
OpenDSA: Beginning a Community Active-eBook Project

Clifford A. Shaffer
Dept. of Computer Science

Virginia Tech
shaffer@cs.vt.edu

Ville Karavirta
Dept. of Computer Science

and Engineering
Aalto University

vkaravir@cs.hut.fi

Ari Korhonen
Dept. of Computer Science

and Engineering
Aalto University

archie@cs.hut.fi

Thomas L. Naps
Dept. of Computer Science

University of Wisconsin,
Oshkosh

naps@uwosh.edu

ABSTRACT
In this paper, we present our vision for OpenDSA, an open-
source, community-based effort to create a complete active-
eBook for Data Structures and Algorithms courses at the
undergraduate level. We define active-eBooks as going be-
yond classic hypertextbooks, being a close integration of text
and images with interactive visualizations/simulations and
assessment activities. The OpenDSA project is meant to
proceed with broad participation from the CS Education
community, with maximum flexibility on reuse of materi-
als, and with the ability for a given instructor to pick and
choose material from the collection and modify as desired.
We discuss the goals of the project, our initial community
organization efforts, and the technical infrastructure that we
envision for the project. Initial progress is described.

1. INTRODUCTION
The field of Algorithm Visualization (AV) has made steady

progress with more AVs available and better pedagogical
studies helping us to understand how to make best use of
them [17]. Yet, actual AV use in the classroom is still low
compared to AVs’ claimed favorable view among instruc-
tors. Survey results over a number of years have consistently
shown that instructors face many impediments in using AVs:
difficulty finding good materials, lack of time in classes or
lack of time to change the classes, and lack of understanding
on how to make best use of them [9, 16].

Good online course materials that can provide complete
instructional support for a data structures and algorithms
class could solve many of these problems. If the resources
were well recognized and supported within the CS commu-
nity, then instructors could feel confident in using such ma-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’11, November 17–20, 2011, Koli, Finland.
Copyright 2011 ACM 978-1-4503-1052-9/11/11 ...$10.00.

terial. As a complete solution for instructional material, it
could replace an old implementation for a class in much the
same way that instructors adopt traditional textbooks and
coursenotes. This approach solves problems that instructors
report as a major impediment when “squeezing in” an AV
that does not fit well with the existing instruction process.
At the same time, online interactive courseware can hope
to improve exposition through a richer collection of tech-
nologies than are available through print textbooks, and in-
crease student engagement with the material, allowing them
to learn at a higher level in Bloom’s taxonomy [9].

Fortunately, a number of recent technical advances im-
prove the feasibility of developing, deploying, and using in-
teractive courseware. Increased access to the Internet by
students and instructors, both in and out of the classroom,
makes AV use more practical. This makes a huge difference
in the confidence of mainstream instructors for using such
technology, in contrast to early adopters [3]. Another poten-
tial factor in favor of the use of AVs and interactive course-
ware is ubiquitous availability of laptops and mobile devices.
However, there is a downside to the non-PC devices, in that
they place various technology limits on delivering content.
For example, Java Applets and Flash cannot be displayed
on most such devices.

We will use the term active-eBook to refer to courseware
that goes beyond the classic conception of a hypertextbook.
It closely integrates text and images with interactive visu-
alizations, simulations, and assessment activities. See [10,
11] for background on efforts to define and implement such
artifacts.

Data Structures and Algorithms as a topic can particu-
larly benefit from the use of advanced technology to aid ex-
planation of the dynamic processes that make up the essence
of an algorithm, and which can be difficult to convey using
words and images. There exists no complete electronic text-
book, tightly integrated with AVs, that could be used as
the primary learning resource in a semester-long computer
science course in data structures and algorithms. This is
perhaps surprising because Marc Brown’s groundbreaking
dissertation on AV [1] issued the following caution:

Much of the success of the BALSA system at
Brown [at the time Brown’s thesis was written]

is due to the tight integration of its development
with the development of a textbook and curricu-
lum for a particular course. BALSA was more
than a resource for that course – the course was
rendered in software in the BALSA system.

Why have CS educators not heeded Brown and authored
active-eBooks? We suspect the answer is something known
to anyone who has written a textbook or an AV: it consumes
huge amounts of time. While writing a textbook is a big job,
writing an associated set of AVs and the assessment support
is a far bigger job yet.

