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Abstract

The status of an ongoing research effort to develop a geographic information system
-based on a variant of linear quadtrees is described. This system uses quadtree encodings for
storing area, point, and line features. Recent enhancements to the system are presented in
greater detail. This includes a new hierarchical data structure for storing linear features that
enables representing straight lines exactly as well as permitting updates to be performed in a
consistent manner. The memory management system was modified to enable the representation
; of an image as large as 16,384 by 16,384 pixels. Improvements were also made to some basic
; area map algorithms which yield significant efficiency speedups by reducing node accesses. This
includes windowing, set operations with unregistered images, a within function, and an optimal
quadtree building algotithm which has an execution time that is proportional to the number of
blocks in the image instead of the number of pixels. ’

*This work was sponsored by the U.S. Army Engineer Topographic Laboratories under contract
UE-QO.Q—..O-SM@. :
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L. Intreduction

Hierarchical data structures are important representations in geographic information sys-
tems, as well as in the related domains of computer vision, robotics, computer graphics, image
processing, pattern recognition, and computational geometry. The advantage of hierarchical
methods is that their use leads to aggregation resulting in algorithms whose execution times are
proportional to the number of aggregated units (e.g., blocks) rather than to the actual size of
the aggregated units (e.g., the number of pixels in a block). One such data structure is the quad-
tree. Today, the term quadtree is used in 2 general sense to describe a class of data structures
whose common property is that they are based on the principle of recursive decomposition of
space. The various elements of the class can be differentiated on the basis of the type of data
that they are used to represent, and on the principle guiding the decomposition process.
Currently, variants of quadtrees are used for point data, regions, curves, surfaces, and volumes.
The decomposition may be into equalk-sized parts (termed a regular decomposition), or it may be
governed by the input. The parts need not necessarily be disjoint nor must they be at a fixed
orientation relative to each other. In the case of spatial data, 2 representation that is related to
the quadtree is the pyramid which is 2 multiresolution data structure. In contrast, the quadtree
is a variable resolution representation. Figure 1 is an example of a region and its corresponding
region quadtree. For a recent survey of the use of hierarchical data structures see Samet (1984).

For the past four years, members of the Computer Vision Laboratory at the University
of Maryland have been engaged in a research efort to develop a geographic information system
based on quadtrees. The project has been conducted in four phases. In this paper we describe
the current state of this effort. However, we first review the work that has already been com-
pleted. The database used in this study was supplied by the U.S. Army Engineer Topographic
Laboratories, Ft. Belvoir, VA. The area data consisted of three registered map overlays

representing landuse classes, terrain elevation contours, and a floodplain boundary from a region
in Northern California.

In Phase I a quadtree database was built for these maps (Rosenfeld et al., 1982). The
overlays were hand-digitized resulting in three arrays of size 400 by 450 pixels. Labels were asso-
ciated with the pixels in each of the resulting regions, specifying the particular landuse class or
elevation range. The regions were subsequently embedded within a 512 by 512 grid and quadtree
encoded. The results are shown in Figures 2-4. Algorithms were developed for basic operations
on quadtree-represented regions (set-theoretic operations, point-in-region determination, region

property computation, and submap generation). The efficiency of these algorithms was studied
theoretically and experimentally.

In Phase II, 2 quadtree-based Geographic Information System was partially implemented,
allowing manipulation of imeages storing area, point and line data (Rosenfeld et al.. 1983). This

system included & memory management system to allow manipulation of images too large to fit

into main memory, a software package to allow users to edit and update images, database
management and map manipulation functions, and an English-like query language with which
to access the database. .‘We also made use of a geographic survey map for this area, from which
we extracted point and line data. .

Phase III dealt primarily with enhancements and alterations to this information system
package, an evaluation of some of the design decisions, and the collection of empirical results to
indicate the utility of the software and to Justify the indicated design decisions (Samet et al.,
1984). Also included was the frst step of an attribute attachment package for storing non-
geographic data associated with the map objects, and a survey of appropriate point and linear
feature data structures for future investigation.
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Figure 1. A region, its binary array, its maximal blocks, and the corresponding quad-

tree.
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Phase [V of the project primarily dealt with developing new structures for storing linear
feature data (Samet et al., 1985). The attribute attachment package was extended to point and
linear feature data. Existing area map algorithms were improved to yield significant efficiency .
speedups by reducing node accesses. In this paper we expand further on the developments in
Phase [V; however, we first give a brief historical review of the quadtree data structure.

