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Theoretical molecular biologists attempt to describe cellular processes and regulatory networks with
continuous and discrete mathematical models. Previous practice has been to develop models largely
by hand and then to validate them primarily by comparing time-series plots versus the observed
experimental results. The authors report their experiences in designing and building a modeling
support environment for cell cycle models. They describe improvements to the development process
for molecular network models by (a) identifying the key elements of the existing modeling process,
(b) incorporating simulation methodology into a revised modeling process, and (c) building and testing
software that supports the revised modeling process.
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1. Introduction

Mathematical models of biochemical control systems at-
tempt to derive observed physiological properties of cells
from the underlying molecular regulatory networks. Ex-
amples include growth and division, chemotaxis, secre-
tion, and circadian rhythms. The hope is that creating such
models will lead to a higher level understanding of the bi-
ological processes involved. The common form of such
models is (at some point in the process) systems of dif-
ferential equations with discrete switching. A number of
independent groups have been developing tools to support
aspects of the modeling process; a sampling includes Loew
and Schaff [1], Mendes [2], and Sauro [3]. BioSPICE [4]
is a major effort by DARPA to provide a new generation
of interoperable modeling and simulation tools. It seeks to
improve the quality of pathway modeling by providing the
community with common languages for expressing models
[5, 6] and interoperability between various model descrip-
tion editors, simulators, and analysis tools.
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However, the recent state of pathway modeling has been
largely ad hoc and labor intensive, as most modelers have
not tried existing tools, or those tools have proved inade-
quate for their needs. Many modelers still work by hand-
sketching their ideas (see the discussion of wiring diagrams
below) and then manually converting those sketches to dif-
ferential equations. Analysis often involves visual compar-
isons between time-series plots and experimentally col-
lected results.

This article describes how introducing appropriate mod-
eling tools can improve the speed and accuracy of the
model development process (which directly permits the
creation of larger, more complex models) and also can lead
to a more disciplined approach to the model life cycle.

We present a brief description of typical molecular regu-
latory network models in section 2. The original modeling
process observed in a representative portion of the com-
munity is described in section 3. Section 4 describes how
the conical methodology [7] relates to the observed mod-
eling process and can be used to improve the modeling
life cycle. Section 5 briefly describes the JigCell model-
ing support environment (MSE) developed for cell cycle
modeling and related problems and compares JigCell to
existing pathway modeling software. Section 6 describes
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the impact that the Systems Biology Markup Language
standardization effort and the BioSPICE project, of which
JigCell is a part, have had on the modeling community.
Section 7 presents our conclusions.

2. Molecular Regulatory Networks

A simple example of a regulatory network is the set of
reactions controlling the activity of a mitosis-promoting
factor (MPF) in frog eggs (see Fig. 2). Such networks are
often represented as graphs, where vertices represent sub-
strates and products (collectively referred to as species),
and labeled directed edges connecting vertices represent
the reactions. Chemical reactions cause the concentrations
of the chemical species (Ci) to change in time according
to the equation

dCi

dt
=

R∑

j=1

Pijvj , i = 1, . . . , N,

where R is the total number of reactions, vj is the veloc-
ity of the j th reaction in the network, and Pij is the stoi-
chiometric coefficient of species i in reaction j (pij < 0
for substrates, pij > 0 for products, pij = 0 if species
i does not take part in reaction j ). The full set of rate
equations is a mathematical representation of the tempo-
ral behavior of the regulatory network. These equations
are then solved numerically [8], and the model behavior
is interpreted from the time-course output of the species
concentrations. Modelers are faced with many computa-
tional problems: accurately and efficiently solving equa-
tions when velocities are characterized by widely varied
time constants, finding steady-state solutions, estimating
rate constants by fitting numerical solutions to experimen-
tal data, and identifying bifurcation points in the multidi-
mensional parameter space.

For example, a current model of the budding yeast cell
cycle consists of about 30 differential equations containing
100 rate constants. The parameters are estimated from the
cell cycle behavior of more than 100 mutants defective in
the regulatory network. Simulating the entire set takes from
a few minutes to an hour on a desktop PC for one choice of
kinetic constants. Fitting the model to the data by nonlin-
ear regression will likely require thousands of repetitions of
the full calculations. A model of such complexity (10-100
equations) represents the upper limit of what a dedicated
modeler can produce “by hand” with a good numerical in-
tegrator such as LSODE [9]. To adequately describe fun-
damental physiological processes (such as the control of
cell division) in mammalian cells will require models of at
least 100 to 1000 equations. Handling this next generation
of dynamical models will require sophisticated software to
automate the modeling cycle: network specification, equa-
tion generation, simulation and data management, and pa-
rameter estimation.

Ongoing efforts such as the DARPA BioSPICE ini-
tiative [4] aspire to support the necessary increase in
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Figure 1. Original modeling process

model size. This project supports approximately 15 re-
search groups, including our own. The goals of BioSPICE
are to advance the broad efforts of biochemical pathway
modeling by supporting modeling efforts, experimentation
efforts, and software tool-building efforts together. Soft-
ware efforts are not just to provide sets of tools to modelers
but to make the tools developed by the various groups inter-
operable. In addition, tools developed as part of BioSPICE
are made freely available under an open-source license.
While it is not known yet whether the interoperability goals
will be met, the BioSPICE project is generating the poten-
tial for interaction through the definition of application pro-
gram interfaces (APIs) for communication between tools,
as well as language definitions for data such as model def-
initions and simulation outputs.

