitNode(node);
for each objId in nodelassocObjs do
begin
for child := 0 to 7 do
if ObjNodelIntersect(objld,
nodelchildren [child])
AddObjToNode (objId,
nodelchildren [child]);
RemoveObjFromNode (objld, node)
end;

integer;
Octant;

then

for child := 0 to 7 do begin

nodelchildren[child)lastCheckNo :=
ThisCheckNo;

if ObjNodeIntersect (objld,
nodelchildren(child])
if nodelchildren(child] TnumObjs

then AddObjToNode (objld,
node(children[child])

else UpdateSplitInsert(objld,
nodelchildren{child])

then
<N

end;



156 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 2, APRIL 1992

IV. THE COMPLETENESS PROBLEM

Since our system checks for violations of primitives’ safety
buffers only at discrete time intervals, we must insure that
a collision cannot take place between consecutive checks.
“This is known as the completeness problem. This problem
is avoided by making the safety buffer wide enough so that
an imminent collision will be detected and appropriate action
taken regardless of when in the update/detection cycle of
the safety system that safety buffer violation occurs. The
converse problem is to determine, for a given safety buffer
size, how often imminent collision detection must take place.
In other words, how long can the cycle time be to insure
adequate coverage? For our application, we are concerned
solely with minimizing the cycle time since we anticipate a
microprocessor being dedicated to the safety system as part of
a larger distributed robot control system.

In a dynamic robotics environment, several factors affect the
minimum size of the safety buffer. First, the current position
of the arms (which in our case is indicated by the current joint
angles) must be passed from the controller to the safety system.
The safety system must recognize that a collision is about to
occur and issue a shutdown command. The controller must
then engage the breaks. Finally, the arm must actually stop,
which may in turn cause oscillations or bending in the arm.

Cycle times for the controller to propagate joint positions to
the safety system can vary widely between different hardware,
ranging from only a.couple milliseconds (the expected time
for the arms NASA intends to fly on the space station) to
typically 50 ms. (as required for NASA’s current test robots).
In our tests, our safety system requires 30—60 ms to issue the
shutdown command. The time to actually stop is in the 10-20
ms range at maximum speed. Thus, the tolerance value should
be based on the distance that the robot arm can move toward
an object in approximately 40 to 120 ms at maximum speed.
With maximum speed of the end effectors limited to 24 in/s,
which yields between a 1- and 3-in tolerance zone around each
moving primitive, depending on the values selected.

In a dynamic environment we may also wish to account
for the relative speeds of moving primitives. If a primitive is
moving at less than maximum speed, the minimum tolerance
for that primitive can be reduced. Our cylsphere representation
provides only an approximate model for the links of the arms
and in some cases is in error by more than 1 in. This is
close enough to the tolerance required at maximum speed
that the overhead incurred by changing the model for the
arms to account for varying speeds is unjustified. We use a
fixed tolerance for each arm such that at least 1.2 in of buffer
area beyond the approximated boundary of the robot arm is
provided by the cylsphere. This is an acceptable approximation
for our target environment since we do not expect that the
operator will ever intend to have two arms (or objects) within
less than 2 in of each other (the exception being when the
operator wishes to grasp an object). Changes in the width
of the tolerance zone should have little or no effect on our
algorithm’s performance. Note that since we sample positions
at specified times, it is still possible that the safety buffers of
two moving primitives may briefly overlap between cycles.

This does not present a problem since this does not represent
an imminent collision.

A fundamental assumption used by our update algorithm
is that a primitive cannot move through a node between
consecutive updates. If this were not true, then our premise
that between updates a primitive can move only into neighbor
nodes would no longer hold. Consider, for example, a primitive
that has moved out of a node, through one of its neighboring
nodes, and into the next nonneighboring node. The update
algorithm described in the previous section would recognize
that the primitive has moved into the neighboring node, but
not into the node beyond.

The maximum distance that an object can move in one cycle
is used to determine the minimum size for a leaf node. For
example, if the robot arm tip can move 1 in in an update cycle,
then the smallest node allowed in the octree would have an
edge length of 1 in. If during the splitting process a node with
this size is created, then we prevent any more splitting and
allow this node to exist without regard to the decomposition
rule. Since the minimum size of any primitive in the smallest
dimension is at least twice the tolerance value, it is also not
possible for a primitive to move into, through, and out of the
corner of a node in a single cycle. Thus, by placing a limit on
the minimum node size that is proportional to object speed,
we guarantee that all nodes containing a moving object are
checked for collisions.

The bounding cube used to enclose the entire workspace
of our test scenarios is 250 in wide in each dimension. The
robot arms themselves have a maximum reach of 75 in when
fully extended. While the minimum resolution for our octree
was calculated to be 1.95 in, during testing this level of
decomposition was never approached, in part due to the value
of N used [10].