Hierarchical data structures such as the quadtree have an interesting history that reflects
their general utility. They are based on the principle of recursive decomposition and early men-
tions of it did not make much use of their tree formulation. Their use can be traced to several
fields. The formulation that is most commonly used today is known as the region quadiree and
is due to Klinger (1971). Such quadtrees were probably first seen as a way of aggregating blocks
of zeros in sparse matrices for use in applications in numerical analysis (Hoare, 1972). They were
used by Morton (1966), and undoubtedly others, as a means of indexing into databases contain-
ing geographical information. Warnock (1969) applied recursive decomposition in computer
graphics, while Hunter and Steiglitz (1979) used the tree representation for the purpose of ani-
mation. Variants of the quadtree were also used in robotics in the SRI robot project {Nilsson,
1969), in architecture for space planning (Eastman, 1970), in image understanding (Kelly, 1971},
in VLSI design rule checking (Kedem, 1981), and in other fields. There are two other data stryc-
tures that are related to the region quadtree. The first is the point quadtree (Finke! and Bent-
ley, 1974) which is a generalization of the binary search tree and is used to represent multidi-
mensional point data. It has spawned countless variants (e.g., the k-d tree {Bentley, 1975). etc.)
which are used in databases and facilitate search operations. The second is the pyramid {Uhr,
1972; Riseman and Arbib, 1977; Tanimoto and Pavlidis, 1975) which is an exponentially taper-
ing stack of arrays, each one-quarter the size of the previous array. It has found use in such
tasks as feature detection, segmentation, ete.
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Figure 2. The landuse map, Figure 3. The topography map. -

2. The Quadtree Memory Management System

The quadtree memory management system, described in greater detail in Phase I of this
: project (Rosenfeld et al, 1983), is based on use of 2 structure termed the finear quadtree (Gar-
p gantini, 1982). The leal nodes making up the quadtree of an image are stored in a list. In the
™ . . variation which we have implemented each leafl node consists of two 32 bit words. The frst
" o “ word contains a 32 bit key which is used to order the node list, It is formed by bit interleaving
o the binary representation of the z and y coordinates of the pixel in the lower left corner of the
B block represented by the leal node. When sorted in ascending order of the value of the key, the.
. node list will be in an order identical to that in which the leaves would have been visited by a
Hl depth-first traversal of the original tree. In order to be able to determine the size of the leaf, we
w must also specify the depth. We use 4 bits of the 32 bit key to denote the depth which means
that 14 bits are left for each of the z and y coordinates. Thus an image as large as 16,384 by

1 !4 \ 16,384 pixels can be represented. Each leaf also contains a 32 bit value field.

.)

One..motivation for using a linear quadtree in contrast to a pointer-based quadtree is
that it allows for a reduction in storage. In particular, a pointer-based representation requires
that we store with each node four pointers to its children and often a pointer to its father. This
. . is in addition to the value field. We have implemented the linear quadtree in conjunction with
Figure 4, : i a disk based memory management system which only needs to maintain a small part of the

gure 4. The floodplain map. Figure 5. The ACC anduse class map. image in core at one time. _nm our system, the sorted list of quadtree leaves is stored v:. a B-tree
{Cormer, 1979) with a page size of 1024 bytes, capable of holding up to 120 leaves in a page. For
more details on the implementation, see the Phase II report (Rosenfeld et al., 1083).

The line representation, described in Seetion 4. may result in storing more than one item
of information with a node. This requires a variable size node implementation. Since the value
18 field of each linear quadtree node consists of just one 32 bit word, we choose to duplicate the




node for each item of information that is associated with the node. This is wasteful of space
since the information in the address field is repeated. However, more importantly, this method is
compatible with our area and point representations with only minor modifications.

