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Abstract—A global optimization technique is applied to solve
the optimal transmitter placement problem for indoor wireless
systems. An efficient pattern search algorithm— DIviding RECT-
angles (DIRECT) of Jones ef al.—has been connected to a parallel
three-dimensional radio propagation ray tracing modeler running
on a 200-node Beowulf cluster of Linux workstations. Surrogate
functions for a parallel wideband code-division multiple-access
(WCDMA) simulator were used to estimate the system perfor-
mance for the global optimization algorithm. Power coverage
and bit-error rate are considered as two different criteria for
optimizing locations of a specified number of transmitters across
the feasible region of the design space. This paper briefly describes
the underlying radio propagation and WCDMA simulations and
focuses on the design issues of the optimization loop.

Index Terms—Bit-error rate (BER), DIviding RECTangles
(DIRECT) algorithm, global optimization, power coverage, ray
tracing, surrogate function, transmitter placement, wideband
code division multiple access (WDCMA).

I. INTRODUCTION

PTIMAL transmitter placement provides high spectral
() efficiency and system capacity while reducing network
costs, which are the key criteria for wireless network planning.
As the complexity and popularity of modern wireless networks
increases, automatic transmitter placement provides cost sav-
ings when compared to the traditional human process of site
planning. Automatic design tools are being developed to offer
efficient and optimal planning solutions. The system described
here, the site-speific system simulator for wireless system
design (S*W), is among the few known wireless system tools
for in-building network design besides [2], [6], [8], and [12].
An optimization loop in S*W is proposed to maximize the
efficiency of simulated channel models, and surrogate functions
are proposed to reduce the cost of simulations. Transmitter
placement optimization is one specific problem that can be
solved by S*W. The key contributions of the present work are
surrogate modeling, application of the DIviding RECTangles
(DIRECT) algorithm, and the simulation results.
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In general, transmitter placement optimization is aimed at
ensuring an acceptable level of wireless system performance
within a geographical area of interest at a minimum cost.
Reference [2] considers the major performance factor to be the
power coverage, defined as the ratio of the number of receiver
locations with received power above an assumed threshold
to the total number of receiver locations. In [6] and [10],
the objective function is based on several weighted factors
such as covered area, interference area, and mean signal path
loss. Reference [1] proposes a quality of service (QoS)-based
penalty function resulting in an unconstrained optimization
problem. The present work considers two performance metrics
that are continuous penalty functions defined in terms of power
coverage levels and bit-error rates (BERs) at given receiver
locations within the covered region. Both objective functions
are devised to minimize the average shortfall of the estimated
performance metric with respect to the corresponding threshold.
Three-dimensional (3-D) ray tracing is used as a deterministic
propagation model to estimate power coverage levels and
impulse responses within the region of interest for transmitter
locations sampled by the optimization algorithm [9]. Surrogates
for the Monte Carlo wideband code-division multiple-access
(WCDMA) simulation are used to estimate the BERs for the
second optimization criterion. Both the surrogates and the
WCDMA simulation utilize the impulse responses estimated
by the ray tracing model. Since 3-D ray tracing and WCDMA
simulation are computationally expensive, MPI-based parallel
implementations are used in the present work.

The underlying optimization algorithm is known as DIRECT,
a direct search algorithm proposed by Jones et al. [7]. It was
proposed as an effective approach to solve global optimization
problems subject to simple constraints. Jones et al. [7] named
the algorithm after one of its key steps—dividing rectangles. DI-
RECT is a pattern search method that is characterized by a series
of exploratory moves that consider the behavior of the objective
function at a pattern of points, which are chosen as the centers
of rectangles. This center-sampling strategy reduces the com-
putational complexity, especially for higher dimensional prob-
lems. Moreover, DIRECT adopts a strategy of balancing local
and global search by selecting potentially optimal rectangles to
be further explored. This work extends that in [11] the second
known application of DIRECT to wireless communication sys-
tems design.

II. SURROGATE MODELING

A simplified propagation model based on [9] is used with
additional reflections incorporated. Neither diffraction nor scat-
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tering are modeled for computational complexity reasons. In ad-
dition, octree space partitioning and image parallelism with dy-
namic scheduling are used to reduce simulation run time. Mod-
eling details are in [11].

