
COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 37,402-419 (1987)

Optimal Quadtree Construction Algorithms *

CLIFFORD A. SHAFFER AND HANAN SAMEY

Computer Science Department and Center for Automation Research, University of Maryland,
College Park, Maryland 20742

Received December 11,1985; revised April 4,1986

An algorithm is presented that builds a quadtree in time proportional to the number of
blocks in the image. In particular, this algorithm constructs a linear quadtree from a raster
image stored on disk in time proportional to the number of nodes in the output quadtree plus
the (relatively minor) amount of time to read the input data. Empirical tests show that for
typical 512 x 512 pixel images, the new algorithm results in an order of magnitude or better
improvement over traditional algorithms which insert each pixel separately and require a
merge routine to form larger nodes. These traditional algorithms have an execution time that is
proportional to the number of pixels in the image. Thus, when using the number of insertions
into the output quadtree as a metric, our algorithm is optimal to within a constant factor. The
algorithm is also adapted to build a pointer-based quadtree, again without a need to merge any
nodes. 0 1987 Academic Press, Inc.

1. INTRODUCTION

Hierarchical data structures are important representations in the domains of
computer vision, robotics, computer graphics, image processing, pattern recognition,
and geographic information systems. One such data structure is the quadtree.
Today, the term quadtree is used in a general sense to describe a class of data
structures whose common property is that they are based on the principle of
recursive decomposition of space. In this paper we are concerned with the region
quadtree as defined by Klinger [6] and will use the term quadtree to refer to it.
Figure 1 is an example of a region and its corresponding quadtree. For a compre-
hensive survey of quadtrees and related hierarchical data structures see [16].

Quadtrees are of interest, in part, because they enable the solution of problems in
a manner that focuses the work on the areas where the information is of the greatest
density. For many problems, the amount of work that is required is proportional to
the number of aggregated units (e.g., blocks) rather than to the actual size of the
aggregated units (e.g., the number of pixels in a block). As such they have the
potential of leading to execution time efficiency. Nevertheless, building a quadtree
from a raster representation requires that every pixel of the raster be examined.
Thus most quadtree building algorithms execute in time proportional to the number
of pixels in the image. This can be rather costly especially if the image is large and is
represented on disk.

In many real world applications, the images may be so large that the space
requirements of their quadtree representation exceed the amount of memory that is
available. The result is that the images must be stored on disk with portions of the
data processed in core as needed. There are two reasons why the traditional
pointer-based quadtree structure is considered inappropriate for such applications.

*The support of the National Science Foundation under Grant DCR-8605557 is gratefully a&no~l-
edged.

402
0734-189X/87 $3.00
Copyright 0 1987 by Academic Press. Inc.
All rights of reproduction in any form resewed.

OI’TIMAL QUADTREE CONSTRUCTION ALGORITHMS 403

a b

d

F G H I J

37363940 57565960

FIG. 1. A region, its binary array, its maximal blocks, and the corresponding quadtree: (a) region; (b)
binary array; (c) block decomposition of the region in (a) (Blocks in the region are shaded.); (d) Quadtree
representation of the blocks in (c).

First, a large portion of the pointer-based quadtree’s storage space is taken up by
GRAY nodes and pointers-i.e., a pointer to the node’s father and four pointers to
its sons. Since I/O time is a major factor in the execution time of disk-based
algorithms, it is desirable to reduce the storage space required by the image if
possible. Second, individual leaf nodes within a pointer-based quadtree are located
by following a chain of pointers from the root to the desired node, which requires
many pointer dereferences for large images. As there may be little relationship
between the ordering of nodes in the tree and their ordering on the disk, this can
lead to an intolerable number of disk accesses when searching and updating the tree.

The linear @tree technique [l, 51 has gained increasing use as it partially
alleviates both of these problems. In fact, it is currently being used to store maps in
an experimental geographic information system at the University of Maryland [ll,
12, 15, 17, 18, 22, 231. Usage of variants on the linear quadtree is reported by a
number of researchers [7, 9,181. In the linear quadtree, each leaf node is assigned a
unique locational code corresponding to a sequence of directional codes that locate
the leaf along a path from the root of the tree. This collection is usually represented
as a list whose elements appear in increasing order of locational codes. Such an
ordering is useful because it is the same order in which the leaf nodes of a
pointer-based quadtree would be visited by a depth-first traversal.

When using the,quadtree image representation, many functions such as area and
perimeter computation can be performed by traversing the input tree(s), performing
a computation at each node, and (for some functions) producing an output tree. For
such algorithms, the underlying mechanism for storing the linear quadtree may
safely be ignored; such considerations may indeed obscure presentation of the

404 SHAFFER AND SAMET

algorithm. For many other algorithms, however, attention should be focused on
utilizing linear quadtrees efficiently from the standpoint of minimizing disk accesses
and the time spent making updates. Often, little thought is given to the issues of
organizing the linear quadtree or to the cost involved in searching and updating the
node list. As an example, consider Gargantini’s original algorithm for determining
the neighbor of a given node in an image stored as a linear quadtree [5]. This
algorithm alters the address of the query node (i.e., its locational code) by changing
the appropriate digits of the address to match the address of the desired neighbor in
a manner reminiscent of Samet’s algorithm for neighbor-finding in pointer-based
quadtrees [14]. In actuality, Gargantini’s algorithm computes the value of the
locational code for the desired neighbor, without taking into account the fact that a
search for this locational code must subsequently be made in the node list to locate
the actual node. In practice, computing locational codes of nodes takes only a small
fraction of the total execution time required by a linear quadtree-based program.
Searching and updating the node list usually takes up the vast majority of execution
time.