Thus, the most practical way to achieve the goal of a com-
plete active-eBook is to involve a broad community of de-
velopers in the effort. This calls for an open-source develop-
ment effort, with the maximum ability to reuse materials.

In this paper, we discuss our plans to create an active-
eBook for a complete semester course in data structures at
the Sophomore level. Our particular focus is on the use of
algorithm visualization [9, 17] as a means both to deliver
the necessary dynamic exposition, and to increase student
interaction with the material.

2. IMPLEMENTATION PRINCIPLES
When considering the full breadth of content that would

be contained in a complete course textbook, we conclude
that three distinct forms of content presentation are de-
sirable. First, no matter how dynamic and interactive the
topic, text and images as are now found in typical textbooks
continue to have their place as part of the exposition. Some
content simply is not visual or dynamic and so is efficiently
transferred via words and images.

Second, some content is essentially expository (i.e., at that
point in the presentation there is no need for student con-
structive interaction), but the content is about dynamic pro-
cesses or conducive to visual presentation. This includes
most algorithm descriptions, such as how a particular sort-
ing algorithm works. Since initial presentation does not in-
volve exploration or decision making, or demonstration of
proficiency, the prime concern is what techniques provide
the clearest explanation. This could best be handled by a
presentation that relies heavily on diagrams and simple an-
imation, with pacing controlled by the the reader. In short,
an animated slide show is adequate for such presentations.

Third, there exist a vast number of instances where the
presentation would be improved by providing student inter-
action. This includes things as simple as probing a calcu-
lation, (e.g., trying different inputs to a simple simulation
or equation). An example is the famous Birthday Problem:
How many people need to be in a room before the odds
are greater than even that two share a birthday? Instead
of presenting a statement of the answer, or even an equa-
tion to compute it, a simple interaction allows the student
to give a value for number of students. The response is the
result of the calculation (the probability of a shared birth-
day). This gives some small opportunity for exploration.
An active-eBook full of such opportunities can permit far
greater engagement.

A deeper form of interaction comes when demonstrating
proficiency with an algorithm, such as the interactive ex-
ercises for tree insertions that are part of TRAKLA2 [6,
7]. Here, students must drag-and-drop nodes at the cor-
rect position in the tree. These are typically handled by

something like a Java Applet and dynamic on-the-fly calcu-
lations/processing of the associated algorithm. Performance
comparisons provide another opportunity for engagement.
Instead of simply claiming that one approach has better per-
formance than another, we can invite the student to provide
inputs and run built-in simulations of multiple data struc-
tures or variants to see how they perform.

Binding all of this together should be a steady stream of
assessment activities to make sure that students stay “on
track” and to keep them engaged even during otherwise pas-
sive exposition. This can be done with simple pop-up ques-
tions (that might or might not require a successful response
to continue) and end-of-section quizzes whose success might
be required to demonstrate competence needed to continue
on to the next section.

As we progress from the first to the third of these presenta-
tion approaches, the development cost goes up dramatically.
Text and images can be developed relatively quickly. In con-
trast, it took several student-years of effort (and over two
actual years) to develop the Virginia Tech Hashing Tutorial
(http://research.cs.vt.edu/AVresearch/hashing). This
is a complete unit of instruction that corresponds to about
one week of class. These development costs came mainly due
to the effort involved in developing a handful of Java applets.
A properly animated slideshow takes longer to create than
equivalent text and images, but should be significantly faster
to implement than a fully interactive exercise.

3. TECHNICAL CONSIDERATIONS
A number of technologies are available for developing each

of the three presentation types described in the previous sec-
tion. Text and images can certainly be done with any tradi-
tional web development tool. The second component, which
we characterize as an animated slide show, can be done (as
the characterization suggests) using a variety of presenta-
tion tools such as MicroSoft Powerpoint, LaTeX’s Beamer
package, OpenOffice Impress, or Apple Keynote. However,
while presentations can be created in these tools, the result-
ing presentations cannot so easily be integrated with the rest
of the active-eBook. Browsers can support some of these
tools as plugins, but not universally across a range of de-
vices. The presentations can be converted to PDF format,
but only Adobe’s Reader can actually display the anima-
tions (at least, evince and xpdf, popular alternative PDF
readers do not). Nor do the PDFs well integrate with non-
PDF portions of the whole, or with embedded assessment
activities.