This propagation model predicts a measured impulse re-
sponse P Py* ... P of a wireless channel, but it does
not directly predict the performance of any particular wireless
system that operates in this channel. A meaningful perfor-
mance metric is the BER, defined as the ratio of the number of
incorrectly received bits to the total number of bits sent. The
power level P/™ at the receiver location maps directly to the
BER of a narrowband system designed for n = 1. However,
estimating the BER of a wideband system (designed for n > 1)
in a mobile wireless environment usually involves analytically
nontractable problems. This work uses simple least squares
and multivariate adaptive regression splines (MARS) [3] to fit
the results of a Monte Carlo simulation of a WCDMA system.
The WCDMA simulation models channel variation due to
changes in the environment as a random process and models
the wireless channel as a linear time varying process. Reference
[11] contains the complete modeling details.

The WCDMA simulation is computationally intensive since
a satisfactory BER value ranges from 1073 to 1076, The
parallelized WCDMA simulator significantly speeds up the
simulation process, but its run time is still far from practical
for optimization problems. The BER depends on small-scale
propagation effects that exhibit large variation with respect
to receiver location. Practical coverage optimization problems
involve wavelengths of less than a foot and areas of thousands
of square feet. Four samples per wavelength should be taken
to obtain meaningful aggregate results. Therefore, the BER
results of the WCDMA simulation were approximated by
simple models.

Consider a distribution of impulse responses in the environ-
ment, as measured by the receiver with the carrier frequency
900 HMz, the standard chip width § =~ 260 ns, and a dynamic
range (a ratio of the peak power to the noise level) of 12 dB.
Empirically, 49% of the impulse responses have only one multi-
path component (n = 1), 42% have two multipath components
where the first one is dominant (n = 2, P > P3"), 7% have
two multipath components where the second one is dominant
(n = 2, P[" < P3"), and the remaining 2% have three multi-
path components (n = 3). It turns out that simple models can
approximate the BERs at the majority of the receiver locations.
This work considers the first two cases that account for 91% of
the data.

Given a measured impulse response P{", Py, ..., P, de-
fine the relative strength of the first multipath component p; =
P/ cic,, P/ and the signal-to-noise ratio (SNR) S =
maxi<i<n{10log,o(P/™/No)} (in decibels), where Ny is the
noise power level (in watts).

The BER b; of a WCDMA system in the first case (n = 1,
p1 = 1) was approximated by log,(b1) = —0.2515 — 2.258,
obtained by a linear least squares fit of the simulated BERs for
S =0,2,...,30in steps of 2 dB (16 points). In other words, the
BER of a WCDMA system with a single path is a simple mono-
tonically decreasing function of the SNR. This observation justi-
fies the use of power levels to predict system performance when
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Fig. 1. MARS surface plot of no-channel coding model.

TABLE I
SUMMARY OF TIME, COST (NUMBER OF RAY TRACING ITERATIONS), AND
IMPROVEMENT (RELATIVE FUNCTION VALUE REDUCTION) FOR POWER
COVERAGE AND BER OPTIMIZATION EXPERIMENTS WITH N TRANSMITTERS
ON DURHAM HALL, FOURTH FLOOR AND WHITTEMORE HALL, SECOND FLOOR

Durham Hall Whittemore Hall
Objective | N time | cost | improvement | cost | improvement
Power 1| 3min, 45sec| 41 222%| 28 37.7%
BER 1 — — —1 34 60.7%
BER 2| 3hr, 26min| 56 79.9%| — —
Power 3 38min| 93 9.4%| 54 48.9%
BER 3 — — —| 54 64.2%

there is no multipath. However, using the strongest multipath
component to predict the BER does not work when n > 1.

The second case (n = 2, p; > 0.5) was approximated using
MARS models. The MARS models provided a more accurate fit
to the data in comparison with the previously used linear least
squares fit [11], reducing both the relative and absolute error.
The MARS fit is a sum of products of univariate functions in
the form

M K,
f(x) =ap+ Z Qap H By, (J:U(k,n)) .
n=1 k=1

In this model, the multivariate spline basis functions are denoted
by B and their associated coefficients by a. This expansion of
spline basis functions determines the number of basis functions
M as well as product degree and knot locations (number of splits
that gave rise to B,, is denoted by K,,) automatically from the
data. In this model, the covariates are represented by x, where
U(k,n) label the predictor variables. MARS models were de-
veloped for three different coding choices: no-channel coding,
rate 1/3 coding, and rate 1/2 coding. The latter two cases both
use forward error correction code (FECC) to improve the BER
performance. A soft decision Viterbi algorithm is used in de-
coding the convolutional FECC because it produces a smaller
BER than the hard decision Viterbi algorithm. The difference
between these two cases lies in the convolutional code rate. Rate
1/3 coding provides a better error correction mechanism than the
rate 1/2 coding.