3. Original Modeling Process

Figure 1 shows a modeling process that has successfully
developed several biochemical pathway models [10]. The
process evolved over more than 10 years of developing
models. It is not based on formalisms or documented;
new modelers learn the process through demonstration and
mentoring. Until recently, the modelers’ tools were pri-
marily off the shelf for solving and analyzing differential
equations and not specialized for pathway modeling.

Before a model can be developed, there must be a prob-
lem that the model intends to solve. Problem formulation
includes analysis of requirements, identification of a solu-
tion method, and specification of modeling objectives [11].
Without a formulated problem, the modeler risks inade-
quately solving the problem or solving the wrong problem.
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A notable feature of the original modeling process is that it
deals solely with model development and does not contain
problem formulation. Over the past 2 years of our observa-
tion, this particular group of modelers has not formulated
a completely new problem (in the sense of wishing to de-
velop a model for a new organism or apply new solution
techniques to a previously developed model). Instead, they
expand existing models by attempting to match additional
experimental observations. Is this infrequent reformulation
an inherent property of the problems these modelers are at-
tempting to solve or a side effect of the current modeling
process? Observations with different modeling processes
might answer this question in the future.

The original modeling process has four primary stages:
design, translate, evaluate, and accept. Models are created
and refined in the design and translate stages. Testing oc-
curs during the evaluate stage. The accept stage produces
a presentable model from the information the modeler has
recorded. This may be the simplest process that could suc-
cessfully build a model.

In the ensuing text, a stage labeled x in a diagram will
be denoted by

x→, and such symbols are used to mark the
paragraph where those stages are discussed. Stages drawn
with solid lines in diagrams indicate successful completion
of a process. Stages drawn with dashed lines indicate error
recovery activities.

design−→ The design stage begins with creating a wiring di-
agram from an idea of how a biological process is carried
out. The wiring diagram is a graph that captures the chem-
ical species (also known as products and reactants) at the
nodes and represents interactions that create, destroy, and
convert these species at the arcs. In addition, the wiring
diagram may note the kinetic information for a reaction:
describing the mechanics of the reaction and the rate at
which the reaction occurs. Figure 2 is a wiring diagram
depicting posttranslational modification of cyclin, an im-
portant regulation process, in frog egg extracts based on
the model in Marlovits et al. [25].

The notation for wiring diagrams is not currently stan-
dardized. Modelers often invent ad hoc notation to express
abstractions, replication, and unusual processes. Kinetic
information is frequently presented separately from the
wiring diagram or must be inferred from figures. With-
out full information about the rate laws and constants, the
model can be structurally analyzed but not simulated.

Since the wiring diagram often lacks full details of the
kinetics, it is typical for our modelers to first rewrite the
model as a series of chemical reaction equations, along
with appropriate kinetic functions to describe the reaction.

translate−→ The translate stage is the process of converting the
reaction equations to systems of ordinary differential equa-
tions. For each species in the system, the modeler creates
a differential equation. Reactions that involve the species
determine the right-hand side of the differential equations.
Parameters for the differential equations are set according

to the kinetic information for the reaction. Frequently, ex-
act values for these parameters are not known. In this case,
estimates are made for the parameter values and updated
as the model is developed.

In some cases, a protein is never created nor destroyed
but is converted between different forms. When this occurs,
the quantity is said to be conserved, and one of the differ-
ential equations is replaced with an algebraic expression
called a conservation relation. In addition to the continuous
differential equation model, there is also a discrete event
model. Certain cellular processes, such as cell division, are
modeled by discrete events that set species values, alter rate
laws or constants, and switch between sets of differential
equations driving the continuous model. Table 1 shows a
system of ordinary differential equations and conservation
relations produced from Figure 2.

evaluate−→ The evaluate stage begins by generating time-
series plots of important species concentrations from the
model. These plots correspond to experimental observa-
tions of the process in the lab. The modeler compares the
time-series plots with the experimental observations and
judges whether the model adequately represents the bio-
logical process. In addition to determining if a time series
matches observed concentrations, the modeler might also
seek to determine if gross physical behavior has been re-
produced, such as an appropriate mass at cell division or
death of the cell at the appropriate stage in the cell cycle.

accept−→ The accept stage is an assertion that the model
adequately represents the biological process and consists
of final preparations for archiving and disseminating the
model.