A variable length quadtree node is processed by locating the first record in a B-tree page
with the desired address, and then visiting successive records until one with a greater addrest is
encountered. New functions were written for finding the n th record with a given address in the

-tree page, for inserting a record with a given address into the B-tree, and for deleting.a record
with a given address and specified contents. Manipulating variable-sized nodes using this
scheme is efficient since cases where multiple records with a given key are split between B-tree
pages are rare. This is true because the average amount of information associated with a quad-
tree block in our application is small in comparison to that of the B-tree page.

3, Improved Datahase Functions
A number of existing database functions were significantly improved by being reimple-
mented using new algorithms. These include the WITHIN function, the raster to quadtree
conversion function, and the map windowing function. In addition, the functions that imple-

ment set operations (e.g., union and intersection) were extended to work on unregistered images.
The new algorithms are described briefly below.

Wi

The WITHIN function generates a map which is BLACK at all pixels within a specified
radius of the non-WHITE regions of an iaput map. It is important for answering queries such

as “Find all eities within 5 miles of wheat growing regions”. Such a query would be answered.

by invoking the WITHIN function to operate on a map conteaining wheat growing regions (i.e.,
the non-WHITE regions), and then intersecting the result with a map containing cities.

The algorithm that we used previously (Samet et al, 1984) worked by expanding each

non-WHITE block of the input image by R units (where R is the radius), and then inserting all

" of the nodes making up this expanded square into the output quadtree. This leads to many

redundant node insertions. In addition, many of the nodes that were inserted were small, and
in fact were eventually merged to form larger nodes.

The new algorithm is based on the chessboard distance tramsform (Samet, 1982). The
algorithm does the following for each node of the input image. If the node is non-WHITE, then
1t is inserted into the output map. If the node is WHITE, and is less than or equal to (R +
1)/2 in width, then it must lie entirely within R pixels of a non-WHITE node. This is true
because one of its siblings must contain a non-WHITE pixel. Thus, it is made BLACK and
inserted into the tree. If the node is WHITE and has a width greater than (R + 1)/2, then its
chessboard distance transform is computed. In other words, the exact distance from the node’s
border to the nearest nén-WHITE pixel is determined. If this distance is such that the node is
completely within radius R of a non-WHITE pixel, then it is inserted as a BLACK node into the
output tree. If the node is completely outside the radius, then it is inserted as WHITE. Other-
wise, the node is quartered, and the process is recursively reapplied to each quadrant.

The new algorithm is an improvement over the old one for two reasons.
WHITE nodes need excessive computation. Since most nodes in a quadtree are
nodes generate much work. Secondly,
times when neighboring nodes compute
put tree is processed exactly once. Tabl
Hoodplain of Figure 4 and the portion

First, only large
small, very few
although nodes of the input tree may be visited several
their distance transform values, each block of the out-
e 1 contains a comparison of the two algorithms for the
of the landuse class map that only shows class ACC as
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BLACK (see Figure 3). The algorithm is applied to the two maps lor ._.p&_._m values ranging fron
l1to8 Ew@_m. Notice that the execution time speedups are more than linear.

Table 1. Execution times for the WITHIN function.
Flood time (secs.) ACC time (secs.) *
Distance new algorithm | old zlgorithm | new algorithm | old algorithm
1 214 50.4 25.7 57.8
2 29.2 40.8 32.9 479
3 25.4 89.3 30.4 105.5
4 31.5 73.3 35.7 84.7
5 38.7 141.1 42.9 170.1
[ 41.6 143.9 43.8 164.5
7 38.3 2224 48.6 2588
8 40.1 205.5 43.9 239.8

The naive algorithm for converting a raster image to & :nnww.n:na:.mm (or a pointe:
based quadtree) is to individually insert each pixel of the raster image into the nzv...:.,.nm in ra
ter order. Those pixels making up larger nodes are merged together by the quadtree :_m.:.m rov
tine. Previous algorithms presented in the literature (Samet, 1981), mm.ia:.wu.;a ofie use en_:
viously in our system (Rosenfeld et al, Em.mv. have io_”w& on z.-,_u principle. >:2=._u m..
increasing efficiency concentrated on how to improve the insert routine. va._a .w contains t
execution times of the naive algorithm when applied to six test maps. The timings are :mﬂ.
identical for raster images with the same number of pixels (i.e., node inserts), regardless of t!
number of nodes in the eventuzal quadtree. In other iuoau. we see that the =E..=v2 of nodes
the output tree has little or no effect on the time required to perform arm.p_me:;:_. .203 th
for the naive building algorithm, the amount of time needed to read the image data is appro:
mately 1% of the time necessary to insert every pixel.