The data used to build the no-channel coding model con-
sisted of 63 points from a Cartesian product of S = 0,1, ...,20
and p; = 0.9,0.7,0.5, and 48 points from a Cartesian product
of §$ = 0,1,...,15 and p; = 0.9,0.7,0.5 for the channel
coding models. Plots of the fitted models reveal that the BER ap-
proaches zero as the SNR increases and that stronger multipath
significantly improves performance for a fixed SNR. The latter
needs some explanation because multipath is often thought of
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(a) Power coverage optimization results for a single transmitter and (b) three transmitters. Bounds on transmitter placement are drawn with dotted lines

and their initial (final) positions are marked with circles (crosses). Dashed line delimits the region to be covered.

as an impairment that degrades the system performance. In this
work, the SNR is defined in terms of the strongest component
of the impulse response. When the SNRs of two channels that
meet the criteria for this case are the same, the channel with a
stronger second component contains more total power than the
channel with a weaker second component. In this case, the ben-
efits of more power outweigh the disadvantages of multipath.

Both surrogate models were validated with the simulated
BER results. In the first case, the approximate values had an av-
erage relative error of 9.7% (0.9% minimum, 19.4% maximum)
for the simulation output at S = 1,3,...,29. In the second
case, the approximate values had an average relative error of
12.8% and average absolute error of 0.0006 for the no-channel
coding model, 14.1% average relative error and 0.0005 average
absolute error for the rate 1/3 coding model, and 19.9% average
relative error and 0.0012 average absolute error for the rate 1/2
coding model. The validation sets for the second case consisted
of 42 points for a Cartesian product of S = 1,2,...,20 and
p1 = 0.8,0.6 for the no-channel coding model, and 32 points
for a Cartesian product of S = 1,2,...,15and p; = 0.8,0.6
for the channel coding models.

Finally, observe that the models for the two cases are not
asymptotically matched. The simulated WCDMA receiver had
two rake fingers, one of which was turned on or off depending
on whether or not the second multipath component met the rela-
tive power threshold. Empirically, both models cover 91% of the
data with about 9.7% average relative error for the least squares
model and 15.6% average relative error and 0.0008 average ab-
solute error for the MARS models. The quality of the MARS
approximation is apparent in Fig. 1, which shows the MARS
spline surface for the no-channel coding model, the points used
to construct it (p; = 0.9, 0.7, 0.5), and the points used to vali-
date the approximation (p; = 0.8, 0.6).

III. DIRECT

Starting from the center of the initial design space {z €
E™{¢ < z < wu} normalized to a unit hypercube, DIRECT

makes exploratory moves across the design space by probing and
subdividing potentially optimal subsets, which are most likely to
contain the global minimum. “Potentially optimal” has a precise
mathematical definition [7] based on a Lipschitz condition.
The DIRECT box selection strategy prevents the search from
becoming too local and ensures that a nontrivial improvement
will (potentially) be found based on the current best solution.

Choices for a stopping condition include an iteration limit, a
function evaluation limit, minimum diameter (terminate when
the best potentially optimal box’s diameter is less than this min-
imum diameter), and objective function convergence tolerance
(exit when the objective function does not decrease sufficiently
between iterations). The objective function convergence toler-
ance was inspired by some experimental observations running
the DIRECT algorithm, where the objective function sharply de-
creases at the beginning and levels off at the end (see Fig. 4).
The objective function convergence tolerance is defined as 77 =
(fmin — fmin)/(1.04 fimin), where fi,i, represents the previous
computed minimum. The algorithm stops when 75 becomes less
than a user specified value.