In this paper, we show that the quadtree construction process can be achieved in
time proportional to the number of blocks in the image. In particular, we present an
algorithm for building a linear quadtree from a raster image stored on disk in time
proportional to the number of nodes in the output quadtree plus the (relatively
minor) amount of time to read the input data. For typical 512 x 512 pixel images,
the new algorithm results in an order of magnitude or better improvement over
traditional algorithms which insert each pixel separately and require a merge routine
to form larger nodes. We also adapt this algorithm to build a pointer-based
quadtree, again without a need to merge any nodes.

The remainder of this paper is organized as follows. Section 2 reviews the linear
quadtree with an emphasis on a particular implementation as well as a cost metric
for evaluating algorithms that operate on linear quadtrees. Section 3 presents a new
algorithm for building linear quadtrees from raster arrays. Section 4 contains our
conclusions.

2. IMPLEMENTING LINEAR QUADTREES

When constructing a linear quadtree, we assume that every pixel in the underlying
array of the digitized image has been assigned an address value (i.e., its locational
code). The addressing schemes commonly used are variations on that suggested by
Morton [8] for use in indexing maps in the Canada Geographic Information System
[3]. Such schemes are thus sometimes referred to as Morton sequencing. Their
application to quadtrees was independently realized by Gargantini [5] and Abel and
Smith [l]. Morton sequencing makes use of an addressing scheme which is equiv-
alent to interleaving the bits of the binary representation for the x and y coordi-
nates (each represented by a fixed number of digits) of that pixel. For example, in
Fig. 2, a 3 bit binary representation for the row and column coordinates is indicated
along the bottom and right sides of an 8 x 8 array. The locational code of each
pixel is formed by bit interleaving such that the y bit precedes the x bit at each
position. In Fig. 2, these pixel addresses are represented prith base 4 digits (i.e.,
each x and y bit pair correspond to a single base 4 digit). When the addresses of the
pixels are sorted in increasing order, the result is equivalent to a depth-first traversal
such that quadrants are visited in the order NW, NE, SW, and SE.

OPTIMAL QUADTREE CONSTRUCTION ALGORITHMS 405

FIG. 2. The Morton-code address scheme for labeling pixels.

Given the above method for addressing pixels, we can in turn generate node
addresses by declaring that each node will be given the address of the least valued
pixel contained within the block it represents. Figure 3 shows the block decomposi-
tion for the image in Fig. la with each block given the address (in base 4) of the
least valued pixel contained within that block. Note that the node in the NW
quadrant of the image in Fig. 3 has a 0 value in the first position (indicating a NW
branch), all nodes in the NE quadrant have a 1 in the first position, etc. Actually,
this method of addressing blocks is inadequate as there is no indication of the
block’s size. However, this inadequacy can be remedied in a number of ways, one of
which is to append the level at which the block is found to the address. Regardless
of the method used to address quadtree blocks, the list of quadtree blocks is kept
sorted in increasing order of their locational codes.

Given this sorted list of quadtree blocks, some means must be found to organize
it so that insertions, deletions, and node searches may be performed efficiently. In
addition, it is important that the organization method lend itself to off-line storage
of large images. The B-tree [4] is a data structure that meets these requirements.

100 110

000

120 130

320 321
220 230 de 330

322 323
i /

FIG. 3. The Morton-code addresses for the blocks of Fig. 1,

406 SHAFFER AND SAMET

B-trees are very efficient in that the number of accesses necessary to retrieve a given
key from secondary storage is kept low. This’is partly because the tree is always
balanced, and partly because the branching factor is very high. Both Abel [2] and
Samet et al. [18] use a linear quadtree encoding in conjunction with B-trees to store
images.

Since the linear quadtree is disk based, with only a small portion of an image in
core at any given instant, the time spent moving segments of the image to and from
the disk is an important factor. Comer [4] states that the majority of the time spent
in manipulating B-trees is accounted for by I/O. A buffer pool can help reduce the
I/O time. The amount of time spent searching for a key within a given B-tree page
is also an important factor. For algorithms such as the naive building algorithm (see
NAIVE-BUILD in the next section), about 98% of the execution time may be
taken up by these parts of the system. Comer uses the number of page fetches as a
metric for B-tree analysis which, for a given key search, is related to the number of
nodes stored. No more than d pages need be searched in the B-tree, where d is the
depth of the tree. This depth will be the same for all keys as the tree is balanced. As
each B-tree page must be at least half full, the depth will be about log, N, where k is
the number of keys in a page and N is the number of nodes in the B-tree. For
example, in our implementation each B-tree page consists of 1024 g-bit bytes-large
enough to contain 120 quadtree nodes. The depth caMot be greater than 4 for a
4096 X 4096 image even when each node represents a single pixel (i.e., a complete
quadtree). Unfortunately, both the amount of time and the number of page fetches
spent in a particular quadtree operation (e.g., insertion, deletion, or search) is
difficult to compute. This execution time analysis is complicated by the fact that the
desired page may be in the bul-Ier pool, with no I/O being necessary. In some cases,
insertion of a quadtree node can cause a block to be split many times, thereby
causing many additional nodes to be stored in the B-tree. Other insertion operations
may cause no such node splitting.