The remaining stages in the original modeling process
are error recovery stages. Errors are detected by informal
examination of time-series plots. The modeler must infer
the nature and location of the error from experience. Be-
cause the developed models are typically underspecified,
the modeler cannot always accurately identify the cause
of an error. Laboratory experiments can test hypotheses
but are extremely expensive. In general, the goal of the
modelers is to match the existing collection of laboratory
results.

redesign−→ The redesign stage corrects errors in the wiring di-
agram. Reactions are added and deleted based on the mod-
eler’s developing intuition about what mechanisms must be
included in the model to adequately reproduce the desired
experimental behavior.

repair−→ The repair stage corrects errors made in the trans-
lation between the wiring diagram and differential equa-
tions. Manually creating differential equations is time-
consuming and prone to error. Tedious checking between
the wiring diagram and differential equations is required
to detect and correct errors in translation.

refit−→ The refit stage corrects errors made in the assign-
ment of differential equation parameters. New estimates
are made for the kinetic rate constants based on com-
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Figure 2. Wiring diagram

Table 1. Equations from wiring diagram

d C25a
dt = k25f∗(MPFa+ε1)∗C25i

J25f+C25i
− k25r∗C25a

J25r+C25a

C25i = 1.0 − C25a

d CycB
dt = k1 − CycB ∗ (Cyclosome + k3 ∗ Cdk1)

Cyclosome = (k′
2 ∗ Csomi + k′′

2 ∗ Csoma)

d MPFa
dt = k3 ∗ CycB ∗ Cdk1 + (k′

cC25i + k′′
c ∗ C25a) ∗ MPFi

− (k′
w ∗ Weei + k′′

w ∗ Weea + Cyclosome) ∗ MPFa

d MPFi
dt = (k′

w ∗ Weei + k′′
w ∗ Weea)

− (k′
c ∗ C25i + k′′

c ∗ C25a + Cyclosome) ∗ MPFi

Cdk1 = 1.0 − MPFa − MPFi

d Weea
dt = kWeer∗Weei

JWeer+Weei
− kWeef∗(MPFa+ε2)∗Weea

JWeef+Weea

Weei = 1.0 − Weea

d Csoma
dt = kcyf∗(MPFa+ε3)∗Csomi

Jcyf+Csomi
− kcyr∗Csoma

Jcyr+Csoma

Csomi = 1.0 − Csoma

parison with known experimental results. The modeler
typically changes only a small number of rate constants
at each iteration due to their potential interactions.

restart−→ The restart stage is the termination of a particu-
lar model and marks the start of the next idea of how a
biological process is carried out.

4. Applying a Methodology

The original modeling process has successfully developed
models that define the current state of the art. However, the
modeling community recognizes that they are at the limit of
the complexity that their current methodology can support,

which is driving many new efforts in tool development
such as BioSPICE. Methodologies assist in understanding
the model development process and indicate requirements
for supporting that process [13]. Formal methodological
approaches provide well-defined and tested techniques for
the model development process.

On the basis of our experience with the original model-
ing process, we enumerate some capabilities that a method-
ology needs to support this modeling community. Model-
ers have an ultimate goal of producing models that are
validated and accepted. Demonstrating that their models
are valid and should be accepted requires performing veri-
fication, validation, and testing (VV&T). Modelers should
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employ VV&T frequently to minimize wasted effort on
bad models. Models developed by the original modeling
process have proved extremely long-lived and are repeat-
edly adapted to meet changes in specification. We expect
this to continue and so require a modeling process that is
capable of introducing change at any stage without undue
cost. Computational technology is also expected to change
significantly during the lifetime of a model; models and the
modeling process need to be insensitive to the runtime host
and adaptable to high-performance computing techniques
of the next 10 years. Using the terminology of Nance and
Arthur [14], our modeling process must support correct-
ness and testability; support adaptability, maintainability,
and portability; and test throughout the model life cycle.

We select the conical methodology [7] as a method-
ology supportive of our requirements and with sufficient
adaptability to capture our original and desired modeling
processes. Balci [11] describes a model life cycle com-
patible with the conical methodology; we will use sim-
ilar terminology to describe our modeling process. The
primary objectives of the conical methodology are correct-
ness, testability, adaptability, reusability, and maintainabil-
ity [14]. This is a good match with our primary and sec-
ondary requirements. The conical methodology prescribes
a top-down model definition phase followed by a bottom-
up model specification phase. As we are creating a domain-
specific MSE, we significantly reduce the amount of work
required in the definition phase by predefining constructs
in our tools.

4.1 Goals for Improving the Process

After we documented the original process, examined
methodological frameworks, and listened to the concerns
of modelers, we identified four areas for which the mod-
eling process needs to be improved: documentation, test-
ing, standardization, and automation. These four areas are
important for developing models quickly and accurately.
Independent verification and validation are testing activ-
ities performed by someone other than the model devel-
oper with the goal of improving the quality of the model
[15]. Independent testing reduces potential modeler bias
in evaluation, promotes earlier error detection, reduces er-
ror cost, and enhances operational correctness. We want to
introduce independence into the modeling process at each
iterative cycle, with the goal of supporting independence
for all testing activities. This level of support requires sig-
nificant advances in the four outlined areas. We believe
that making these improvements will ultimately lead to an
increased rate of model accreditation and acceptance.

The goal of documentation is to record critical infor-
mation about the modeling process. Model documentation
is needed at every stage of the modeling process and is
critical for future planning of modeling tasks. We want to
record the model itself each time the description of the
model is transformed. We want to record the procedure
used for testing to support automated testing and review of

VV&T methods. We want to record the results from testing
for presentation and for comparison against future tests.