The present implementation of the DIRECT algorithm ad-
dresses an efficiency issue involved in an unpredictable storage
requirement in the phase of space partitioning. The main
problem to be solved is how to store the large collection of
boxes, typically viewed as a set of separate columns. The key
operations are to find the element in a column with least value,
to remove this least valued element, and to add new elements
to a column. Thus, each column can be viewed abstractly as a
priority queue. Implementation details are given in [5].

As [7] proved, the DIRECT algorithm is guaranteed to con-
verge globally if the objective function is Lipschitz continuous.
However, the original definitions for both performance cri-
teria—power coverage and BER—do not satisfy this condition.
Similar to the power coverage criterion introduced in Section I,
BER is the ratio of bits that have errors relative to the total
number of bits received in a transmission. Reformulation is
required to eliminate the discontinuity.
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Fig. 3. BER optimization results for two transmitters. Bounds on transmitter
placement are drawn with dotted lines and their initial (final) positions are

marked with circles (crosses). Dashed line delimits the region to be covered.
(a) Objective function. (b) Percentage of receivers with satisfied BER values.

Transmitters are assumed to operate at sufficiently different
frequencies so that receivers can pick up the strongest signal. In
other words, the indoor environment is only considered as a cov-
erage-limited one, which is different from an interference-lim-
ited environment, where the outage is a result of cochannel sig-
nals dominating or interfering with the wanted signals [1]. Such
an environment presents more complexities and challenges for
implementing the WCDMA channel model. In the present work,
the ray tracing technique serves as a deterministic way to cal-
culate the local mean signal power propagating from the trans-
mitter to each receiver on the reception grid.

As in [2], the design variables are the transmitter coordinates
X = (®1,Y1,21,%2,Y2, 22, - - -, Tny Un,, 2n ), Where all z; = 2o
are assumed to be fixed, which is a reasonable assumption in in-
door environments. Permuted coordinates will occur during op-
timization, since the DIRECT algorithm treats the function as a
black box and has no knowledge of any symmetry relationships.
A solution is to simply sort coordinates on each dimension and
buffer current pairs of sorted coordinates and the corresponding
function values. When the permuted coordinates are detected by
the optimizer, the function value will be taken directly from the
buffer instead of calling the ray tracer to reevaluate the function.
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Fig. 4. Power coverage optimization results for two transmitters with
objective function convergence tolerance= 0 (dashed) and 0.001 (solid).
Region of interest is delimited by dashed lines. Initial locations are marked as
circles. Bounds on transmitter placement are drawn with dotted lines.

With the stated assumption and the design variables above,
the single transmitter location problem is a special case of the
n transmitter problem with n = 1. The goal is to minimize the
average shortfall (power coverage or BER) of the n transmitters
over m receiver locations. Let transmitter (k, %), located at (x,
Yk, 20), 1 < k < n and generate the highest peak power level
Pri(zr, y, 20) > Pji(x;,95,20), 1 < j < n at the receiver
location 4, 1 < ¢ < m. The objective function is the average
shortfall of the estimated performance metric from the given
threshold T, given by

3

~ > (T — pri),, coverage

<
Il
=

f(X) =
(pri —T),, BER

<
Il

3
L0=

where py; is the performance metric of transmitter (k, ) evalu-
ated at the sth receiver location. For power coverage optimiza-
tion, pg; is Pri(zk, yx, z0) and (T — pki)+ is the penalty for
a low power level. For BER optimization, px; is BERg; and
(pri — T')+ is the penalty for a high BER.

IV. OPTIMIZATION RESULTS

Optimization was done using a problem-solving environment
(PSE) as outlined in [11]. Transmitter placement was optimized
executed for two indoor environments with respect to the two
performance criteria—power coverage and BER. The first envi-
ronment, located on the fourth floor of Durham Hall at Virginia
Tech, was the first case study for the global optimization tech-
nique. Simulations have been verified with measurement data on
the first environment [11]. The second environment had been
used in both raytracing simulations and measurements in [9],
which considers signal diffractions in the propagation model so
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Power coverage and BER optimization results for a single transmitter and three transmitters. Bounds on transmitter placement are drawn with dotted lines

and their initial (final) positions are marked with circles (crosses). Dashed line delimits the region to be covered. (a) Power coverage. (b) BER.

that it can match well the measured and predicted propagation in
a variety of indoor environments. (The propagation model code
of [9], while having better physics than the present ray tracing
code, is orders of magnitude slower because of inefficient data
structures.) Table I summarizes the simulation results, discussed
in detail in [4] on both environments.