Java and Java applets are currently the most popular
choice when it comes developing AVs. However Java faces
significant compatibility difficulties with various browsers
and mobile devices, difficulties that are becoming greater
over time rather than improving. Flash is another popular
tool for developing animations, and could support the inter-
active activities as well. However, Flash requires a plugin on
most browsers, and so is not compatible with devices such
as the iPad.

One technology robust enough to implement all desired
dynamic and interactive components is HTML5 incorpo-
rating JavaScript and CSS. HTML5 integrates its dynamic
components well with standard text and images, and eas-
ily ports between PC browsers and mobile devices. Poten-
tial concerns include ease of use for content developers (as
compared to, for example, PowerPoint when developing ani-

mated slide shows), and level of penetration of the necessary
browser technology. Given that alternatives such as Flash
are at least as problematic in terms of a typical user having
access (since they require plugins), the problem of penetra-
tion seems to be low and quickly receding. College-level stu-
dents tend to have access to moderately up-to-date browser
technology. And the core JavaScript/CSS technology is well
supported by browsers, even if some more advanced HTML5
components are not. Thus, we currently advocate use of
HTML5 technology for developing the dynamic components
of the active-eBook. We provide more details in Section 6.

4. INTEGRATED ASSESSMENT AND
MONITORING

There is much evidence that AVs foster effective learning
when presented in a way that forces the student to actively
engage with the visualization instead of passively viewing
it [4, 9]. Additional engagement can be created by hav-
ing the student respond to questions or demonstrate profi-
ciency. Although many AVs include questions, few do so in
a way that allows an instructor to monitor their students’
progress. More typically the student’s interaction with the
system produces immediate feedback to the student, but
the assessment of that interaction is not recorded in a way
that the instructor can access. Nor do the students’ answers
provide a persistent record for the student that a section
has been mastered, or integrate with navigation through the
content such as provided by an “intelligent tutor”. Two AV
systems that do support this sort of integrated assessment
are TRAKLA2 [6, 7] and JHAVÉ [8]. Although TRAKLA2

and JHAVÉ support online assessment of students’ use of
visualizations, they do so in unique, non-portable ways. We
seek an approach that can work with a variety of presenta-
tion mechanisms as well as the active-eBook structure itself
(some but not all questions will come within AVs).

One possibility is a decoupled approach to assessment,
where the assessment process is done by following a link to
a third-party site that provides the relevant series of ques-
tions. This might take place at the end of each section in
the textbook. But a strongly decoupled approach does not
support assessment activities from inside dynamic activities,
such as TRAKLA2-style proficiency exercises. A more flex-
ible approach still involves third party sites, but they are
structured to provide web services. This would even allow
the assessment infrastructure to be broken into separate ser-
vices for (i) supplying questions from a bank or automated
generator, (ii) evaluating the student answers, such as for
a programming question, and (iii) collecting and managing
the students’ solutions for the instructor.

Among the factors that will have to be considered in de-
veloping the assessment architecture are:

• Developing effective strategies for evaluating student
responses. Assessing multiple-choice, multiple-selection,
and fill-in-the-blank questions is straightforward. But
automated assessment of textual responses is clearly
much more difficult. Automated assessment of the cor-
rectness of a programming exercise is also possible with
the right infrastructure.

• Supporting rich activities specific to CS. This includes
multiple-choice questions dependent on the run-time
conditions of an algorithm, visual algorithm simula-
tion exercises such as in TRAKLA2, and small pro-

gramming tasks to be evaluated by comparing output
from the proposed solution to the answer key.

• How to represent test questions. There exist standard-
ized question representations, such as the IMS Ques-
tion and Test Interoperability specification (QTI).1

• How to make all of the above a little bit different for
each student or trial so that copying answers from each
other is not possible, and the same exercise can be
redone to get more practice.

• How to authenticate the student, and store the re-
sponses and results in a way that makes it easy for
instructors to analyze their students’ progress.

• How to store assessments of students’ work in a way
that respects their privacy.

• How to “loosely couple” the assessment system with
the active-eBook. Because the visualizations will be
launched out of the active-eBook we will need to have
a mechanism for recognizing the learner’s identity so
as to interact with the quiz/assessment database that
might be stored on a different server.