Table 2. Naive quadtree building algorithm statistics,
Map Num Num Time
Name _ Nodes Inserts (sees.)

Floodplain 5266 180000 4132

Topography 24859 180000 4298

Landuse 28447 180000 436.7

Center 4687 262144 603.8

Pebble 44950 262144 630.1

Stone 31869 262144 629.5

An optimal algorithm bas been developed that makes a single insertion for each Et,.,_
the quadtree. It is based on processing the image in raster-scan ?ov to bottom, left to rig
order, always inserting the largest node for which «rn. current pixel is the m_.ma.?vva_. leftm:
pixel. Such a policy avoids the necessity of merging since _mrn. upper _o.?:.oma pixel w_. any bl
is inserted before any other pixel of that block. Therefore, it is impossible for four sibling blo
to be of the same color.

At any point during the quadtree building process there is a processed portion of :

image and an unprocessed portion. Both the processed and unprocessed vo.._.aosm of the quadt:
bave been assigned to nodes. We say that a node is active if at least one pixel, but not all pix:
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covered by the node has been processed. The optimal quadtree building process must keep track
of all of these active nodes. Given a 2" % 2° image, it has been shown that the number of
active nodes is bounded by 2" -1 (Samet et al., 1985). Using these observations, an optimal
quadtree building algorithm is outlined below. It assumes the existence of a data structure
which keeps track of the active quadtree nodes. For each pixel in the raster scan traversal, do
the following. If the pixel is the same color as the appropriate active node, do nothing. Other-
wise, insert the largest possible node for which this is the first (i.e., upper leftmost) pixel. and (if
it is not a 1 X 1 pixel node) add it to the set of active nodes. Remove any active nodes for
which this is the last (lower right) pixel.

In order to implement such an algorithm we need to keep track of the list of active
nodes. This list is represented by a table, say TABLE, with a row for each level of the quadtree
(except for level 0 which corresponds to the single pixel level, these nodes cannot be active).
Row i of the table contains 2"~ entries, with row n corresponding to the full image. Given a
pixel in column 7, the value of the active node at row i of the table is found at position 7 /2*,
Note that shift operations can be used instead of divisions if speed is important.

The only remaining problem is how to locate the appropriate active node corresponding
to each pixel. In particular, for a given pixel in a 2" x 2" image, as many as n active nodes
could exist. Multiple active nodes for a given pixel occur whenever a new node is inserted, as
ilustrated in Figure 6. Each pixel will have the color of the smallest of the active nodes which
covers it, since the smallest node will have been the most recently inserted. Finding the smal-
lest active node that contains a given pixel can be done by searching from the lowest level ip the
table upwards until the first non-empty entry is found. However, this is time consuming since it
might require n steps. Therefore, an additional one-dimensional array, called LIST and referred
to as the access array, is maintained to provide an index into TABLE. LIST is of size 2"~} since
single-pixel sized nodes need not be stored. For any pixel in column 7, the LIST entry at j /2
indicates the row of TABLE corresponding to the smallest active node containing the pixel. At
the beginning of the algorithm, each entry of LIST points to the entry of TABLE corresponding
to the root {i.e., row n for 3 2® x 27 image). As active nodes are inserted or completed (and

E.a.brmn_n_mama:.osorawan...anomn table), the active node table and the access array are
updated. .

Table 3 contains timing results when the new algorithm is applied to the same test maps
as the naive algorithm. As indicated in Table 3, the optimal algorithm often requires far fewer
calls to the insert routine than the number of nodes in the resulting output tree. This is
because some calls to insert may cause several node splits to occur thereby increasing the
number of nodes in the tree. For example, in Figure 6 ingerting node B into the quadtree con-
taining a single node causes 7 nodes to result, If the first pixel inserted into node X happens to
be the same color as the original node {A of Figure 6a), then no insertion is required.