In the remainder of this paper, we will use the following definition for the insert
function. If the leaf to be inserted, say L, corresponds to several smaller leaves in
the node list, then these smaller leaves will be replaced by L (e.g., node A of Fig.
4b). If L corresponds to a leaf of identical size, then the color of the existing leaf
will be changed to the value of L; merging may result (e.g., node E in Fig. 4c). If L
is part of an existing leaf of the same color, then no change will be made in the node
list (e.g., the dashed portion of Fig. 4d). If the leaf to be inserted is part of a larger
existing leaf of a different color, then the existing leaf will be divided into
appropriate quadrants, subquadrants, etc, until a leaf of the same size is created
whose color is changed to the value of L (e.g., node Bl of Fig. 4e). Thus, a single
insert can add or remove many nodes from the quadtree.

Given a disk-based B-tree implementation for linear quadtrees, we would like to
find a method for calculating the complexity of an algorithm. A common quadtree
analysis metric is the number of nodes of the quadtree that are visited when
performing the operation (e.g., [lo, 14, 21, 241). Operations performed on the linear
quadtree are quite different from operations performed on pointer-based representa-
tions. Many pointer-based algorithms involve a procedure known as neighbor-find-
ing. Neighbor-finding in pointer-based quadtrees is done by ascending father links
to the nearest common ancestor of the node and its neighbor, then descending the
tree to the neighbor. As shown in [14, 211, on the average this cost is constant and

OPTIMAL QUADTREE CONSTRUCTION ALGORITHMS 407

a

FIG. 4. The effects of node insertion: (a) An example block decomposition; (b) the result of inserting
a large BLACK node covering the SE quadrant of (a): merging occurs; (c) the result of inserting a
WHITE node at node Fof (a): F, G, H, and I merge; (d) the result of inserting a small BLACK node in
the upper left comer of node B in (a): no splitting occurs; (c) the result of inserting a small WHITE node
into the upper left comer of node B in (a): splitting occurs.

hence is not dependent on the depth of the nodes in the tree. In contrast, for linear
quadtrees, neighbors are found by computing the address of the desired neighbor,
and then locating the actual node in the list; this requires a search. Whether the
node is a neighbor of the most recently located node, or unrelated to it, the node
finding cost is still that of a single search. Not surprisingly, the two operations
which consume the most time when manipulating linear quadtrees are node search
and node insertion. Moreover, a node insertion is usually preceded by a node
search. Assuming that the cost of inserting a node is constant, a reasonable metric
for algorithm complexity is obtained by simply adding the number of node searches
to the number of node insertions.

3. AN OPTIMAL RASTER TO QUADTREE ALGORITHM
FOR LINEAR QUADTREES

The naive algorithm for converting a raster image to a linear quadtree is to insert
individually each pixel of the raster image into the quadtree in raster order. Those
pixels making up larger nodes will be merged together by the quadtree insert
routine. Previous algorithms presented in the literature [ll, 131 have worked on this
principle. Attempts at increasing efficiency concentrated on how to improve the
insert routine. Procedure NAIVE-BUILD given below demonstrates the naive
method. Table 1 contains the execution times of such an algorithm when applied to
six test maps. The timings are nearly identical for raster images with the same

408 SHAFFER AND SAMET

TABLE 1
Naive Quadtree Building Algorithm Statistics

Map
name

Floodplain
Topography
Landuse
Center
Pebble
Stone

Num
nodes

Num
inserts

Time
(S)

5266 18oooo 413.2
24859 18OGUO 429.8
28447 18oooo 436.7
4687 262144 603.8

44950 262144 630.1
31969 262144 629.5

number of pixels (and thus, node inserts), regardless of the number of nodes in the
eventual quadtree. In other words, we see that the number of nodes in the output
tree has little or no effect on the time required to perform the algorithm. Note that
for the naive building algorithm, the amount of time needed to read the picture data
is approximately 1% of the time necessary to insert every pixel.

procedure NAIVE~BUILD(INPIC,R,C,N,OUTTREE);
/ * Build a quadtree in OU’ITREE corresponding to input picture INPIC using a

naive quadtree building algorithm that inserts each pixel individually into the
quadtree. The input picture has R rows and C columns and the output
quadtree will be of maximum depth N (i.e., a 2N x 2N image). */

begin
value picture pointer INPIC; / * INPIC points initially to the first row */
value integer R,C,N;
reference qua&me pointer OUTTREE;
row BUFF[l:C];
integer ROW, COL;

forROW~1stepluntilRdo
begin / * Process each row of the picture in sequence */

GET-ROW(INPIC,BUFF);
for COL 4- 1 step 1 until C do
INSERT(OUTTREE,MAKE~NODE(COL,ROW,1,BUFF[COL]));

end;
end;

Considering the large number of pixels in the raster representation of an image in
comparison to the number of nodes in the quadtree representation for that image, it
would be desirable to find an algorithm which can reduce the number of node
insertions required. An optimal algorithm would, in the worst case, make a single
insertion for each node in the quadtree. Procedure FAST-BUILD given below has
this worst-case behavior. It is based on processing the image in raster-scan (top to
bottom, left to right) order. An important point is that the largest node for which
the current pixel is the first (upper leftmost) pixel will be inserted whenever an
insertion is required. Such a policy will avoid the necessity of merging since the
upper leftmost pixel of any block is inserted before any other pixel of that block.