5. THE CREATIVE COMMONS
Next we consider the broader context in which develop-

ment of the active-eBook should take place. Such a project
is a huge undertaking. As evidence of this (besides our own
experiences with the extraordinary amount of time that it
takes to develop high-quality AVs), consider that there exist
few examples of the type of artifact that we seek to create.
Ideally, a broader community can be encouraged to con-
tribute to the project, much in the style of an open source
software development effort. The authors have many col-
laborators within the broader AV community, and ideally
we can leverage these collaborations to develop the materi-
als. Since we envision the materials to be distributed with
a GPL or Creative Commons license, intellectual property
rights will be less of an issue than if a commercial publisher
were involved.

The Connexions Project (http://cnx.org) is presently
the largest collection of online textbooks developed with a
creative commons license model. Connexions is more than
a collection of publicly available online textbooks. They
use a “creative commons” infrastructure that makes it easy
for authors to reuse and combine pieces of textbooks, or to
make their own altered version of an existing textbook. We
envision developing an active-eBook within such an infras-
tructure to support sharing and reuse. There are integra-
tion concerns related to, for example, HTML5 technology
or other technology for developing dynamic presentations.
Integration of assessment is also of concern, but Connexions
has recently begun developing support for assessment.

Other collaborative commons for online learning materials
exist. For example, LeMill (http://lemill.net) is a Web
community for finding, authoring and sharing educational
resources supporting also social media features and many
different languages. Many LeMill-based communities have
evolved around learning materials either on specific topics
or written in certain languages.

One of our architectural concerns, especially with a large
number of contributers and potential users involved, is flex-
ibility. It should be possible to access the material from

1http://www.imsglobal.org/question/qtiv1p2/imsqti_
oviewv1p2.html

multiple platforms, such as LeMill and Connexions. This in-
creases the desirability to decouple the various architectural
components (such as text/graphics) from dynamic compo-
nents from assessment services.

We envision a multistage process to develop the active-
eBook project. The first step is to devise a complete man-
agement plan and to define the development workflow within
the chosen implementation infrastructure. Next is to de-
fine a detailed “storyboard” defining a detailed layout for at
least a complete semester’s worth of topics, with all of the
text and detailed descriptions of all places where interactive
activities, assessment, or dynamic presentation are desired.
These detailed descriptions could include mock-ups in, for
example, PowerPoint, or pointers to existing AVs. Third is
to initiate an open development process where submissions
from interested parties are provided for specific activities
called for in the Storyboard, coupled with a reviewing pro-
cess. If developed in this way, the active-eBook will become
“owned by” a broader community of CS educators.

6. THE JSAV LIBRARY
For a number of reasons, the OpenDSA project will bene-

fit from providing development tools for AVs and other dy-
namic components of the system such as interactive exercises
and simulations. First, having such a library makes it eas-
ier for others to contribute resources since they can develop
content more easily. There currently exists little AV support
for JavaScript. Second, using such a library helps to make
the various dynamic components more consistent in look and
feel. Third, providing the library and corresponding docu-
mentation helps to encourage consistent best practice in AV
development. We have begun experimenting with various
approaches to implemention based on JavaScript, and call
the resulting library JSAV for JavaScript AV.

Several general AV systems have been developed in the
past, with nearly all of the systems now active based on
Java. Many popular ones use a scripting language, includ-
ing Animal [14], JHAVÉ [8], and ALVIE [2]. Required fea-
tures for pedagogically effective AVs have been studied by
many [12, 13, 15]. Learning from this prior work, the fol-
lowing summarizes our requirements and ideas for how the
library will support them.

Flexibility: Our vision of the library will include data
structures and automatic layouts and rendering of them
along with graphical primitives that can be used to add
“decorative” elements to the visualization. Since the aim
is to support a wide range of topics and have multiple visu-
alization designers, it is important that the library is both
flexible and extensible. Thus, it should also be possible to
add new data structures, new layout functionality for ex-
isting structures, and other extensions to the library with
reasonable effort.

Overriding existing functionality must be possible. For
example, the visual representation of a“swap”operation in a
sorting AV should be something provided by the library, but
also replaceable by a given developer. As another example,
one developer might wish for a sorting algorithm to show an
array as a horizontal series of boxes with numbers in them.
Another developer might want a horizontal series of vertical
bars with the value of each bar underneath, but no visible
array boxes around these numbers.

