THE SEGMENT QUADTREE:
A LINEAR QUADTREE-BASED REPRESENTATION FOR LINEAR FEATURESx*

Hanan Samet
Clifford A. Shafler

Computer Science Department and
Center for Automation Research
University of Maryland
College Park, Maryland 20742

ABSTRACT

A new linear quadtree-based representation for linear features
termed a segment guadiree is presented. It uses a fixed amount
o.t' storage per node, represents straight lines exactly (not a digi-
tized representation), and enables updates in a consistent
manner,

1. INTRODUCTION

The region quadtree representation {4,7] has gained
extensive use in image processing, computer graphics,
automated cartography, and other flelds. It is 2 hierarchical
data structure that is based on the principle of regular decom-
position. Due to the large amounts of data involved in such
applications, it is useful to use a representation for the quadtree
that does not involve pointers. The linear quadtree [2] is one
such representation that stores the image as a collection of leafl
nodes each of which is encoded by a number corresponding to a
sequence of directional codes that locate the leaf along a path
from the root of the quadtree.

We are interested in using the linear quadtree as & uni-
form representation for data corresponding to regions, points,
and linear features. The uniformity facilitates the performance
of set operations such as intersecting a linear feature with a
region within an integrated database. While there are several
hierarchical data structures for linear features, they are either
not based on regular decomposition (e.g., the strip tree (2]}, do
not handle more than one linear feature {e.g., the strip tree), or
do not cope with the intersection of linear features (e.g.. the
edge quadtree [10]). For linear features, a good linear quadtree
representation must aiso have the following three properties.
First, it must use a fixed amount of storage per node. This
ruies out the PM quadtree [6]. Second, straight line segments
should be represented exactly (not by a digitized representa-
tion). Third, updates must be consistent, i.e., when a linear
feature is deleted, the data base is restored to a state identical
to that which would have resulted if the deleted linear feature
had never been added. The line quadtree i8] is eliminated
because it only handles rectilinear linear features. Hunter and
Steiglitz’s [3] adaptation of the quadtree for polygons is likewise
of no use since it only approximates the lines. The edge quad-
tree [10) was designed primarily for representing curves and
thus does not handle connected edges in a manner that permits
consistent updates.

* The support of the U. S. Army Engineer Topographic

Laboratory under contract 70-81-C-0059 is gratefully ack-
nowledged.

Robert E. Webber

Computer Science Department
Rutgers University, Busch Campus
New Brunswick, New Jersey 08903

In order to meet the above requirements, we present z
new data structure, termed a segment quadiree. We show how
it can be used in conjunction with linear quadtrees to represent
collections of linear features consisting of sets of connected
straight line segments termed polygenal maps. In particular, we
discuss in detail the insertion and deletion of line segments.

2. ALTERNATIVE LINE REPRESENTATIONS

In the edge guadiree of Shneler {10], a region containing
2 linear feature, of part thereof, is repeatedly subdivided into
subquadrants until each quadrant contains at most one curve
that can be approximated by a single straight line segment.
Applying this process leads to quadtrees in which long straight
edges can be stored in a few large leaves. However, small leaves
are required in the vicinity of corners, intersecting edges, close
approaches between curves, or areas of high curvature. ASs an
example of the decomposition. that is imposed by the edge
quadtree, consider Figure 2 which is the edge quadtree
corresponding to the polygonal map of Figure 1 when
represented on a 2t by 2* grid. A serious drawback of the edge
quadtree is its inability to handle the meeting of two or more
edges at a single point (ie., a vertex) except as a pixel
corresponding to an edge of minimal length. This means that
boundary following as well as deletion of line segments cannot
be properly handled in the vicinity of a vertex at which more
than one edge meets.

Another quadtree variant which is closely related to the
edge quadbree is the formulation of Hunter and Steiglitz [3],
termed an MX guadtree in {7]. It considers the border of a
region as separate from either the inside or the outside of that
region. Figure 3 shows the MX quadtree correspending to the
polygonal map of Figure 1. The MX quadtree has problems
similar to those of the edge guadtree in nandling vertices.
Again, a vertex is represented by a single pixel. Furthermore,
note that the edge quadtree of Figure 2 contains considerably
fewer nodes than the quadtree of Figure 3. :

The linear edge quadiree is a variant of the edge quad-
tree that has been adapted for incorporation in a geograp;hic
information system [9]. In this scheme, the leal nodes of the
quadtiree are stored in a list (maintained by & B-tree) in the
order in which they would have been visited by a preorder
traversal of the tree. Bach node contains three fields: an
address, a type, and a value fleld. The address fieid describes
the size of the node and the coordinates of one of the corners of
its corresponding block. The type field indicates whether the
node is empty (i.e., WHITE), contains a single peint, or con-
tains 2 line segment. Unlike Shneier's [10] formulation, a line

85

CH2145-1/85/0000/0385301.00©1985 IEEE

e

i

Segment may not end within a node since in the existing imple-
mentation the value field is not large encugh to contain the
location of an interior point as well as a slope. Thus endpoints
and intersection points are represented by single pixel-sized
point nodes. Vertices are répresented hy pixel-sized nodes with
the degree of the vertex stored in the value field. The value
fleld of a line segment contains the coordinates of its intercepts
with the borders of its containing node. Figure 4 illustrages the
linear edge quadtree representation. Note the difference in the
decomposition of the region containing the vertex H in Figures
2 and 4.