Comparison with experimental data has been the main
testing technique used for validating these models. How-
ever, the quantity and quality of experimental data available
for a particular system may be limited. It is a major expense
to conduct new laboratory experiments for further testing
or expansion of the model. In contrast, modeler time is
relatively cheap. We emphasize verification during model
construction to prevent the introduction of errors that strain
our limited testing resources. The goal of testing is to intro-
duce VV&T activities as soon as possible into the modeling
process and to continuously monitor for introduced errors.
We codify several indicators of model credibility [16] as
automated tests that can be performed continuously dur-
ing model development. When working with the wiring
diagram, we want to verify that the graph structure of the
diagram corresponds to the modeler’s understanding of the
structure. We want to verify that the names of species, rate
laws, and constants are used consistently across the dia-
gram. When building the executable model, we want to
verify that the simulator can properly execute our model
and that all required information is available. We want to
perform the primary testing activities from a recorded plan
that can be defined by an agent independent of the design
or specification teams.

The goal of standardization is to adopt uniform nota-
tions and processes that reduce burdens on communica-
tion and development. For our modelers, a wiring diagram
is the initial abstract representation for the model. Unfor-
tunately, no standards exist for the graphical language of
wiring diagrams, though the representation of Kohn [17]
is becoming increasingly popular. The pathway modeling
community is currently involved in standardizing the Sys-
tems Biology Markup Language (SBML), an XML-based
representation of models at the chemical reaction level [6,
18]. While it is hoped that SBML will apply to wiring
diagrams in the sense that model editing tools should be
able to convert between SBML and wiring diagram repre-
sentations, SBML files are not meant to be directly edited
by modelers. The main purpose of SBML is to facilitate
model exchange between modeling groups, who will then
load the models into ad hoc editing tools. Biological mod-
els can have operations repeated across multiple reactions
and incorporate subcomponents developed as part of other
models. Sufficient support for interchanging model frag-
ments would allow replacing both with well-tested black
box subcomponents.

We can also employ standardization at each stage of the
modeling process by using domain-specific information to
construct uniform sequences of tasks. A uniform process
reduces the developmental tasks required of modelers and
can prevent some errors in the planning stage of the mod-
eling process.

Most of the existing modeling process consists of work
that is performed repeatedly. The goal of automation is
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to have the computer perform some of these repetitive
tasks and speed up other tasks substantially. VV&T ac-
tivities exist as automatable tasks throughout the modeling
process; supporting these activities with automated tools
can significantly reduce the time and effort for model test-
ing [19]. Modelers repeatedly modify parameter and initial
condition sets at each modification, comparing the revision
against experimental data. We want to perform regression
testing as frequently as possible and repeat testing activities
from previous iterative cycles to ensure that model quality
is maintained after each model transformation. Our testing
activities should be numerous and specific so that when an
error is introduced, we can identify what stage the error
was introduced at and in what component of the model the
error is located. When the user is engaged in modifying
the model, the testing process should be conducted auto-
matically, and feedback on the relative performance of the
modification should be supplied automatically.

4.2 Revised Modeling Process

The revised modeling process (see Fig. 3) begins with an
already defined problem. This problem definition includes
an analysis of requirements and an identification of model-
ing objectives. We must make an assumption here that our
modeling tools are adaptable to the solution technique cho-
sen as part of the problem definition. Domain specificity
allows us to make this assumption: the tools were devel-
oped specifically to meet the needs of biological modelers
who have a large class of problems of interest.

From the problem description, modelers begin to de-
velop model ideas that they believe will satisfy the problem
requirements. The process of realizing and testing these
ideas is extended from the original modeling process.

design−→ Starting with a conceptual model for a biological
process, the modeler must first produce a model that can be
understood by others. In addition to the wiring diagram or
reaction equations, a complete model requires rate laws,
constants, and the discrete event model that will control
switches in the differential equation model. Models at this
stage can be structurally tested and checked for complete-
ness and consistency of kinetic information.

translate−→ The model must then be translated from a human-
understandable form to an executable form. For the domain
of biological modeling, we possess a significant amount
of information about this transformation process. A suf-
ficiently described model translates by a mechanical pro-
cess. The modeler only needs to tweak the control param-
eters for the evaluation process. However, the model must
still be verified to ensure that the model was sufficiently
described before translation, self-consistent, and tolerant
of the numerical errors to which the chosen simulation
process is susceptible.

evaluate−→ After a model is simulatable, the modeler tests
it against the requirements and objectives in the problem
definition. VV&T activities in the evaluate stage likely ac-
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Figure 3. Revised modeling process

count for a significant portion of the model development
time and should have computer assistance to automate the
test process [19]. Entering the problem definition only once
and automating the testing process from previous iterative
cycles of the modeling process are important for reducing
model development time. In addition, there should be pro-
visions for independent execution of the evaluate stage to
prevent modeler bias in the testing process.

check−→ A model that meets the requirements and objec-
tives stated in the problem might still be rejected. In the
biological domain, two reasons why this occurs are that
the model is insufficiently based on established biologi-
cal processes or that the model is not significantly better
than an existing, simpler model. The check stage addresses
these issues. Comparing the proposed model against ac-
cepted models [20] representing similar processes can test
the first reason. Performing a statistical analysis between
the proposed model and a collection of models for the same
system can test the second reason. Both techniques test the
model against other models of biological systems.

accept−→ and
reject−→ The accept stage is relatively unchanged

from the original modeling process. We formalize the
preparations in the original accept stage as the process of
creating documentation and presentations to show that the
model is sufficiently accurate for its intended purpose [11].
In addition, we introduce the reject stage for models that
pass all of our tests but are rejected by decision makers.