Visualization Control: A student should be able to
control step by step visualization execution, going both for-

ward and backward. Additional controls should include chang-
ing the speed of animated sections, or playing the entire
slideshow as an animation. Most presentation-oriented AVs
take the form of a “post mortum” dump of a sequence of
states and their visual transitions, with the ability to move
forward and backward through the sequence (using “stan-
dard” videoplayer controls). Even an AV that seems to
be working on-the-fly can often make use of the state se-
quence paradigm between key stages. For example, con-
sider a search tree AV that lets users enter values to in-
sert/search/delete. For any given operation on the tree, the
user can enter the value, and the AV can generate the se-
quence of states to perform that operation. Then the user
can step back and forth through a visualization of the se-
quence. Implementing this functionality requires storing the
states and forward/backward transitions between them.

Explanations: AVs should include textual explanation
of the action that is taking place, since dynamic messages
have been shown to be one of the most important features
of effective AVs. These comments are generated by the AV
as the visualization progresses. Often this involves compu-
tation of values tied to the particular input example being
processed. If such input is generated on-the-fly, then obvi-
ously the contents of the messages also have to be generated
on-the-fly, or at least parameterized. In addition, messages
need to be color coded.

Orthogonal to defining the messages themselves is the de-
livery of the messages onto the screen. There are different
ways that this can be done effectively. One approach in-
volves a window, usually taller than it is wide, that gives
room for many messages. A scroll bar allows the user to
see previous messages. However, sometimes a designer will
want another approach if, for example, it is not viable to give
this much screen real estate to the messages. Or perhaps a
history is not needed, and showing only one message at a
time is preferred. The messaging system must be flexible to
adapt to various needs. It should be possible to define a mes-
sage pane with scroll bar, or to define a simple one-or-two
line overwriting scheme simply by changing configuration
parameters when initializing the visualization. Even more
flexibly, any component on the page might register as an
event listener for new messages and display them as it sees
fit.

Engagement: Engagement is the key to effective AVs [4,
9]. A simple form of engagement can be created through

pop-up questions such as are available in JHAVÉ or Ani-
mal. Custom input data provided by the user also forces
engagement. Greater engagement comes from students sim-
ulating the steps of an algorithm such as in TRAKLA2. In
our vision, the library will provide support for all of these
engagement methods. Like the messages, pop-up questions
related to the content of the visualization will need to be gen-
erated on-the-fly when the student is using the visualization.
Again, the display of the questions needs to be flexible to
suit various screen sizes and visualization layouts.

TRAKLA2 like visual algorithm simulation [5] requires
a different approach. The library needs to support speci-
fying operations that happen in the data structures when
the student clicks or drag-and-drops components within the
visualization. The result of these operations should be a
visualization sequence. In addition, the library should sup-
port sending a trace of operations/states to an assessment

server (see discussion in Section 4), or alternatively, grade
the assignment in the browser.

Pseudocode: Pseudocode display is a common feature
of AVs. Most developers want to provide this functional-
ity in the system if it is not too much work. But build-
ing the infrastructure is often considered too difficult for
many developers. Therefore we should supply this, and do
it right. The best pseudocode system that we know of ap-
pears in Algorithms in Action (AIA) [18], and we want our
library to support something similar. The AIA approach to
pseudocode display has the concept of collapsing hierarchies,
where a function might be presented either by a single com-
ment or by multiple lines, each of which might in turn be
expanded into multiple lines. Once this relationship is spec-
ified, everything should be handled automatically for the
developer aside from actually calling the highlighting func-
tion in the library that indicates the “current” pseudocode
line to be highlighted at any given instant in the visual-
ization. Of course, the pseudocode drives the AV as well.
When a section of the pseudocode is closed, the visualiza-
tion should skip over those details. Thus, the AV driver has
to be able to get the necessary information about the state
of the pseudocode hierarchy.

We imagine this to work by having a replaceable module
within the library that can be queried by the visualization
that will return information whether a certain step should be
visualized. One implementation of the module might get the
information from the folding of the pseudocode. Another im-
plementation might query a student knowledge model (when
used with an assessment server) to decide whether the step
should be shown to the student.

Server-side Support: To be usable in grading, the AV
library needs to connect to an assessment system to get a
grade and to a course management system to store the re-
sults. Communication can be done using AJAX, but as
discussed in Section 4, the specification for the questions,
answers, and grades is still undecided.