OPTIMAL QUADTREE CONSTRUCTION ALGORITHMS 409

This makes it impossible for four sibling blocks to be of the same color since the
insert function will not break up a node of color C when an attempt to insert a
subquadrant of color C is made.

At any point while the quadtree is being constructed, there is a processed portion
of the image (corresponding to those pixels already scanned), and an unprocessed
portion. Both the processed and the unprocessed portions of the quadtree have been
assigned to nodes. If it were possible to know the current value of all unprocessed
pixels in the tree, then it would not be necessary to insert a pixel with color C for
which a previous largest-node insertion has already set the containing node for that
pixel to C. We say that a node is active if at least one, but not all, pixel cuuered by
(i.e., contained in) the node has been processed. The optimal quadtree building
process must keep track of all these active nodes. Note that there are no active
nodes at level 0. Given a 2” x 2” image, an upper bound on the number of active
nodes is 2” - 1 as shown by the following theorem.

THEOREM 1. Given a 2” x 2” image, at any time during a raster-scan building
process in which the largest node possible is always inserted, at most 2” - 1 nodes will
be active.

Proof Any given pixel can be covered by at most n active nodes-i.e., a node at
each level from 1 to n (corresponding to the root). At any given instant, there can be
at most 2”-’ active nodes at level 1 (i.e., nodes of size 2 X 2). This is true because,
for any given column, only one node at level 1 will be active, giving at most a solid
line of 2 x 2 active nodes along a row just processed. In a like manner, there will be
at most 2”-2 active nodes at level 2, and so on with 2”-’ active nodes at level i up
to a single active node at level n (the root). Thus, there will be at most Xy:J2i
= 2” - 1 active nodes. 0

Using the above theorem, a quadtree building algorithm which is optimal to
within a constant factor is derived below. Assume the existence of a data structure
which keeps track of the active quadtree nodes. For each pixel in the raster scan
traversal, do the following. If the pixel is the same color as the appropriate active
node, do nothing. Otherwise, insert the largest possible node for which this is the
first (i.e., upper leftmost) pixel, and (if it is not a 1 X 1 pixel node) add it to the set
of active nodes. Remove any active nodes for which this is the last (lower right)
pixel. Procedure FAST-BUILD works in such a fashion. The list of active nodes,
referred to as the active node table, is represented by an array, called TABLE, with
2” - 1 entries to store all potentially active nodes. TABLE is implemented as a
table of records of type ACTIVE that contains the relevant information. TABLE[l]
stores the root active node (i.e., at level n), TABLQ2] and TABLEl3] store the two
active nodes at level n - 1, the next four entries store the active nodes at level
n - 2, etc. Given a pixel in column j, the value of the active node at level i is found
at position 2”-’ + j/2’ in TABLE. Note that shift operations can be used instead of
divisions if speed is important.

The only remaining problem is to locate the smallest active node in the table
which contains a specified pixel. For a given pixel P in a 2” X 2” image, as many as
n nodes containing P could be active. Multiple active nodes for a given pixel arise
whenever a node is split to accommodate the insertion of a pixel having a color
different from that previously associated with the node (e.g., after inserting pixel 3

410 SHAFFER AND SAMET

b

FIG. 5. Node insertion can create multiple active nodes: (a) node A is active after inserting a single
pixel of color C; (b) the first two pixels have color C. Pixel 3 has color D. Its insertion creates active
node B.

in Fig. 5b). Each pixel will have the color of the smallest active node which contains
it, since the smallest active node will be the one most recently inserted. Finding the
smallest active node that contains a given pixel can be done by searching, for a
given column, from the entry in the table representing the lowest level upwards until
the first non-empty entry is found. However, this is time consuming since it might
require n steps. Therefore, an additionaI l-dimensional array, called LIST and
referred to as the access array, is maintained to provide a pointer to the current
active node in TABLE. LIST contains 2”-’ records. While processing a given row,
for a pixel in column j, the LIST entry at j/2 indicates the entry of TABLE
corresponding to the smallest active node containing that pixel. At the begknkg of
the algorithm, each entry of LIST points to TABLQl] (i.e., the entry in TABLE
corresponding to the root). As active nodes are inserted or completed (and are to be
deleted from the active node table), both the active node table and the access array
are updated.

record ACTIVE
begin

color VALUE;
integer DEPTH;
record ACTIVE pointer FATHER;

end;

procedure FAST-BUILD(INPIC,R,C,N,OUTTREE);
/ * Build a quadtree in OUTTREE corresponding to input picture INPIC using a

quadtree building algorithm that inserts the largest node for which the
current pixel is the first (i.e., upper leftmost) pixel. The input picture has R

OPTIMAL QUADTREE CONSTRUCTION ALGORITHMS 411

rows and C columns and the output quadtree will be of maximum depth N (i.e., a
2N x 2N image). Type row is an array of type color where color takes on the values
NOCOLOR, BLACK and WHITE. */

bin
value picture pointer INPIC;
value integer R,C,N;
reference quadtree pointer OUTTREE;
row BUFF[O:C - 11;
record ACTIVE array TABLQ1:2 t N - 11;
record ACTIVE pointer array LISnO:2 t (N - 1) - 11;
record ACTIVE pointer CURRACT, pointer NEWACT;
integer ROW,COL,J,DEPTH,XT,YT,T;