The testing phases of the modeling process have
been considerably augmented from the original process.
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Models are tested at every stage that creates or transforms
a recorded model description. In addition, the results of
model testing more specifically point to causes of errors
and direct the modeler to an appropriate stage for correct-
ing the error.

test−→ Test stages represent VV&T activities that take
place in real time during model development. Continuous
verification is especially important when the amount or
quality of experimental data is limited. A test stage oper-
ates concurrently with tool use and indicates errors found
in model information entered in the tool. Errors found and
corrected in a test stage do not propagate to other stages
of the modeling process. This reduces the amount of time
to correct the error and reduces unnecessary switching be-
tween tools.

redesign−→ and
repair−→ We have condensed the error recovery

stages to redesign and repair, which correspond to activ-
ities that correct errors detected by validation and veri-
fication, respectively. When describing the software that
implements this revised modeling process, we will once
again enumerate specific types of error recovery activities.

The location, scope, and frequency of testing activities
are the most significant difference between the original
and revised modeling processes. Modelers get immediate
feedback about errors detected during the process of trans-
forming the model from one form to another. For errors
that cannot be automatically detected, we attempt to iden-
tify more specifically the source and type of error so that
the modeler spends less time diagnosing the problem. We
hope that increasing the specificity of error reporting leads
to a smaller average error recovery time. Moreover, even
though we cannot always automatically detect where and
how an error was introduced, we can automatically per-
form modeler-defined diagnostics to determine that there
definitely was an error at some point in the last iteration of
the process.

5. JigCell

JigCell is a domain-specific MSE for biological path-
way modeling, intended ultimately to become a problem-
solving environment (PSE) in the sense of Ramakrishnan
et al. [21] and Watson et al. [22]. JigCell’s user workflow
(Fig. 4) corresponds closely with the modeling process we
have identified. Table 2 lists support for our defined mod-
eling goals in this MSE.

We have constructed a tailored environment rather than
basing it on an existing, general-purpose MSE [23, 24]. We
intend to support users in biology and related fields who
do not have significant experience in formal modeling (but
who are domain experts). During the development of Jig-
Cell, we supplied the software to biologists and modelers
for testing. As well as finding errors, they gave us feedback
about new features and priorities for development.

We incorporate off-the-shelf components such as nu-
merical libraries, visualization tools, and communications
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Table 2. Support for modeling goals

General Record model artifacts Partial
Record model testing procedure Full
Record model testing results Full

Design Verify consistent naming Partial
VV&T model structure
Abstract repeated operations Partial
Abstract compound operations
Identify rate laws and constants Full
Standardize notation Full

Translate Generate differential equations Full
Find conservation relations Full
Verify execution requirements Full
Verify well-formedness Partial

Evaluate Make VV&T repeatable Full
Support independent VV&T Full
Identify causes of errors Partial
Standardize process Full

Check Make covalidation repeatable Partial
Support independent covalidation
Identify causes of errors Partial
Standardize process Partial

Note. VV&T = verification, validation, and testing.
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Figure 5. Model Builder interface with equations from wiring diagram

protocols in which quality implementations exist and tech-
nical specifics about the component can be hidden from the
user. This approach has not been a significant drawback: the
majority of development work relates to domain-specific
support rather than the modeling infrastructure.

Development versions of JigCell are freely available in
Allen et al. [25]. Official releases of JigCell are available
as part of the BioSPICE releases [4].

5.1 JigCell Tools

The Model Builder creates a model specification that in-
corporates the wiring diagram, kinetic information, and
discrete event model. A spreadsheet interface organizes
the information of the wiring diagram and kinetics as a
collection of chemical reaction equations. Each row of the
Model Builder spreadsheet (Fig. 5) specifies a chemical
reaction equation, including substrates, products, kinetic
rate law, and kinetic rate constants. Chemical equations
are a natural representation for many biological processes
of interest and are applicable to a wide variety of fields
outside biological modeling.

Restrictions are placed on the class of discrete event
models: events can only be triggered based on algebraic
conditions of species values and can only modify parame-
ters, constants, and species values in the continuous model.
However, these discrete models are sufficient for the bio-
logical systems we have studied and are easily and directly
created by domain experts without modeling experience.
For example, the discrete model can easily handle such
processes as cell division: mass at time t +∆t is set to one-

half the mass at time t when a particular species crosses
a threshold value. The Model Builder both reads and
writes its models in the form of SBML, which is becom-
ing the standard interchange language for this modeling
community.

Species names and kinetic information are checked con-
tinuously during model entry, with color highlights indi-
cating portions of the model that are not correctly speci-
fied. No mechanisms are included for testing overall model
structure, and limited support is provided for representing
stochastic and spatial models, which represent specific sub-
domains within the broader modeling community that we
intend to support in the future. Division of the modeled
cell into multiple topological compartments (volumes) is
possible, but equations cannot contain spatial variables.
Abstractions are possible in the sense that rate laws can be
defined and reused. However, components in the form of
black-box submodels are not currently supported since the
community (in terms of the SBML standardization effort)
has not yet defined mechanisms for this.