User Interface: There typically are many distinct vi-
sual components to an AV, including possibly pseudocode,
messaging, and one or more visualization panes. CSS styling
will allow a high degree of tailored configurations for the AV
container to define various panes as desired. For example,
one can define the messaging pane of arbitrary size and po-
sition within the container, with options as described above
regarding scrolling vs. overwriting. Messages automatically
get sent there. One can define a pane of whatever size and
position, which automatically presents the associated pseu-
docode. One can define a main visualization pane, and direct
graphical objects to there. Or two visualization panes, and
send appropriate objects to each. As the distinct compo-
nents of the AV will be HTML, the layout of the panes can
be flexibly specified using standard CSS styling to change
the default layouts of the library.

Ideally, JSAV will support all of these requirements. In
addition, there are JavaScript and browser environment-
related requirements. The library needs to support hav-
ing multiple visualizations on one browser page. Further-
more, the layouts of the data structures should adapt to the
browser window size (including mobile devices). Finally, it
should support an event-based architecture for communica-
tion between different components. This will enable loose-
coupling of components, and facilitate the introduction of

other components offering similar but customized function-
ality as the ones in the library. As a simple example, this
could be listening for message events to show them as pop-up
alerts instead of changing the contents of an HTML element.

The development of the library has already started. Cur-
rently, the library prototype supports several of these re-
quirements. The user interface can be specified with HTML,
and JSAV functionality such as messages/explanations and
visualization controls can be added with HTML class at-
tributes. Data structure array is supported with multiple
layouts and effects to modify the array. Engaging visual
algorithm simulation exercises can also be created. The as-
sessment of such exercises is done within the browser in two
possible modes: continuous feedback after each step and on
request.

7. CONCLUSIONS AND FUTURE WORK
We aim to build a community that will commit to devel-

oping an active-eBook covering many CS topics, including
many high quality interactive AVs and many assessment ex-
ercises. This will require many participants. In addition, we
need an infrastructure to maintain the materials and to al-
low data flow among different components. The focus is on
rich types of activities beyond the current state-of-the-art.

A project this large requires that those who work on it
have input into the development process early and often.
Otherwise decisions will be made that do not reflect a broad
perspective, leading to a rigidity in standards that might
discourage participation from those who might otherwise be
interested. This early input must come both from those
who see as their main contribution the authoring of textual
material that employs AVs and from those who see as their
main contribution the development of software components
of the JSAV library. Decisions to be made by those who
will be authoring textual material include the nature of the
pseudocode that will be used to describe algorithms and the
style of mathematical notation used to analyze algorithm
efficiency. Those who will contribute their efforts to the
JSAV library need a unified vision of the APIs they will use
for the variety of subsystems that will comprise the library.
These include APIs for:

• Data structure support
• Graphical primitive support
• User controls
• Messages/explanations
• Pseudocode display
• Question-creation API
• Input generator API
• Algorithm simulation API
• Assessment API

We have developed example tutorials that point the way
toward the desired goal. In addition to the aforementioned
Hashing Tutorial, the AlgoViz catalog includes, for exam-
ple, a Binary Heap Tutorial embedded with TRAKLA2 ex-
ercises. Moreover, we have experimented with TRAKLA2
and JHAVÉ, interconnecting the two systems together.

Many management issues need to be resolved. These in-
clude how and where to store all materials in a way that
supports open source-style development. Our initial efforts
at developing JSAV are already available at the OpenAl-
goViz SourceForge project repository for public inspection.
But this might not be sufficient to support a larger commu-
nity effort.

We also need a reviewing mechanism for dealing with ac-
cepting and integrating contributed material. The material
should be peer reviewed and improved based on the feed-
back. Feedback should be in terms of comments suggesting
improved wordings or versions (in case of text and figures) or
tasks describing how to improve the AV (in case of software).
A project manager for each chapter could be responsible of
making the decisions which changes to accept or reject.

Further information about the status of the OpenDSA
project can be found at the community forum (http://
algoviz.org) and the project Wiki (http://algoviz.org/
ebook).

As this is a discussion paper, we raise a number of ques-
tions for the larger community (and the delegates of Koli).

• Do you agree with our vision of the open data struc-
tures and algorithms active-eBook?