TABLfll] + {‘ WHITE’,N,TABLQl]};
for J + 0 step 1 until 27(N - 1) - 1 do LIST[J] + TABLE[l];
/ * Process the picture: */
for ROW * 0 step 1 until R - 1 do
begin

GET-ROW(INPIC,BUFF); / * Process one row at a time */
for COL + 0 step 1 until C - 1 do / * Process each pixel in the row */
begin

CURRACT + LISqCOL/2]; / * Find smallest active node containing
pixel */

if VALUE(CURRACT) # BUFF[COL] then
begin / * The pixel and the node containing it differ in color */

/ * Calculate depth of largest node for which this is tirst pixel */
XT + COL;YT + ROW;DEPTH + 0;
while even(XT) and even(YT) and (DEPTH < N) do

begin
XT +- XT/2; YT + YT/2; DEF’TH + DEPTH + 1;

end;
if DEPTH f 0 then

begin / * Largest node containing the pixel is larger than 1 x 1 */
/ * Update the active node table and the access array */
/ * NEWACT (a pointer) is set to the appropriate entry in TABLE

(a record) */
NEWACT + address(TABLq2 t (N - DEPTH) +

COL/2 t DEPTH]);
VALUE(NEWACT) + BUFF[COL];
DEPTH(NEWACT) * DEPTH;
FATHER(NEWACT) + CURRACT;
CURRACT + NEWACT;
for J + COL/2 step 1 until COL/2 + 2 t (DEPTH - 1) - 1 do

LIST[J] + NEWACT;
end;

INSERT(OUTTREE,
MAKENODE (COL,ROW,DEPTH,BUFF[COL]));

412 SHAFFER AND SAMET

end;
if mod(ROW + 1,2 t DEPTH(CURRACT)) = 0 and

mod(COL + 1,2?DEPTH(CURRACT)) = 0 then
begin / * The last pixel of one or more active nodes */
T + DEPTH(CURRACT);
while mod(ROW + 1,2TDEFTH(CURRACT)) = 0 and

mod(COL + 1,2 t DEFTH(CURRACT)) = 0 do
begin / * Pop up to father */

T +- DEPTH(CURRACT);
CURRACT +- FATHER(CURRACT);

end;
for J +- COL/2 step - 1 untit COL/2 - 2 t (T - 1) + 1 do

LIST[J] + CURRACT; / * Update access array */
end;

end;
end;

end;

Table 2 contains timing results produced by applying an algorithm based on
FAST-BUILD to the same test maps as were used in Table 1. As indicated in
Table 2, the new algorithm often requires far fewer calls to the insert routine than
the number of nodes in the resulting output tree because some calls to insert force
node splits to occur, thereby increasing the number of nodes in the tree. This is all
accomplished by procedure INSERT whose code is not given here as it is implemen-
tation dependent. For example, consider Fig. 4e where node B (from Fig. 4a) is
replaced by node Bl with a new value along with 3 other nodes (B2, B3, and B4)
retaining B’s value. However, only one new active node is created (Bl j as the
remaining pixels are still covered by the original active node (B). When the time
comes to process the pixels covered by those blocks which are artifacts of the
splitting process (B2, B3, and B4), these pixels may have the same value as B, and
thus no additional insertion is required. As another example, consider Fig. 5 where
the processing of pixel 3 causes the insertion of node B into the quadtree containing
a single node resulting in the creation of seven nodes. If the first pixel inserted into
node X were to be the same color as the original node (A of Fig. 5a), then no
insertion is required.

TABLE 2

Optimal Quadtree Building Algorithm Statistics

Map
name

Num
nodes

Num
inserts

Time

(9

Floodplain 5266 2352 13.8
‘Wwwhy 24859 12400 51.2
Landuse 28447 14675 56.9
Center 4687 2121 16.1
Pebble 44950 20770 111.0
Stone 31969 14612 70.2

Pixel

(O*O)
~2~4)
(276)
(335)
(3*7)
(433)
(4.4)
(592)
(5,3)
(63 2)
(6.6)
(7.3)
(795)
(7.7)

OPTIMAL QUADTREE CONSTRUCTION ALGORITHMS

TABLE 3
Trace Table for Active Nodes in Building Example

Action

insert WHITE node A
insert BLACK node B
insert BLACK node C
remove B from active
remove C from active
insert BLACK node D
insert BLACK node E
insert BLACK node F
insert BLACK node G
insert BLACK node H
insert WHITE node I
remove H from active
insert WHITE node J
remove I, E, A from active