V. EXPERIMENTAL RESULTS AND ANALYSIS

Our collision avoidance safety system was implemented us-
ing the C language, running under UNIX. All timing results are
for an Intel 80386 CPU with math coprocessor running at 20
MHz. Our algorithm was tested by first generating joint angles
using a robot simulation program. This program allowed us
to direct the two robot arms through a task within a three-
dimensional graphical model, sampling the robot arms’ joint
angles at discrete intervals, and storing them into a file. For
each task, the corresponding joint angle file was used as input
to our algorithm. The algorithm proceeds by first reading in a
block of joint angles. For each set of joint angles in the block,
kinematics are applied to produce the arm’s new position,
and the octree is updated. Whenever an imminent collision is
detected, the algorithm terminates, indicating which primitives
are about to collide. Upon completion, the algorithm reports
timing results.

Our tests consisted of three separate tasks using a fixed
workspace (shown in Fig. 2). Our workspace was modeled
after the test bed constructed at NASA’s robotics laboratory
at the Goddard Space Flight Center. The tasks consisted of
the two robot arms being navigated through the workspace to
simulate realistic operation. The first task was comprised of the
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left arm moving toward the box located on the table in front of
the robots while the right arm simultaneously positioned itself
above the box located on the table to the right. The second
task was similar to the first except that the left arm collided
with the table in front. The third task consisted of the right
arm colliding with the table located in front while attempting
to grasp the box lying on top of it. The tasks required 1000,
150, and 2000 cycles, respectively.

The average time per cycle (processing one complete set
of joint angles and checking for collisions) over the three
tasks was about 30 ms. However, the actual time for each
cycle varied depending on how many primitives moved during
that cycle. For example, all seven links of both arms moving
required more computation time then if a single link of one arm
was moving. This is because the first case requires updating
the octree 14 times (14 primitives have moved) whereas the
second case requires updating the octree only once. The time
required for each cycle of the algorithm was measured using
the system clock, which had a resolution of 10 ms. The
observed upper bound for the range of update cycle times
was under 60 ms.

Further data was collected on how much computation is
done by each part of the algorithm. About 28% of the compu-
tation time was devoted to performing the kinematics for the
robot arms. The kinematics algorithm that we implemented
was selected for its simplicity rather than its efficiency. A
more efficient algorithm could offer significant improvement.
The remainder of the computation time was used to update
the octree and check for intersections. About 27% of the
time was spent performing primitive—primitive intersection
tests and about 7% calculating rotation angles and bounding
boxes for moving primitives. Primitive-node intersection tests
required 13% of the time while retrieving neighbors took
about 7%. The remaining computation time was dedicated
to overhead incurred by other parts of the algorithm (ie.,
splitting, merging, etc.). In summary, kinematics, intersection
tests, and octree maintenance each required roughly one third
of the computation time.

Two characteristics of the N-objects octree that make it a
desirable representation for a collision avoidance system is
that it is compact and changes in its structure rarely occur.
The initial configuration of the octree representing our test
scenario (35 primitives) was split only two levels below the
root and contained 33 nodes, of which 29 were leaf nodes.
The average number of primitives in each nonempty leaf node
was about 5 (with N = 10), while 15 of the nodes were empty.
Each primitive resided in about two nodes on the average.
So the occupancy of each leaf node as well as the number of
nodes occupied by each primitive were both low. For the three
tasks used to test our algorithm, the average number of cycles
between a split or merge was around 600. Given a 30-ms cycle
time, this translates into once every 18 s.

In Section III, techniques for improving system performance
were discussed. In each case a positive effect on performance
was observed. To illustrate how fine tuning of the algorithm
can effect system performance, we compared computational
requirements with and without each technique incorporated
into the algorithm. Eliminating redundant intersection tests

between primitives decreased computation time by 4%. Cal-
culating the direction(s) of a moving primitive and updating
only neighbors in this direction reduced computation time by
8%. Checking if a primitive’s bounding box is completely
contained within a node (to preclude checking for movement
into the nodes’ neighbors) reduced computation time by 13%.
The use of bounding boxes to eliminate primitive—primitive
and primitive-node intersection tests had the most significant
effect by reducing computation time by 80%.

The decomposition rule for the N-objects octree is simply
“split a node if more than N objects lie within it.” A large por-
tion of the computation required by an octree update consists
of primitive-node and primitive—primitive intersection tests.
Primitive—node tests are needed to determine if a primitive
has moved into a new node. Primitive—primitive tests are used
to detect imminent collisions between primitives. The value
chosen for N directly affects the number of each type of
intersection test performed during an update. For example,
the choice of a small N causes the octree to decompose to
a much lower level than a large N. This deeper splitting, in
general, increases the number of nodes that a primitive lies in.
This in turn increases the number of neighbors that need to be
checked for possible entry.