• How can it be refined?
• Are you interested in participating in such a project?
• How should we inform the rest of the community to

pay attention to this project?
• How can we engage the community to participate in

this project?

8. REFERENCES
[1] M.H. Brown. Algorithm Animation. MIT Press,

Cambridge, Massachussets, 1988.

[2] P. Crescenzi and C. Nocentini. Fully integrating
algorithm visualization into a CS2 course: A two-year
experience. In Proceedings of the 12th Annual
Conference on Innovation and Technology in
Computer Science Education (ITiCSE), pages
296–300, 2007.

[3] K. Hew and T. Brush. Integrating technology into
K12 teaching and learning: current knowledge gaps
and recommendations for future research. Educational
Technology Research and Development, 55:223–252,
2007.

[4] C.D. Hundhausen, S.A. Douglas, and J.T. Stasko. A
meta-study of algorithm visualization effectiveness.
Journal of Visual Languages and Computing,
13:259–290, June 2002.

[5] A. Korhonen. Visual Algorithm Simulation. Doctoral
dissertation (tech rep. no. tko-a40/03), Helsinki
University of Technology, 2003.

[6] L. Malmi, V. Karavirta, A. Korhonen, J. Nikander,
O. Seppälä, and P. Silvasti. Visual algorithm
simulation exercise system with automatic assessment:
Trakla2. Informatics in Education, 3(2):267–288,
September 2004.

[7] L. Malmi and A. Korhonen. Active Learning and
Examination Methods in a Data Structures and
Algorithms Course, pages 210–227. Number 4821 in
LNCS. Springer-Verlag, 2008.

[8] T.L. Naps. Jhavé: Supporting algorithm visualization.
IEEE Computer Graphics and Applications, 25:49 –
55, September 2005.

[9] T.L. Naps, G. Rössling, and nine more authors.
Exploring the role of visualization and engagement in
computer science education. In Working Group
Reports from ITiCSE on Innovation and Technology
in Computer Science Education, pages 131–152, 2002.

[10] R.J. Ross and M.T. Grinder. Hypertextbooks:
Animated, active learning, comprehensive teaching
and learning resources for the web. In S. Diehl, editor,
Software Visualization, pages 269–284. Springer, 2002.

[11] G. Rössling, T. Naps, and nine more authors. Merging
interactive visualizations with hypertextbooks and
course management. In Working Group Reports from
ITiCSE on Innovation and Technology in Computer
Science Education, pages 166–181, 2006.

[12] G. Rößling and T.L. Naps. A testbed for pedagogical
requirements in algorithm visualizations. In
Proceedings of the 7th Annual SIGCSE Conference on
Innovation and Technology in Computer Science
Education, ITiCSE’02, pages 96–100, Aarhus,
Denmark, 2002. ACM Press, New York.

[13] G. Rößling and T.L. Naps. Towards intelligent
tutoring in algorithm visualization. In Second
International Program Visualization Workshop,
PVW’02, pages 125–130, Aarhus, Denmark, 2002.
University of Aarhus, Department of Computer
Science.

[14] G. Rößling, M. Schüer, and B. Freisleben. The
ANIMAL algorithm animation tool. In Proceedings of
the 5th Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE),
pages 37–40, 2000.

[15] P. Saraiya, C.A. Shaffer, D.S. McCrickard, and
C. North. Effective features of algorithm
visualizations. In Proceedings of the 35th SIGCSE
technical symposium on Computer Science Education,
SIGCSE’04, pages 382–386, New York, NY, USA,
2004. ACM.

[16] C.A. Shaffer, M. Akbar, A.J.D. Alon, M. Stewart, and
S.H. Edwards. Getting algorithm visualizations into
the classroom. In Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education
(SIGCSE’11), pages 129–134, 2011.

[17] C.A. Shaffer, M.L. Cooper, A.J.D. Alon, M. Akbar,
M. Stewart, S. Ponce, and S.H. Edwards. Algorithm
visualization: The state of the field. ACM
Transactions on Computing Education, 10:1–22,
August 2010.

[18] L. Stern, H. Søndergaard, and L. Naish. A strategy for
managing content complexity in algorithm animation.
In Proceedings of the 4th annual SIGCSE/SIGCUE
ITiCSE conference on Innovation and technology in
computer science education, ITiCSE ’99, pages
127–130, New York, NY, USA, 1999. ACM.