The Run Manager translates a model specification into
an executable form. Each row in the Run Manager spread-
sheet (Fig. 6) specifies how to simulate a certain exper-
iment, including the model to use, parameter and initial
condition sets, and the appropriate simulator settings. Pa-
rameter sets can contain a value for every parameter in the
model or contain only the values changed in relation to
another parameter set. For example, suppose we wish to
describe a series of simulations for yeast cell mutants. On
the first line, we describe how to simulate the wild-type
yeast cell using a basal parameter set. On the second line,
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Figure 6. Run Manager interface for model in Model Builder

we describe a knockout mutant by using a parameter set
that copies from the basal parameter set but changes the
rate of synthesis of the knocked-out protein to zero. On the
third line, we describe a mutant with a double copy of a
gene by using a parameter set that copies from the basal
parameter set and multiplies the synthesis rate associated
with the gene by 2. If the modeler then develops a better es-
timate for the rate constants, she or he only needs to change
the basal parameter set. Modelers can more easily explore
the parameter space because the Run Manager does the
bookkeeping to adjust the simulation specification.

Differential equations and code to handle the discrete
event model are automatically generated from the speci-
fication. Modelers select the dependent variables of con-
servation relations, but the relations are automatically de-
tected and generated. Automatic model translation insu-
lates modelers from changes in simulation techniques and
the runtime environment. New simulators are added by
providing additional translators. This automation step rep-
resents a major improvement for our immediate modeling
community, who previously converted reactions by hand
in an error-prone and laborious process. This should also
reduce the amount of model conversion work required of
modelers to perform stochastic or spatial simulations in the
future.

The Comparator and Compare2 are tools for model test-
ing and evaluation. Tests in the Comparator are assertions
about a model or comparisons between model performance
and experimental data. A test evaluates either operational
accuracy or the accuracy in transforming the model. Perfor-
mance on each test is scored according to a user-defined

objective function that represents the goodness of fit be-
tween the expected result and the model result. We pre-
fer objective functions that associate model performance
with a degree of accuracy rather than a binary result. If
the modeler is only told whether the result was accept-
able, it is difficult to determine how robust the model is
to parameter changes. Moreover, we prefer continuous ob-
jective functions, such as distance functions, as these are
more amenable to automated optimization. The modeler
chooses criteria for the objective functions based on the
requirements and purpose of the model. Integrated editors
support defining assertions, experimental data, procedures
for transforming model results, and objective functions.
Since we cannot predict all of the objective functions the
modeler might wish to use, we allow the modeler (possibly
with the assistance of a computer programmer) to add new
functions. The modeler can automatically rerun a defined
testing procedure in the Comparator.

The Comparator interface is a tabbed series of screens
(Fig. 7) that describe the testing procedure. First, the mod-
eler enters the experimental, or expected, results that the
model should reproduce. Then, the modeler associates each
experimental result with a procedure for generating an
equivalent result from the model. The Run Manager typ-
ically executes the model. Finally, the modeler describes
how to compute an objective function and specifies what
constitutes an acceptable function value. Unacceptable fits
are highlighted in the display so that the modeler can
quickly see where the model is having problems.

Tests in Compare2 compare performance between the
currently proposed model and a collection of other mod-
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Figure 7. Comparator interface for model in Model Builder

els. Models come from past revisions of the current model,
independent models of the same system, and models with
subsystems in common with the current model. Compare2

performs ranking and selection among these models based
on the same criteria defined in the Comparator. For each
objective function defined in the Comparator, models are
scored and ranked. We use rankings rather than absolute re-
sults as we have found that many objective functions were
not designed to finely distinguish results on an absolute
scale. Selection of the best model is made by a function
combining the objective functions, such as a sum of rank-
ings. Development work on Compare2 is still ongoing. A
drawback of this tool is that obtaining meaningful results
requires building a significant collection of models. This
is also a limiting factor on development since, without test
models, it is unclear what tasks are most critical to au-
tomate. We hope to incorporate other automated model
analyses that could reduce the startup costs of this tool.

By automating the comparison process, we make an
additional task possible: parameter estimation. Some rate
constants used in the continuous model are not experimen-
tally determined or have a significant range of possible
values. Without automated fitting, the modelers must cali-
brate the model parameters by manually searching for valid
and optimal regions of the parameter space. An expert in
the biology and mathematics of the model must repeatedly
try parameter guesses, using experience to determine ac-
ceptability and to select the next guess. This activity has
consumed a major part of the model development time in
the past. Humans should not perform it at all. A signif-
icant obstacle is that inputting the domain expert’s intu-

itive understanding of the model into a computer system
is difficult. In addition, when the model calibration proce-
dure involves more than simple curve fitting, there are few
general-purpose techniques. We seek to overcome these
obstacles by customizing the domain-specific portions of
our software to modelers and by selecting mathematical
software that has been tested on common problems in the
domain. Experienced modelers can extend or replace the
interface and computation engines when they encounter
limitations with what we have preconstructed.

Although the stages involving parameter estimation in-
cluded in Figure 4 are a subset of the evaluate and repair
stages, we separate them because of their impact on the
model development process.

score−→ and
report−→ The score stage defines an algorithm that

determines whether one set of parameters produces a more
acceptable model than another set. The algorithm requires
experimental data, an executable model, the range of pa-
rameters for the executable model, and a user-defined ob-
jective function. The report stage injects the fitted param-
eters back into the modeling process for study and testing.