On the other hand, if we choose a larger N, the octree is not
as deep and we have fewer nodes to process during the update.
However, since more primitives are allowed to share a node,
when a primitive moves, more primitive—primitive intersection
tests are required within the nodes to detect for possible
collisions. Thus, the value of N controls the relative amount
of each type of intersection test performed during an update.
Depending on the relative cost of performing primitive-node
and primitive—primitive intersections, the value chosen for N
directly effects system performance. If the cost of performing
a primitive—primitive intersection test is much more expensive
than the cost of a primitive-node intersection test then a large
value for N would optimize the update process.

Given the primitives supported by our representation and
the workspace of the robot arms, we have chosen a value of
10 for N. This value resulted in optimal performance given the
relative costs of primitive—node intersection tests (70 ps) and
primitive—primitive intersection tests (150 ps). Fig. 4 shows
how system performance varied for different values of N.
Although N = 10 provided the lowest average cycle time, this
number falls within a wide range of values providing similar
performance. Thus, we can be confident that a different task
or workspace would not require that a different value for N
be used.

A natural question to ask is how does the octree compare
in performance to the naive approach to intersection testing?
The naive algorithm is one that, when a primitive moves,
would check for possible intersections with all other primitives
in the world. The computation time for such an algorithm
grows in proportion to the number of primitives in the world
(assuming a constant number of primitives have moved). This
may be acceptable behavior if the computation cost for the
intersection tests is very low. The naive algorithm also does
not require as much overhead as the octree. For a sufficiently
simple workspace, the naive approach is more efficient than
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Fig. 4. System performance for different values of N in decomposition rule.

the octree. Conversely, the octree is more efficient for a more
complicated workspace. The question is, at what point does
the octree perform better? ;

The naive algorithm was implemented and tested with the
same three tasks described above. The number of primitives
in the robot’s workspace was varied, and timing results were
recorded. The same tests were repeated using the octree
version of the algorithm. Fig. 5 illustrates the behavior of the
two algorithms. The cycle times for both algorithms increased
as primitives were added to the workspace. In both cases
“though, the primitives were added into the immediate area
surrounding the two robot arms. Other primitives could have
been strategically placed in the workspace, which would have
no effect on the cycle time for the octree algorithm but
would still increase the cycle time for the naive algorithm.
For example, primitives could be placed in parts of the octree
where no updating takes place, in which case no increase in
cycle time would be observed. Thus, our testing was biased
against the octree method, yet the octree showed ever greater
performance gains over the naive method as the workspace
became more complex. In all tests, the octree was superior to
the naive method, even when only 15 primitives were used
(the two robot arms and one box).

A grid representation is similar to the octree in that it
provides a spatial index by partitioning the space into dis-
joint regions. Grid structures have been suggested for use
in performing geometric operations on large data bases [10],
[11]. A grid is overlayed onto the data, and for each grid
cell, a set containing each primitive that lies in that cell is
formed. Such a representation was implemented to minimize
intersection tests and compared to the octree approach. To
simplify implementation, the grid was represented as a three-
dimensional G x G x G array of octree nodes, where G

" was the number of cells along each dimension of the fixed-
size world. Updating was similar to octree updating with the
exception of finding neighbors. Finding the neighbors of a
node was simplified to acquiring the 26 surrounding grid
cells. To provide for a fair comparison, all of the performance
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Fig. 6. System perofrmance of grid algorithm as grid size (G) is varied.

Values are averaged over all 3 tasks.

enhancing techniques that were incorporated in the octree
implementation were also included in the grid implementation.
To test the grid implementation, we used our standard three
tasks and varied the value of G. Fig. 6 provides an illustration
of how the algorithm performed for different values of G. In
our tests, the best grid was slightly worse than the octree..
Although the grid representation is a simple one, it is a static
structure whose performance suffers when the distribution of
the geometric data it represents is not uniform. Furthermore,
choosing a good value for G may be difficult since the optimal
value can vary from task to task or even during a task.
Finally, we compared the N-objects octree to the more
traditional region octree. A region octree was implemented
using our world model of cylspheres and rectangular solids.
Using a resolution of 1.2 in (the same as that used for
the N-objects octree), the number of leaf nodes needed to
represent the scenario model was around 30 000. The upper
six links of both robot arms required a total of about 3000
leaf nodes. Given that these 12 links moved during a typical
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cycle, it is inconceivable that updating 3000 nodes on today’s
microprocessors could be done in real time (i.e., within a
30-60 ms time span). »

The performance of the N-objects octree is directly af-
fected by the number of stationary and moving primitives in
the workspace. When a stationary primitive is added to the
workspace, it may increase the algorithm’s cycle time in a
number of ways. The new primitive may cause the octree to
split, in which case the algorithm may be required to process
more nodes during an update. The primitive may also share
a node with a moving robot arm, increasing the number of
intersection tests performed during an update. On the other
hand, the primitive may be added in an area not close to a robot
arm, in which case no effect on cycle time will be observed.
In general, stationary primitives only increase cycle time if
they are included in nodes that also contain moving primitives.
Thus, the number of stationary primitives affecting cycle time
is closely related to the percentage of nodes containing moving
primitives.