A. Durham Hall, Fourth Floor

The results of optimizing the transmitter placement in the
case of power coverage are shown in Fig. 2. For a single trans-
mitter, it took 41 evaluations (3 min, 45 s) to reduce the objective
function by 22.2% (from 4.60 to 3.58 dB). For optimizing three
transmitter locations to cover the region of interest in the upper
left corner, it took 93 function evaluations to reduce the objec-
tive by 9.4% (from 2.77 to 2.51 dB) in 38 min on 40 machines.
Fig. 3 depicts BER optimization of the locations of two transmit-
ters to cover half of the former region. In Fig. 3(a), 56 iterations
reduced the objective function from 8.24e-4 to 1.65e-4 in 3 h and
26 min on 40 machines. The BER threshold was 1073, so this
improvement corresponds to a 79.9% reduction in the average
BER. Fig. 3(b) shows that the percentage of the receivers with
satisfied BER is growing as the objective function decreases. In

both cases, the optimization loop stops with the minimum di-
ameter required by the problem. System performance was sig-
nificantly improved by DIRECT with a reasonable number of
evaluations.

Fig. 4 demonstrates the effectiveness of the new stopping cri-
terion—objective function convergence tolerance. This figure
shows the power coverage optimization results for two trans-
mitters. Two simulations were done with different objective
function convergence tolerances, 0 and 0.001. In the former
case, it took 52 iterations to reach the final locations (marked
as crosses). In the latter case, the final locations (marked as
triangles) were found after 27 iterations. Using a nonzero
objective function convergence tolerance saved 25 expensive
ray tracing iterations.

B. Whittemore Hall, Second Floor

Fig. 5 shows the results for optimizing the placement for a
single transmitter and three transmitters in terms of both power
coverage and BER. To optimize the single transmitter location,
the minimum diameter stopping criterion was used. It took six
more evaluations for the BER optimization to finish than the
power coverage optimization. Since BER simulation is affected
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by numerous system and channel parameters such as SNR,
data rate, modulation type, etc., it is very sensitive to parameter
changes caused by changing transmitter locations. The objec-
tive function for BER exhibits more complexity (both multipath
components are involved when there are two resolvable paths)
than the one for power coverage (only the dominant multipath
component is considered); therefore, it takes more evaluations
to approach the global optimum. Fig. 5(a) shows that the final
locations are different (cross for powers, triangle for BER).
Generally, BER optimization results are preferred, since BER
is considered a better performance criterion in the design of
mobile communication systems as pointed out in Section II. In
the case of optimizing three transmitter locations, the stopping
criterion was the maximum number of evaluations. Both BER
and coverage optimization stopped at the 54th iteration. The
exact same final transmitter locations were reached at the 51st
iteration. Interestingly, the final locations are exactly the same
[marked as crosses at the top of Fig. 5(b)]. This indicates a
reasonable connection between these two performance metrics,
power coverage and BER.

The cost and improvement for these four experiments on the
second floor of Whittemore Hall are compared in Table I. In both
cases, the BER optimization achieved a better improvement than
the power coverage optimization with almost the same cost. For
the single transmitter, the objective function value of the BER
optimization was reduced by 60.7% while the power coverage
optimization improved only by 37.7%. In the case of three trans-
mitters, the objective function was reduced by 48.9% for the
power coverage optimization and by 64.2% for the BER opti-
mization. From this comparison, the DIRECT algorithm works
very cost effectively for BER optimization problems. On the
other hand, the center-sampling strategy of DIRECT benefits
the power coverage optimizations by starting at the centers of
bounded areas, so that the well-distributed initial locations only
need a little adjustment. This can also explain why the power
coverage optimization gave less improvement.

V. CONCLUSION

The main contribution of the present paper is the design of an
optimization loop that takes feedback from a sophisticated sur-

1911

rogate model of a wireless system. The DIRECT algorithm ef-
fectively solved the global optimization problem of transmitter
placement. Extensions to the present work include BER sur-
rogate functions for channels with relatively strong multipath
and interference and consideration of wireless systems with data
quality BERs (1076).
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