In order to understand why the new algorithm is such an improvement over the old one,
let us analyze the cost of both algorithms in terms of the number of insert operations that they
perform. The naive algorithm examines each pixel and inserts it into the quadiree. Assuming a
cost of [ for each ingert operation, and a cost of ¢ for the time spent examining a pixel, the
total cost is then 27" -(c +7). The new algorithm must also examine each pixel. However, there
will be at most one insert operation for each of the N nodes in the output quadtree, Therefore,
the cost of the new algorithm is ¢-2%" 4+ [N where ¢ is relatively small in comparison to /,
and N is usually small in comparison to 2" . In other words, the quantity /-~ dominates the
cost of the new algorithm. The result is that using the new algorithm reduces
time from being O(pixels) to O(nodes). Thus the algorithm is optimal t owithin a constant fac-
tor. Of course, this is achieved at an increase in storage requirements due to the need to keep
track of the active nodes (approximately 2" *! for 2 " % o0 image).

the execution

(a) : (b)

Em_.,:.o 6. Node insertion can create multiple active nodes. {a) Node A is active alter insert-
ing a single pixel of color C. (b) The first two pixels have color C. Pixel 3 has
color D. It insertion creates active node B. Node A is still active.
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Figure 7. An example of intersection. (a) Node N (shown in_dashed lines) from the first
. input tree is intersected with an image corresponding to the second input tree.
It is compared against those nodes which it intersects in the mooo._:_ input tree.
(b) The decomposition and order of processing for node N as directed by the
image decomposition.
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Name Nodes Inserts (secs.)
Floodplain 53266 2352 13.8
Topography 24859 12400 51.2
Landuse 28447 14675 56.9
Center 4687 2121 16.1
Pebble - 44950 20770 111.0
Stone 31969 14612 70.2

In many applications, including geographic information systems, it is desirable to com-
pute set operations on a pair of images. For example, suppose a map is desired of all
wheatfields above 100 feet in elevation. This can be is achieved by intersecting a wheatfield
map and an elevation map whose pixel values are BLACK if they represent an area whose eleva-

tion is above 100 feet. The resulting map would have BLACK pixels wherever the cotresponding
pixels of the input maps are both BLACK.

In this section we will consider only the case of map intersection - other set operations
such as union or difference are handled in an analogous manner. Intersection of quadtrees
representing images with the same grid size, same map size, and same origin is accomplished by
traversing the two trees in parallel. Each node of the first image is compared with the
corresponding node(s) in the second image. On the other hand, very little work has been done
on set operations between unregistered quadtrees (i.e., quadtrees which have the same grid size
and map size, but differing origins). In particular, the only prior mentions of algorithms for
intersecting unregistered quadtrees involved translating one of the images to be in registration
with the other, and then performing a registered intersection (Gargantini, 1983). In this section,
the principles underlying an optimal algorithm for the intersection of unregistered maps are
described. By optimal we mean that each node of the input images is visited only once, and at
most one insertion into the output tree is performed for each output tree node.

As with the quadtree building algorithm of Section 3.2, the intersection algorithm main-
tains a table of the active output tree nodes to minimize insertions into the output tree. We
will call this table OUT_TABLE. Unlike the building algorithm, there are two input quadtrees
(call them I1 and I2) to be considered as well. The basic algorithm is as follows. 11 is processed
in depth-first traversal order. For each node N of I1, the various nodes of 12 which cover N
are located. Starting with the upper left pixel of N, the node of 12 which covers that pixel is
located. Next, the largest block contained within both nodes is computed. The set function is
evaluated on the values of these two nodes, and QUT_TABLE is queried to determine if the
new node should be inserted. This step is repeated on subsequent portions of NV in depth-first
order until all pixels of N are processed, F igure 7 provides an example.