The linear edge quadtree has a number .of deflciencies.
All vertices and endpoints are stored at the lowest level of
digitization, i.e., in nodes deep in the tree. There is no mechan-
ism for following a line segment, as each node describes only
that portion of a line segment which is contained within the
borders of the node. In particular, given a node that contains a
single point, there is no indication as to which of the neighbor-
ing nodes are connected to the point by a line segment,.

An important criteria for evaluating whether or not a
storage representation handles line segments properly is il the
successive insertion and removal of the same line segment
leaves the map unchanged. Since the edge quadtree nodes store
only approximate local slope information, it is extremely
difficult to restore nodes, by merging what had been split apart
by the original insertion. For example, it is not easy to deter-
mine the endpoints of the edges emanating from a given vertex.
Thus over time, the representation's compactness can
deteriorate unti] it becomes equivalent to the MX quadtree (i.e.,
line segments are represented by pixel-sized nodes).

An alternative approach to storing linear feature data is
based on the PR quadtree [5,7}. which is an adaptation of the
region quadtree to handle point data. Given an image
representing a set of points, the image is subdivided into qua-
drants, subquadrants, etc., untif each guadrant contains at
most one peoint. The collection of points in Figure 5a is
represented by the PR quadtree of Figure 5b. The PM quad-
tree {6] evolved from a desire to adapt the PR quadiree to store
a polygonal map in a manner which preserves the relationship
between edges and vertices. In essence, whenever a group of line
segments meet at a common point. those segments can be
organized by the linear ordering derived from their orientation.
‘There are three variations [8] of PM quadtree, termed P,
Py, and PM;. We are only interested in the PAS) varian.

The PM,; quadiree is based on a decomposition rule that
permits more than one line segment 1o be stored at a node only
il they meet at a vertex that lies within the borders of that
node. Figure 6 shows the PM, quadtree corresponding to the
polygonal map of-igure 1. From the decomposition of the line
segments CD and CE, we observe that the representation of
line segments which mees at narrow angles may require a farge
number of nodes.

3. THE SEGMENT QUADTREE

The segment quadtree has three tvpes of nodes: 1)
WHITE (or empty}, 2) vertex, and 3} line (i.e., a node contain-
ing a line segment whose-endpoints are houndaries of the block
corresponding to the node). A linear qu:_i(lt,ree representation
stores each node type in the same (fixed) amount of space,

This space should be minimized since WIII'TE nodes will also he
of the same size as line and vertex nodes. even though they
need only to store a few bits distinguishing them from line and
vertex nodes.

A line node in the segment guadtree is defined to con-
tain precisely one lne segment which enters from one side and
exits through anotlier side. With each line node we store the
coordinates of the vertices of the line of which it is a com-
ponent. This enables us to determine whether or not two neigh-
horing line nodes are part of a larger line segment. Without
this information, we cannot properly merge nodes after deletion
of a nearby line segment. Note that recording the coordinates,
although requiring more space, is prelerable to recording the
slope and intercept values for the line hecause it avoids preci-
sion errors as well as keeps all information in integer format.

A vertex node in the segment quadtiree is defined to cop-
tain precisely one vertex and no line segments which do not
intersect the vertex. This is identical to the definition of the
PM, quadtree. With each vertex node we store the z and u
coordinates of the vertox that it represents. We do not explj-
citly store a list of the line segments that meet at the vertex.

In order to be able to perform boundary following, we
must be able to follow line segments which extend from a ver-
tex. This requires us to investigate the neighboring nodes of the
vertex node. There are three cases. First, if a neighbor is -
empty, then there are no line segments extending from the ver-
tex in that direction. Second, if a neighbor contains a single
line segment, then we can cheek the slope of that line segment
to determine whether or not it intersects the vertex. Finally, if
the neighbor is a vertex, then we must be able to detect
whether or not there exists an edge joining the two vertices.
The solution is to store a four bit descriptor with each vertex
node that indicates which of its sides are exited by one or more
line segments.# Using this scheme, whenever two vertices are
contained in adjacent nodes, one of three situations can arise:

(1) The corresponding sides are not exited through;

{(2) the corresponding sides are exited through: and

(3) the side for one node is marked as exited through, and the
corresponding side of the other node is not exited through.