The Parameter Estimator finds unknown rate constants
by fitting the model to experimental data. The data are typ-
ically not a solution to a differential equation but rather a
complicated, nonlinear functional of the differential equa-
tion solution. Furthermore, both the dependent and inde-
pendent variables involved in these functionals are subject
to experimental error. The Parameter Estimator performs
both global and local searches during optimization.

The global optimizer, named DIRECT [26], is a variant
of Lipschitzian methods for constrained global optimiza-
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tion. We want to find the minimum value of our objective
function, minx∈D f (x), where D = {x ∈ En|� ≤ x ≤ µ}
is defined by bound constraints only, and the objective
function is Lipschitz continuous on D, satisfying |f (x1)−
f (x2)| ≤ L‖x1 − x2‖ for all x1, x2 ∈ D. The Lipschitz
optimization method has had many practical applications
in science and engineering. Unlike some other methods,
the Lipschitz method requires only a few parameters and
does not rely on derivatives or other more analytical infor-
mation about a system. However, the Lipschitz constant
of a particular function is often unknown and difficult to
estimate. The DIRECT method is guaranteed to converge
to the global optimum without knowledge of the Lipschitz
constant [27].

The algorithm takes its name from one of its key steps:
dividing rectangles (these rectangles are more commonly
referred to as boxes). DIRECT is a pattern search method,
which takes moves based on objective function values at a
pattern of points. The points are the centers of the boxes.
Center sampling is generally advantageous to corner sam-
pling when the number of dimensions is expected to be
large, as in the problems we are attempting to solve. A
box is potentially optimal if there exists a value of the
Lipschitz constant for which that box is the most likely
to contain the global minimum. Each iteration subdivides
all of the potentially optimal boxes. DIRECT can oper-
ate in an exploratory mode, which emphasizes searching
untested boxes, or in an exploitation mode, which empha-
sizes searching boxes with better objective function values.

DIRECT is robust to noise in objective function values
[26]; convergence to the minimum is limited by the amount
of noise in the objective function. This makes DIRECT
well suited for stochastic models, which intentionally in-
troduce noise into the model evaluation. Current imple-
mentations of DIRECT cannot handle integer variables or
constraints other than simple bound constraints. Also, DI-
RECT is relatively inefficient for finding an accurate value
of the minimum. Rather, we would expect to run it in the
exploration mode and use the local optimizer to find the
minimum from a collection of candidate starting points.

The local optimizer uses ODRPACK [28–30] as the un-
derlying mathematical software. ODRPACK does not as-
sume that the measurement errors are all in the dependent
variables [31]. Rather, it seeks to minimize the weighted
sum of orthogonal distances between the model and the
data. The weighting factors scale the residuals and express
the modeler’s confidence in the reliability of particular ob-
servations. The output of ODRPACK gives a locally op-
timal parameter vector and a measure of the goodness of
fit of the parameter vector. We can then compare the lo-
cally optimal solutions for the starting points picked by the
global optimizer.

ODRPACK uses a trust region Levenberg-Marquardt
method. The Levenberg-Marquardt method starts with the
steepest descent method and smoothly changes to New-
ton’s method when approaching the solution. The trust re-

gion implementation determines the step size based on the
confidence in a local model of the objective function. At
each step, the optimizer compares the expected improve-
ment for taking the step with the actual improvement.
This can cause slow convergence if the objective func-
tion is not differentiable near the optimum solution since
ODRPACK’s expected improvement is based on estimated
derivatives. Step functions in objectives can appear when
matching categorical observations, such as whether a mu-
tant is viable. However, we believe it is unlikely that op-
timum solutions will be located near such discontinuities
in real biological systems. If that were the case, the organ-
ism would be sensitive to minute environmental changes,
which is unfavorable for survival.

5.2 Evaluating JigCell

Several levels of evaluation are possible for MSEs. Mi-
crolevel studies employ formal usability testing [32, 33],
which benchmarks performance for completing a task. Re-
quirements of the modelers, frequency of use within the do-
main, and criticality of need determine the chosen tasks.
An example of a critical task in the Model Builder is en-
tering the kinetic information for a chemical reaction. The
Model Builder could not function without supporting this
task. Success or failure is determined by comparing results
against a benchmark performance for the task. In formal
usability testing, Nielsen [34] shows that studying three to
five people finds 80% of the usability problems.

A microlevel study [35] determined JigCell’s effect on
error rates when converting the wiring diagram to a set of
differential equations. For a collection of models, partici-
pants either constructed differential equations manually or
by using the software. The number of errors in the gener-
ated sets of differential equations was then measured. The
results indicate a sixfold reduction in errors over the man-
ual method of creating differential equations. Individual
tools in JigCell, as well as interactions between tools, can
be studied similarly.

Macrolevel studies incorporate benchmarking and as-
sess how well the MSE meets the specified needs of
users. MSEs such as JigCell attempt to make knowledge-
able users more productive and help them produce cre-
ative products. Vass, Carroll, and Shaffer [36] suggest a
methodology for evaluating MSEs using flow. Flow is an
automatic, effortless, and focused state of consciousness.
Creativity is more likely to result from flow states [37].
Detection of flow would indicate support for creativity.