In order to minimize the number of node searches made in the tree 12, a second set of
tables will be used to keep track of the active nodes of 12. OUT_TABLE is easily implemented,
since nodes will always be inserted in depth-first order {matching the progress made in tree I1).
During the traversal of the output tree, the second, third, and fourth subquadrants of a block at
level i will not be processed until the previous subquadrants are completed (e.g., the SW
subquadrant will not be processed until the NW and NE subquadrants are complete}. Thus, at
most one node at each level of the tree can be active. This means that for 2 2" X2" image, a
table of only n entries is needed to represent the active nodes. Each entry of OUT _TABLE

contains the location and value of the current active node at the corresponding level, along with
a field to indicate the quadrant relative to its [ather in which the node lies. In addition, a vari-
able is needed to keep track of the current depth. .

The fnal requirement for the non-registered set function algorithm is a method for keep-
ing track of the active nodes of the second input tree. Consider the border of the nodes of 11
which have been processed at any given instant. Since these nodes are processed in depth-first
traversal order, the border will be in the form of a staircase (see Figure 8). The active border,
as it crosses an output map of size 2" X 2", will form horizontal and vertical segments such that
the sums of the horizontal and vertical segments will each be 2" pixels in length. The active
nodes of I2 will be those nodes which, at any given instant, straddle the active border. The
active border table for the intersection algorithm is a modification of the active border table
used by Samet and Tamminen (1985). It is composed of two arrays each 2® records wide. Each
record contains the location, size, and value of the active node at that position.

3.4 Windowi
. Interestingly, s vatiant of the unregistered intersection algorithm described above can
also be used to perform windowing. Windowing is the name given to a function which extracts a
window from an image. A window is simply any rectangular subsection of the image. Typically,
the window will be smaller than the image, but this is not necessarily the case as the window
could also be partly off the edge of the image. More importantly, the origin {or lower left corner)
of the window could potentially be snywhere in relation to the origin of the input map. This
means that large blocks from the input quadtree must be broken up, and possibly recombined
into new blocks in the output quadtree.

Shifting an image represented by a quadtree is a special case of the general windowing
problem - taking a window equal to or larger than the input image but with a different origin
will yield a shifted image. Shifting is important for operations such as finding the quadtree of
an image which has the fewest nodes. It can also be used to register two images represented by
quadtrees. In order to simplify the following presentation, we will assume a window of size 2™
by 2™ taken from an image of size 2" by 2" where m < n.

In order to see the analogy between windowing and the intersection of two unregistered
images, let I1, corresponding to the first image, be 3 BLACK block with the same size and origin
as the window. Let I2, corresponding to the second image, be the image from which the window
is extracted. The resulting image would have the size and position of 1, with the value of the
corresponding pixel of 12 at each position. The equivalence between windowing and unre-
gistered set intersection should be clear. In fact, the windowing algorithm would be simpler.
since a single BLACK node of the appropriate size would take the place of I1 in the algorithm.
Such an algorithm is optimal in the sense that it locates (only once) those modes of the input
tree which cover 2 portion of the window, and performs at most one insert operation for each
output node. .

R ion Of Li F |

One of the goals of the research effort described here was the development of a uniform
representation for data corresponding to regions, points, and vector features. Uniformity facili-
tates the performance of set operations such as intersecting a vector feature with an area, etc.
Use of a linear quadtree for point and region data is well understood; however, this is not the
case for vector features. For vector features, a good linear quadtree representation must also
have the following three properties. First, it must use a constant (or at least bounded) amount
of storage per node. Second, straight line segments should be represented exactly (not in a




digitized representation). Third, updates must be consistent, i.e., when a vector feature is
deleted, the data base should be restored to a state identical {not an approximation) to that
which would have existed if the deleted vector feature had never been added.

I
P

In Phase Il of this project, we implemented a variation of the edge quadtree of Shpeier
(1981) for which we use the term flinear edge quadiree. In our implementation of the edge quad-
tree, the leal nodes of the quadtree are stored as single records in the B-tree. Each node con-
tains three fields; an address, a type, and a value feld. The address field describes the size of the
node and the coordinates of one of the corners of jts correspouding block. The type field indi-
cates whether the node is empty (i.e., WHITE), contains 2 single vertex, or contains a line seg-
ment. The value field of a line segment indicates the coordinates of jts intercepts with the bord-
ers of its containing node. Vertices are represented by pixel-sized nodes with the degree of the
vertex stored in the value field. Unlike Shneier’s formulation, a line segment may not end within
a node since in our existing implementation the value field is not large enough to contain the
location of an interior point as well as the intercepts. Thus endpoints and intersection points

are represented by single pixel-sized point nodes. Figure 9 illustrates the linear edge quadtree
representation.