(1) indicates that no line segment joins the two vertices (e.g.,
the boundary between vertices B and Cin Figure 7), while (2)
indicates that a line segment does join the vertices (e.g., the
boundary between vertices A and B in Figure 7). (3) signifies
that no line segment passes between the two vertices and that
the vertex node with the exited side is larger than the vertex
node with the unexited side (since there must be another node
on thal side into which a line segment exited). For example,
consider vertices B and D in Figure 7. Note that all the nodes
neighboring a given node on an exited side must be inspected
since more than one line segment may exit from that side (e.g.,
the east edge of the node containing vertex D in Figure 7).

In summary, segment quadiree nodes may contain
either a vertex in whieh case cach line segment in the node
intersects the vertex, or at most a single line segment which,
enters and exits the node. The resulting decomposition is

+We adopt appropriate conventions with respect to open and closed
sides to deal with line Segmients that exit from a corner of a node's block.

386

identical to that of the PA, guadiree: however. the information
stored is different. TFigure 8 shows the segment quadtree
corresponding to the polygonal map of Figure 1. .Compare Lhis
with the PAM,| quadtree of Figure 6.

An important aspect of the above decomposition rule is

that it does not allow any case where there might be an.

unbounded decomposition of the tree. This would result if we
wottld have taken as our decomposition rule one that ¢id not
permit a guadrant to contain more than one line segment. The
maximum depth of the segment gquadtree depends on' two
further factors: the minimum separation between a vertex ang
a line and the minimum separation between two lines.

In the case of geograplic data, images are constructed
from sequences of line segments that intersect oniy at their end-
points. Thus, il a user wishes to specily two intersecting line
segments, then four line segments that meet at a common ver-
tex must be specified. One way of analyzing the maximum
depth of a segment quadiree is in terms of the number of hits
necessary to specifly either the z or y coordinates of the vertices.
For example, il n bit numbers are used to specily the location
of points, then the PR quadtree would have a maximum depth
of n. It can be shown that under the same assumptions, the
segment quadtree would have a maximum depth of 4n.

4. INSERTION INTO THE SEGMENT QUADTREE

Insertion of a line segment into a segment tree proceeds
as follows. If the line segment is to be inserted into a region
represented by an internal node of the quadtree, then it is
clipped against each of the quadrants of that region and the
appropriate component of the line segment is inserted into the
corresponding subquadrants. Once a line segment has been
clipped, it is important to remember whether its endpoints were
vertices of the original line segment or artifacts of the clipping
operation.

Upon encountering a leaf node there are three possible
courses of action depending on its type - i.e., empty, line, or
vertex. If the leaf is empty and the line segment eontains two
vertices (i.e., it is an unclipped line segment), then the region is
further subdivided. If the leaf is empty and the line segment

. contains one vertex, then the node becomes a vertex node and
is marked exited in the direction of the intercept of the line seg-
ment with the border of the node. If the line segment contains
no vertices, then the node becomes a line node. If the leaf is a
line node, then the nodes are decomposed further until the two
line segments are not contained within the same node. If the
leaf is a vertex node, and the line segment either contains
another vertex or does not intersect the vertex, then the leaf
node must be further decomposed. Otherwise, we need only
mark the side of the node that intersects the line segment as
exited.

. 5. DELETION FROM THE SEGMENT QUADTREE

Deletion of a line segment from a segment guadtree is
achieved by applying a two-step process to each quadtree node
through which the line segment passes. First, we must remove
the information corresponding to the presence of the line seg-
ment. Second, we must consider whether or not any of the
modified nodes can be merged with their siblings.

The first step of removing the information correspond-
ing to the presence of a node is quite easy. We simply repeat
the decomposition of the line segment as though it were to be
inserted, locating those segment quadtree leal nodes which con-
tain the segment. Line nodes are marked WHITE. Vertex
nodes require more work since the side of the containing leafl
through which the segiment exits may also be exited by another
{undeleted) line segment. If not, then the vertex segment bit
marking that edge as exited is turned off. If, after this process,
no edge of the node’s block remains marked as exited, then the
line segment being deleted is the only one intersecting that ver-
tex, and the node is marked WHITE.

Merging eligible nodes can be done because it is possible
to determine which neighbors of a node are connected by a line
segment. Bach node which contained a portion of the line seg-
ment being deleted must be considered as a potential candidate
for merger with its three siblings. A node and its three siblings
may be merged if they are either all WHITE, all line nodes (or

‘WHITE) representing portions of the same line, or all represent

a single vertex with only the line segments intersecting the ver-
tex. The first two cases are easily determined by comparing
the values of the node and its siblings - the siblings in this case
will all be at the same depth in the tree. The third case might
be difficult to determine, since two line segments may intersect
at a vertex which is either not contained within the region
covered by the node and its siblings, or stored within a sibling
at a level deeper than that of the node to be merged. There-
fore, it is necessary to check the subtrees of each sibling of the
node to determine if all line segments stored intersect at the
same vertex. If the vertex is not contained in these siblings, we
must then check the siblings of the node’s ancestors until either
the vertex is located, or additional line segments or vertices are
encountered which would not allow the nodes to merge.