Size

8X8
2x2
2x2

1x1
4x4
1x1
1x1
2x2
2x2

1x1

Active nodes by level
3 2 1

A
A B
A BC
A c
A
A
A E
A E
A E
A E H
A E HI
A EI
A EI

413

As an example of how the new quadtree building algorithm works, let us consider
how the quadtree corresponding to the image of Fig. 1 is constructed. Table 3 traces
the active nodes at each stage of execution. Each row in Table 3 lists the active
nodes after the given pixel has been processed. The pixel identifier (a, b) means that
the pixel is in row a and column b relative to an origin at the upper left corner of
the image. When the first pixel of the array is processed, the entire quadtree is
represented by a single WHITE node (block A in Fig. 6a). No other insertions occur
while processing rows 0 and 1. When the first BLACK pixel (2,4) is processed,
block B of Fig. 6a becomes active. When BLACK pixel (2,5) is processed, block B
will be located in the active node table, since it is the smallest active node
containing that pixel. When BLACK pixel (2,6) is processed, block C of Fig. 6b
becomes active, since only active WHITE block A contains it at that point. As row
3 is processed, blocks B and C are deactivated when their lower right pixels are
processed. When pixel (4,4) is processed, the state is as shown in Fig. 6c. The blocks
previously labeled B and C are not active. Pixel-sized block D at (4,3) is not active
since it contains no unprocessed pixels. Blocks A and E are, therefore, the only
active blocks. Figure 6d shows the state of the algorithm when pixel (6,6) has been
processed. Block H became active after processing pixel (6,2). Since the smallest
block containing pixel (6,6) had been BLACK, a new WHITE block has been
activated (block I). Thus, three active blocks (i.e., A, E, and I) contain pixel (6,7),
with the smallest being block I. As the final row is processed, all active nodes will
be deactivated once the SW son of E has been split to enable the insertion of a
WHITE node corresponding to the pixel at (7,5).

In order to understand why FAST-BUILD is such an improvement over
NAIVE-BUILD, let us analyze the cost of both algorithms in terms of the number
of insert operations which they perform. NAIVE-BUILD examines each pixel and
inserts it into the quadtree. Assuming a cost of I for each insert operation, and a

414 SHAFFER AND SAMET

FIG. 6. The construction process for the image of Fig. 1: (a) state after processing pixel (2,4); (b)
state after processing pixel (2,6); (c) State after processing pixel (4,4); (d) State after processing pixel
66).

cost of c for the time spent ex amining a pixel, the total cost is then 2’” . (c + I).
FAST-BUILD must also examine each pixel. However, there will be at most one
insert operation for each of the N nodes in the output quadtree. Therefore, the cost
of FAST-BUILD is c . 2*” + Z . N, where c is relatively small in comparison to I,
and N is usually small in comparison to 2*“. In other words, the quantity Z . N
dominates the cost of FAST-BUILD, yet is much less than Z . 2*“. The result is
that using FAST-BUILD reduces the execution time from being O(pixels) to
O(nodes). Of course, this is achieved at an increase in storage requirements due to
the need to keep track of the active nodes (at most 2” - 1 for a 2” X 2” image).

The largest-node-insertion technique discussed in this section can be used to
improve the pointer based raster-to-quad&e algorithm described in [13]. That
algorithm works in a bottom-up manner. It begins with a single pixel representing
the first pixel of the raster array. As each pixel of the tirst row is scam&, the
eastern neighbor of the current pixel is located by means of a neighbor fWhng
operation [14,21]. The southern neighbor of the first pixel of the row is located
before a row is processed in order to avoid searching from the root with each new
row.

Using the largest-node insertion technique we can devise an analogous top-down
algorithm, using neighbor finding, which performs no merging. This can save muGh
processing for images which can be represented with large nodes. Each pixel of the
raster image is processed in raster scan order. After processing the first pixel, the
quadtree is represented by a leaf node of color C corresponding to the root. As
subsequent pixels are processed, if a pixel of a different color, say C’, is encoun-
tered, then the current node is set to GRAY and given four children with the
original value of the parent. The child containing the current pixel tier; the
current node. If the current pixel is the first (upper leftmost) pixel of the node, then

OPTIMAL QUADTREE CONSTRUCTION ALGORITHMS

TABLE 4
Pointer Quadtree Building Statistics

Map Time (s)
name Old New

FlOOdplain 50.3 5.4
Topography 54.0 15.4
Landuse 52.7 17.3
Center 71.0 6.2
Pebble 79.0 27.3
Stone 75.5 20.9

415

the node value is changed to C’. Otherwise, the split step is repeated until the
current pixel becomes the upper leftmost comer of the current node. As the pixels
of a given row are processed, it is necessary to keep track of their position within the
current node. If the next pixel to be processed is beyond the eastern edge of the
current node, then that node’s eastern neighbor is located by finding its neighbor. In
this way, no unnecessary nodes will be inserted, and no merging needs to be
performed. The algorithm, given by procedure RASTER-TO-QUAD,
is presented below. Table 4 gives an empirical comparison between the algo-
rithm of 1131 (referred to in Table 4 as the “old” algorithm) and
RASTER-TO-QUAD (referred to as “new”) on our six test images.

node pointer procedure RASTER~TO~QUAD(INPIC,R,C,N,OU’M’REE);
/ * Build a quadtree in OUTIREE corresponding to input picture INPIC using a

quadtree building algorithm that inserts the largest node for which the
current pixel is the first (i.e., upper leftmost) pixel. The input picture has R
rows and C columns and the output quadtree will be of maximum depth N
(i.e., a 2N x 2N image). The algorithm is analogous to FAST-BUILD
except that the result is a tree instead of a collection of locational codes
corresponding to the leaf nodes. Type row is an array of type coior where
color takes on the values NOCOLOR, BLACK, and WHITE. */

begin
value picture pointer INPIC;
v&e integer R,C,N;
reference quadtree pointer OU’ITREE;
row BUFF[O:C - 11;
node pointer FIRST, TEMP, CURR;
integer FIRSTX,FIRSTY,FIRSTWID,ROW,COL;
integer CURRX,CURRY,CURRWID;
integer I;

OU-ITREE + FIRST + CREATEQNODE(NIL,NIL,WHITE);
FIRSTX + FIRSTY + 0;
FIRSTWID +- 2 t N;
forROW+Ostepluntil2tN-ldo