A serious drawback of the edge quadtree is its inability to handle the meeting of two or
more edges at a single point (ie., a vertex) except as a pixel corresponding to an edge of
minimal length. This means that all vertices are stored at the lowest level in the digitization -
Le., in deep nodes in the tree. Thus, we cannot distinguish vertices from short line segments,
Moreover, boundary following as well as deletion of line segments cannot be properly handled in
the vicinity of a vertex at which several edges meet,

Figure 8. The active border after processing Figure 9. A linear edge quadtree.
node R in the first input tree.

In order to overcome these shortcomings we developed a pew representation terted a
PMR quadiree which is a variation on the PM quadtree of Samet and Webber (1985). The PMR
quadtree makes use of probabilistic splitting and merging rules, one for splitting and one for :
merging, to dynamically organize the data. The splitting rule is invoked whenever a line seg-
ment is added to a node. The node is split once into four quadrants if the number of segments
it contains exceeds n (4 in our implementation). Note that this rule does not guarantee that
each subquadrant will contain at most n line segments. The corresponding merging rule is : enapomts cutpoint
invoked whenever 2 segment is deleted. The node is merged with its siblings if together they .. " *
contain fewer than n (4 in our implementation) distinct line segments. The merge operation :
can be performed more than once. This scheme differs from the other quadtree structures in
that the tree for a given data set is not unique, but depends on the history of manipulations
applied to the structure. Certain types of analysis are thus more difficult than with uniquely
determined structures. On the other band, this structure allows the decomposition of space to
be based directly on the linear feature data stored loeally,

:...M...'cluull...i

The PMR quadtree makes use of variable sized nodes, When the graph represented by
the set of line segments is planar (which is the case for polygonal maps and most geographical ., (b)
situations), the average number of segments per node in the PMR decomposition is limited by : (2)
topological considerations to some small number {for our map data, the average is less than
three). This makes an implementation of the node as a list practical. In an application where . . T H ; producing (¢} a {rag-
this mw not the case, other splitting rules can ensure that the number of mmmamnnm_ui 2 node does : Figure 10. The Intersection of ﬁ.& a region; and (b) 2 line uomansn.. P 86 ’
not become too high. For linear quadtrees, where an address is caleulated for each quadrant | ment with one cut point.

and used to order it in the list, the simplest way of implementing variable node sizes is simply
to duplicate the addresses.

(c)

The PMR quadtree induces a decomposition of the space that may split a line segment
into many portions. Each portion that lies in a quadtree node is termed a g-edge. The g-edges . 27
that are stored with each node are represented by a pointer to a record corresponding to the ]
entire line segment of which they are a part. This solves the problem of how to accurately




represent the intersection of a g-edge with a quadrant boundary without loss of precision. Since
¢ach node containing a g-edge of a given line segment stores the same descriptor, tracking the
line from block to block is simple and operations such as deletion can be easily implemented.
Note that using & pointer to a record describing each line segment leads to more flexibility since
it allows storing an arbitrary amount of information about the line segment without increasing
the size of the B-tree record. It also enables this information to be concentrated in one place
rather than repeated in every node which refers to the line segment.

We must also address the problem of how to represent a line segment that has been bro-
ken into fragments. This situation arises in a geographical application when a line map is inter-
sected with an area. Since the borders of the area may not correspond exactly with the end-
points of the segments defining the line data, certain segments may be cut off (e.g., Figure 10).
Such a partial line segment is referred to as a Jragment and the artificial endpoints produced by
such anp intersection are referred to as cuf points. The locations of such cut points must be
represented in some fashion. One idea is to introduce an intermediate point at the node inter-
cept. In continuous space, the remaining line segment can then be exactly represented as a new
line segment which is collinear with the original one, but has at least one different endpoint. In
discrete space however, this is not always possible because the continuous coordinates at the
intercept do not, in general, correspond exactly to any coordinates in the discrete space. If the
new line segments are represented approximately in the discrete space, then the original infor-
mation is degraded, and the pieces cannot reliably be rejoined. Note that these were precisely
the problems that were encountered with the linear edge quadtree. Moreover, if an intermediate
point were to be introduced to produce new segments, then the line segment descriptor would

have to be propagated to all quadrants containing the original segment. This is likely to be a
very as?noumsswum operation.