For example, consider the deletion of line segment AE
from Figure 1, the result of which is shown in Figure ga. The
leal node marked I is the result of merging since it now con-
tains only portions of line segment AG. The node containing
vertex E is no longer marked as exited on the North. Figure 9b
shows the result of deleting segment CE from Figure 9a. In the
course of deleting the line segment all leaf nodes in the
southeast quadrant will merge to form the node marked II.

8. CONCLUSIONS

The segment quadtree has been presented and shown to
be a suitable data structure for representing linear feature data
in conjuwnction with image databases using lirear quadtrees.
Methods for insertion and deletion of line segments in a seg-
ment quadiree have héen outlined., Border following is also
quite simple. It is achieved by using neighbor finding tech-
nigues to determine the next node to be visited. The segment
quadtree requires fewer nodes than the edge quadtree to store a
collection of linear features since the vertices need not be stored
at the lowest level of resolution as in the edge quadtree. This
means that fewer nodes will be required to represent corners
and intersections. Future work includes its implementation and
integration into the geographical information system described
in [9}, where it will replace the linear edge quadtree.

387

g :r‘m'»-‘.‘-.'.waa.*-'w.-...._—‘.,, .

REFERENCES

1. D.H. Ballard, Strip trees: A hierarchical representation for

curves, Communications of the ACM 24, 5(May 1981), 310-321
(see also corrigendum, Communications of the ACM 85
3(March 1982), 213).

2. L Gargantini, An effective way to represent quadtrees, Com-
munications of the ACM 25, 12(December 1982), $05-010.

3. G.M. Hunter and K. Steiglitz, Operations on images using
quad trees, IEEE Transaclions on Patiern Anelysis and
Machine Intelligence 1, 2(April 1979), 145-153.

4. A. Klinger, Patterns and search statistics, in Optimizing
Methods in Statistics, J.S. Rustagi, Ed., Academic Press, New
York, 1971, 303-337.

5. J.A. Orenstein, Multidimensional tries used for associative
searching, Information Processing Letters 14, 4(June 1982),
150-157.

6. H. Samet and R. BE. Webber, Using quadtrees to represent
polygonal maps, Proceedings of Computer Vision and Patlern
Recognition 88, Washington, DC, June 1983, 127-132.

7. H. Samet, The quadstree and related hierarchical data struc-
tures, ACM Computing Surveys 16, 2(June 1984), 187-260.

8. H. Samet and R.E. Webber, On encoding boundaries with
quadtrees, JEEE Transactions on Pattern Analysis and Machine
Intelligence 6, 3(May 1984), 365-369.

8. H. Saiet, A, Rosenfeld, C.A. Shaffer, and R.E. Webber, A
geographic information system using quadtrees, Patiern Recog-
nilion, 6 (November/December 1684), 647-656.

10. M. Shneier, Two hierarchical linear feature representations:
edge pyramids and edge quadtrees, Computer Graphics and
Image Processing 17, 3(November 1081), 211-224.

-
O

D

Figure 1: A polygonal map.

388

i)

..
B ¢

N

Nl

Figure 2: The edge quadtree for the polygonal map of Figure 1.

Figure 4: The linear
Figure 1,

LT
En
STH | 1]
F L 5
e
e
£
\J\D

edge quadtree for the polygonal map of

" ——

Ja——

" o ap——

- e
Y
.
o

e
ala
.

(o]

« E

(b) The PR quadtree for the points of (a}

Figure 5: A collection of poilits and its PR quadtree.

@

H) A\

\\L/ /

¢C

Dd

FFigure 7: The segment quadtree for a collection of line seg-
ments. Vertex nodes have exised edges marked by a bracket.

Figure 8: The segment quadtree for the polygonal map of Fig-
ure 1.

il

\ .{’47

(a) The result of deleting segment AE from the segment quadg-
tree of Figure 8.

a2

ANE

{b) The result of deleting segment CE from the segment quad-
tree of (a). '

D .

Figure 0: Examples of deletion ol line segments from the seg-
ment quadtree.

389

ISBN 0-8186-0633-9
IEEE CATALOG NUMBER 85CH2145-1

LIBRARY OF CONGRESS NUMBER 85-60198
IEEE COMPUTER SOCIETY ORDER NUMBER 633

@ IEEE COMPUTER SOCIETY

@ THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. INC
(]

egE

COMPUTER
SOCIETY
PRESS