416 SUFFER AND SAMET

hegin / * Process each row of the picture */
GET-ROW(INPIC,BUFF); / * Get next row of the input picture */
if ROW = FIRSTY + FIRSTWID then
hegin / * Moved passed the south side of the current node */

FIRSTY + FIRSTY + FIRSTWID;
GTEQUAL~ADJ~NEIGHBOR(FIRST,‘S’,TEMP,FIRSTWID);
FIRST + TEMP;
LOCATE(FIRST,FIRSTX,FIRSTY,FIRSTWID,O,ROW);

end;
CURR + FIRST;
CURRX +- FIRSTX;CURRY +- FIRSTYCURRWID + FIRSTWID;
for COL +- 0 step 1 until 2 TN - 1 do

begin / * Process each column of the row */
if COL = CURRX + CURRWID then

begin / * Moved passed the east side of the current node */
CURRX + CURRX + CURRWID;
GTEQUAL-ADJ-NEIGHBOR(CURR,‘E’,TEMP,CURRWID);
CURRY + (CURRY/CURRWID) * CURRWID;
CURR =+ TEMP;
LOCATE(CURR,CURRX,CURRY,CURRWID,COL,ROW);

end;
if NODETYPE(CURR) # BUFF[COL] then

begin / * Insert a node */
TEMP + CURR;
INSERT(CURR,CURRX,CURRY,CURRWID,COL,ROW,BUFF[COL]);
if TEMP = FIRST then / * Has first block in row been altered? */
begin / * Yes. Update its descriptor */

FIRST +- CURR;
FIRSTX +- CURRX;
FIRSTY + CURRY;
FIRSTWID * CURRWID;

end;
end;

end;
end;

end;

procedure LOCATE(P,X,Y,WID,COL,ROW);
/ * Given a node P of width WID and upper leftmost pixel in column X and row

Y, find its leaf descendant whose upper leftmost pixel is at column COL and
row ROW. A pointer to the leaf descendant, its width, and coordinates of its
upper leftmost pixel are returned in P, WID, X, and Y, respectively. */

besin
reference node pointer P;
reference integer X,Y,WID;
value integer COL,ROW;
direction Sl,S2;

while NODETYPE = GRAY do

OPTIMAL QUADTREE CONSTRUCTION ALGORITHMS 417

begin
WID + WID/2;
if ROW < (Y + WID) then Sl +‘N’;
else

begin
Sl t’S’;Y + Y + WID;

end;
if COL < (X + WID) then S2 +‘E’;
else
begin

S2 +‘W’; X +- X + WID;
end;

P + SON(P,QUAD[Sl,M]);
end;

end;

procedure INSERT(P,PX,PY,PWID,C,R,CL);
/ * Given a subtree rooted at node P of width PWID and whose upper leftmost

pixel is at column PX and row PY, insert a node of color CL whose upper
leftmost pixel is at column C and row R. A pointer to the leaf descendant, its
width, and the column and row of its upper leftmost pixel are returned in P,
PWID, PX, and PY, respectively. */

begin
reference node pointer P;
reference integer PX,PY,PWID;
value integer CR;
value color CL;
color TEMPCOL;
quadrant I;

TEMPCOL 6 NODETYPE(
while(PX # C) or (PY # R) do
begin

NODETYPE + ‘GRAY’;
for I in {‘NW’,‘NE’,‘SW’,‘SE’} do

CREATEQNODE(P,I,TEMPCOL);
LOCATE(P,PX,PY,PWID,C,R);

end;
NODETYPE +- CL;

end;

procedure GTEQUAL-ADJ-NEIGHBOR(P,D,Q,WID);
/* Return in Q the neighbor of node P, of size greater than or equal to P, in

horizontal or vertical direction D. WID denotes the width of P and ultimately
the width of Q. If the neighbor does not exist, then return NIL. */

begin
value node pointer P;
value direction D;
reference node pointer Q;

418 SHAFFER AND SAMJXT

reference integer WID;

WID + WID*2;
if not null(FATHER(P)) and ADJ(D,SONTYPE(P)) then

/ * Find a common ancestor */
GTEQUAL-ADJ-NEIGHBOR(FATHER(P),D,Q,WID)

else Q +- FATHER(P);
/ * Follow the reflected path to locate the neighbor */
if not null(Q) and GRAY(Q) then
begin

Q +- SON(Q,REFLECT(D,SONTYPE(P)));
WID +- WID/2;

end;
end;

4. CONCLUDING REMARKS

As we saw in Section 3, the technique of inserting maximal nodes and maintain-
ing a list of active nodes yields a building algorithm with at most one insert per
output tree node. Thus, when using the number of insertions into the output
quadtree as a metric, our algorithm is optimal to within a constant factor. Similar
techniques can be applied to other quadtree algorithms which create an output tree
in a “reasonable” order. By reasonable, we require only that the first (upper
leftmost) pixel of every node be inserted first. Such a restriction is satisfied by a
depth-first traversal (i.e., node address order), a raster scan order, or any other
ordering where all pixels above and to the left of the current pixel have already been
processed. Some example tasks to which our methods have already been applied
include algorithms for computing set operations (e.g., union, intersection, di&ence)
between two unregistered images represented by quadtrees, as well as algorithms for
windowing and matching of unregistered images.