Adding a moving primitive, for example, another robot arm,
will have a more predictable effect on cycle time. In a given
cycle, every moving primitive in the workspace causes the
octree to be updated with respect to that primitive. When
the number of moving primitives in the world is doubled,
we would expect the time needed to update the octree to
also double (assuming that the moving primitives make up a
reasonably small percentage of the total number of primitives).
If, for example, we wish to increase the number of primitives
used to represent a robot arm, a corresponding increase in
cycle time should result. This behavior was observed during
our testing, when cycle time was proportional to the number
of links that moved during that cycle.

VI. CONCLUSIONS AND FUTURE WORK

With the expanded use of tele-operated robots in space,
manufacturing, and the nuclear industry, the problem of col-
lision avoidance has become more important. Providing a
mechanism to ensure safe operation of robots is of high
priority, given the consequences of accidentally damaging
expensive robotic equipment or nuclear waste containers. The
goal of our research was to provide such a mechanism, with
the specific application studied for testing purposes being the
operating bay of NASA’s proposed manned space station.
A collision avoidance system must be efficient enough to
provide timely information about possible collisions, reliable
enough to not miss any imminent collisions, and usable enough
so as not to hinder normal operations. The N-objects octree
representation presented here meets all of these requirements.

The algorithm we have presented is suited to a variety of
different applications in robotics where a collision avoidance
capability is needed. However, there are some restrictions on
the kinds of problems to which our system can be applied.
Information about the robots and their workspace must be
available to the system in the form of a geometric model using
supported primitives. Thus, the shape of the workspace must
be suited to such a representation. If information about the
workspace is known a priori, then it can be manually entered

by the user. Otherwise, some form of sensing is required
so that the system may acquire this knowledge. Position
information about moving objects is needed by the system
in order to maintain the model. Joint angles were used in our
application of the system to tele-operated robots. However, if
somebody walks into the robot’s work area and moves a box,
its new position must be made available to the system.

To obtain real-time performance, some sacrifices were nec-
essary in terms of the accuracy of our model. The system is
well suited for an application where an approximate model
is acceptable. If greater accuracy is required, other primitives
may be selected that better represent the workspace (possibly
at the cost of more expensive intersection tests), or more
primitives may be used (at the cost of more intersection tests).
We also require that no primitive will move into, through, and
out of a node in a single cycle. This is guaranteed due to
the use of a tolerance zone to extend the size of primitives
and a minimum limit to octree node size. Since our cycle
time is so short, both the resulting tolerance zone and the
minimum node size should be reasonable in practice. Finally,
if a large number of primitives are moving, cycle times will
likely increase beyond acceptable limits. On the other hand,
a small number of moving primitives can likely operate in
real time even with a relatively large number of stationary
primitives.

The octree provides a flexible means for indexing three-
dimensional space in that it easily supports dynamic modeling
of robot arms. If we wish to change the model of the arm
based on the type of task it is performing, we simply delete
the model of the old arm from the octree and insert the new
model. For example, when an arm is performing gross motions
the entire gripper could be represented, for efficiency reasons,
as a single primitive that completely encloses it. However,
when the gripper is being used to grasp an object, a more
detailed model is desired. This capability is supported by
deleting the coarse model and inserting the detailed model
at the appropriate time. In the same manner, the octree also
provides for changing the model of the arm based on how fast
it is moving (although our test application did not require this
capability). Similarly, tolerances for the arm may be related
to the mass of a grasped object (since mass affects stopping
time—a major factor in safety buffer size).

The N-objects octree could also serve as the underlying
representation for a robot planning system, as has been pro-
posed for the region octree in [12], [15], [27], [29]. Using a
generate-and-test paradigm, the N-objects octree could serve as
a means of determining if a given plan would be collision free.
Alternatively, the N-objects octree could be used as a search
space for a robot planning system. Using octree traversal
techniques, the planner could search the octree itself for a
collision-free path.

There is still much work to be done in the field of tele-
operated robotics. The final goal is to allow for very high-
level human control. The limitations of current hardware
and software technology prevents us from reaching this goal.
However, the need still exists for real-time collision avoidance
and safety systems to meet the operational requirements of
today. The octree has proven to be a uscful data structure both
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developing current systems and researching systems for
future.
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