The approach that we took retains the original pointers, and uses the spatial properties
of the quadtree to specify what parts of the corresponding segments (ie., g-edges) are actually
present. We ohserve that even though a node contains a pointer to a line segment, it is not
necessarily true that the entire line segment is present as a linear feature, Instead, the line seg-
ment descriptor comtained in a node is interpreted as only implying the presence of the
corresponding q-edge. The original line segment of which the g-edge is 2 part i3 termed the
parent segment. The fragments, therefore, may be represented by a collection of q-edges. The
presence or absence of a particular g-edge is completely independent of the presence or absence
of those g-edges representing other parts of the line segment. Hence linear features correspond-
ng to partial segments can be represented simply by inserting the appropriate collection of g-
:dges. Since the original pointers are retained, a linear feature can be broken into piece:
‘ejoined without loss or degradation of information. Within the quadtree structure, q-edges
nay represent arbitrary fragments of line segments. Since all bear the same segment descriptor,
‘hey are easily recognizable as deriving from the same parent segment. This solves the problem
of how to split a line or a map in an easily reversible manner. The use of this principle to
epresent the linear feature produced by the intersection of Figure 10 is shown in Figure 11.

s and

Properly dealing with entities such as cut points and fragments requires that we modify
he splitting and merging rules of the PMR quadtree in the following manner. Nodes are split
wntil no block contains a cut point in its interior, and then once more if a quadrant contains
nore than four g-edges. The merge condition is invoked both when a q-edge is deleted and
vhen 'a g-edge is inserted {since a fragment may be inserted which restores a larger piece).

Aerges occur when there are four or fewer distinet line segments among the siblings and the q-
dges are compatible.

In order to evaluate the performance of the PMR quadtree we compared it with three
ther data structures for handling linear features using the road network of Figure 12. This net-

‘ork has 684 vertices and 764 edges. The three data structures used in the comparison are the
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Figure 11. The quadtree representation of a fragment. (a) A region decomposition with a

line segment superimposed. (b) The minimal set of five g-edges which make up
the fragment of Figure 10.
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Figure 12. The road network.
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VX quadtree (Hunter and Steiglitz, 1979), the edge quadtree, and the PM; quadtree {Samet and
#abber, 1985). For a 2" X2" image, the MX quadtree for a collection of line segments treats
wery. pixel that is intersected by a line as BLACK and all remaining pixels as WHITE, Merging
3. applied to the WHITE pixels. to create larger nodes. The MX quadtree, like the edge quadtree,
ureally. not. suitablé for: our ‘applications but- it is useful for comparison purposes. The PM,
{uadtree. is;based on the ptinciple that the space is decomposed until there is only oné vertex in
ach:quadrant:;In order to deal with cut points and fragments, this decomposition rule is
nodified by splitting until no block contains a cut point {i.e., all cut points must lie on the
‘oundaries of blocks), and no block contains more than one segment endpoint attached to a q-
dge: The PM, and the PMR. quadtrees are closely related. Table 4 shows the building times for
he various quadtrees, the total number of leaf nodes, and the number of q-edges (termed . . .
nodes in'the table and meaningless for the MX and edge quadtree). Note that the storage Finkel, R.A., and IL. Bentley, 1974; Quad Trees: a Data Structure for Retrieval on Composite
:quirements for the PMR quadtree are smaller than for the PM; quadtree as is the quadtree S ﬂww.u Acta Informatica {, No. 1, 1-9.

uilding time. This is not surprising since the PMR quadtree will not be as deep as the PM, i '

1adtree, nor as deep as the MX and edge quadtrees, ‘
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