The new quadtree building algorithm achieves its speed up by use of additional
storage (i.e., 2”-’ records for a 2” X 2” image) for the active nodes. This is
acceptable for a 2-dimensional image. Hoever, for images of higher dimension, we
must be more selective in terms of the information that is stored in the active node
arrays. At each level of the tree there are many cases that the elements of the array
corresponding to the level are not used. It may be possible to do this by using linked
lists to represent the relevant active nodes at each level. A similar technique was
used by Samet and Tamminen to enable the efficient computation of connected
component labeling for images represented by linear quadtrees. Their 2dimensional
algorithm used arrays [20] and was generalized to arbitrary dimensions through the
use of linked lists [19].

ACKNOWLEDGMENT

We have benefited from discussions with Randal C. Nelson.

REFEREiNCES
1. D. J. Abel and J. L. Smith, A data structure and algorithm based on a linear key for a rectangle

retrieval problem, Conyn~. Vision Grqks Zmage Process. 24, No. 1,1983,1-13.
2. D. J. Abel, A B+-tree structure for large quadtrees, Compur. Vision Graphics Zmuge Process. 27, No.

1,1984, 19-31.

OPTIMAL QUADTREE CONSTRUCTION ALGORITHMS 419

3. M. A. Comeau, A Coordinate Reference System for Spatial Data Processing, CLDS Technical Bulletin
No. 3, November 1981.

4. D. Comer, The ubiquitous B-tree, ACM’Comput. Suroeys 11, No. 2, 1979, 121-137.
5. I. Gargantini, An effective way to represent quadtrees, Commun. ACM 25, No. 12, 1982, 905-910.
6. A. Klinger, Patterns and search statistics, in Optimizing Methods in Statistics (J. S. Rustagi, Ed.), pp.

303-337, Academic Press, New York, 1971.
7. J. P. Lauzon, D. M. Mark, L. Kikuchi, and J. A. Guevara, Two-dimensional run-encoding for

quadtree representation, Comput. Vision Graphics Image Process. 30, No. 1, 1985, 56-69.
8. G. M. Morton, A Computer Oriented Geodetic Data Base and a New Technique in File Sequencing,

IBM, Ltd., Ottawa, Canada, 1966.
9. M. A. Oliver and N. E Wiseman, Operations on quadtree encoded images, Comput. J. 26, No. 1,

1983, 83-91.
10. F. Peters, An algorithm for transformations of pictures represented by quadtrees, Comput. Vision

Graphics Image Process. 32, No. 3, 1985, 397403.
11. A. Rosenfeld, H. Samet, C. ShatTer, and R. E. Webber, Application of Hierarchical Data Structures to

Geographical Information Systems, Computer Science TR-1197, University of Maryland, College
Park, Md., June 1982.

12. A. Rosenfeld, H. Samet, C. ShatTer, and R. E. Webber, Application of Hierarchical Data Structures to
Geographical Information Systems: Phase II, Computer Science TR-1327, University of Mary-
land, College Park, Md., September 1983.

13. H. Samet, An algorithm for converting rasters to quadtrees, IEEE Trans. Pattern Anal. Mach. Intell.
3, No. 1, 1981, 93-95.

14. H. Same& Neighbor finding techniques for images represented by quadtrees, Comput. Graphics Image
Process. 18, No. 1, 1982, 37-57.

15. H. Samet, A. Rosenfeld, C. A. Shaffer, and R. E. Webber, Quadtree region representation in
cartography: Experimental results, IEEE Trans. Systems Man Cybernet. 13, No. 6, 1983,
1148-1154.

16. H. Samet. The quadtree and related hierarchical data structures, CAM Comput. Surveys .16, No. 2,
1984, 187-260.

17. H. Samet, A. Rosenfeld, C. A. Shaffer, R. C. Nelson, and Y-G. Huang, Application of Hierarchical
Dutu Structures to Geographic Information Systems: Phase III, Computer Science TR-1457,
University of Maryland, College Park, Md., November 1984.

18. H. Samet, A. Rosenfeld, C. A. ShatTer, and R. E. Webber, A geographic information system using
quadtrees, Pattern Recognit. 17, No. 6, 1984, 647-656.

19. H. &met and M. Tamminen, Eflcient Component Labeling of Images of Arbitruty Dimension,
Computer Science TR-1480, University of Maryland, College Park, Md., February 1985.

20. H. Samet and M. Tamminen, Computing geometric properties of images represented by linear
quadtrees, IEEE Trans. Pattern Anal. Mach. Intell. 7, No. 2, 1985, 229-240.

21. H. Samet and C. A. Shaffer, A model for the analysis of neighbor finding in pointer-based quadtrees,
IEEE Trans. Pattern Anal. Mach. Intell. 7, No. 6, 1985, 717-720.

22. H. Samet, A. Rosenfeld, C. A. Shaffer, R. C. Nelson, Y-G. Huang, and K. Fujimura, Application of
Hierurchical Data Structures to Geographic Information Systems: Phase IV, Computer Science
TR-1578, University of Maryland, College Park, Md., December 1985.

23. C. A Shaffer, H !&met, R. E. Webber, R. C. Nelson, and Y-G Huang, An implementation for a
geographic information system based on quadtrees, tutorial lecture notes, SIGGRAPH ‘85, San
Francisco, July 1985.

24. R. E. Webber, Annlysis of Quadtree Algorithms, Ph.D. thesis, Computer Science Department,
University of Maryland, College Park, Md., 1983; Computer Science TR-1376.