We can evaluate flow in JigCell in the following man-
ner. By specifying assistance for each workflow in Vass,
Carroll, and Shaffer [36], we classify support for problem
solving and flow in JigCell. Users receive an instrumented
version of JigCell; this version also sporadically prompts
users to fill out a questionnaire targeting the characteris-
tics of flow [38]. The collected data determine where flow
is occurring in the user’s work. If JigCell demonstrates
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Table 3. Support for modeling goals in other modeling support environments

Virtual
Cell BSP Gepasi Jarnac

General Record model artifacts Partial Partial Partial Partial

Design Verify consistent naming Partial Partial Partial Partial
Abstract repeated operations Full
Abstract compound operations Full
Identify rate laws and constants Full Full Full Full
Standardize notation Full Partial Full Full

Translate Generate differential equations Full Partial Partial Partial
Find conservation relations Full Partial Full Full
Verify execution requirements Full Full Full Full
Verify well-formedness Partial Partial Partial Partial

flow in all workflows and meets the formative evaluation
requirements, then JigCell indicates support for creativity.

5.3 Other Cell Cycle MSEs

We have reviewed several biochemical pathway MSEs and
classify them as wizards, graphical editors, or textual edi-
tors. JigCell has primarily text-based editors. Table 3 lists
support for our defined modeling goals in these MSEs.
Modeling goals met by none of the MSEs are omitted; the
evaluate and check stages are omitted entirely as none of
the reviewed MSEs directly supports these processes.

Virtual Cell [1] is a graphical editor that directly mim-
ics the wiring diagram. Virtual Cell also supports entering
models directly as differential equations. The Virtual Cell
simulator supports volume and spatial models. A server-
side database records models and associated simulation
results with the option to download data to the user’s sys-
tem. Bio Sketch Pad (BSP) [39] is also a graphical editor.
The simulator for BSP supports volume models and cellu-
lar automata. Gepasi [2] uses a wizard interface. A series
of dialog boxes leads the user through creating a reaction
network. The simulator supports volume models and can
perform parameter estimation. Jarnac [8] uses a textual in-
terface. The textual editor is a programming environment
for scripting simulations and other modeling tasks. Jarnac
integrates with a graphical editor, JDesigner, to view wiring
diagrams. The simulator supports volume models.

6. Tool Interoperability

Tools for doing biochemical pathway modeling have been
around for many years, but until recently, there has been lit-
tle interoperability between them. We describe two projects
that have taken as their goal support for interoperability
between various biochemical pathway modeling groups.
The first is SBML, and the second is DARPA’s BioSPICE
project (which funds the JigCell project team).

SBML [18] is an XML-based language for describing
biochemical pathway models. SBML does not use a formal
standards process (though the SBML community is begin-

ning to investigate affiliating with a standards organiza-
tion). The Software Platforms for Systems Biology Forum,
which has been meeting semiannually since April 2000,
guides development. The SBML project began with the
forum’s first meeting, and the definition for SBML Level 1
was published in 2001 [40]. That version supported a rel-
atively small number of biochemical pathway modeling
tools. An updated version, SBML Level 2, was published
in 2003 [41]. Another language effort similar to SBML is
CellML [5]. CellML is also an XML-based markup lan-
guage for describing biological systems. CellML’s scope
is broader than SBML. While it is somewhat more mature
than SBML, it has not achieved much acceptance within
the biochemical pathway modeling community in the way
that SBML has, probably due to its broader focus.

Before SBML, there was virtually no interchange of
models between working groups. Tools were primarily
built for a particular research group with little intention
that the models developed within a tool would be directly
transferable to other groups with other tools. Models were
exchanged only through publication. With the adoption of
SBML and the beginning stages of support for that lan-
guage by many tools, the true exchange of models became
possible. However, early tool builders primarily supported
SBML through export capabilities and were not able to
import SBML models produced by other research groups.
SBML initially suffered from an inability to express a num-
ber of existing models, leading tool builders to adopt nam-
ing and formatting conventions to handle their special cases
(see, e.g., [42]). Since these conventions were unique to
each tool, few tools supported actual exchange of models.
The SBML community (and, by extension, the BioSPICE
community) now actively promotes a model testbed and
the exchange of models between working groups, with the
goal of more rigorous testing of both modeling tools and
their SBML language support.

An important standards-setting decision for BioSPICE
was determining the model definition language to sup-
port interchange of models within the community. Af-
ter examination of the potential for defining a language
for BioSPICE, the decision was made to adopt SBML.
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The critical mass achieved by the BioSPICE community
joining with the already existing SBML community has
had a profound impact on the SBML development pro-
cess. Initially, SBML could be characterized as defining
a language that was the intersection of a small group of
similar tools. Most users of SBML converted their mod-
els to systems of ordinary differential equations, perhaps
with discrete events. Current efforts are moving in the di-
rection of defining a language that is the union of a larger
group of more disparate tools. This means support for a
broader class of models, including stochastic simulations
and spatial models. Structural model analyses such as flux
balance analysis and bifurcation analysis are also antici-
pated. SBML is already at the stage where no single simu-
lation tool will support the full range of features that SBML
models can have. Some balance must be struck between
the different types of modeling needs, the difficulties en-
countered by tool builders, and the risk of the language
becoming so large that it is no longer truly a mechanism
for common exchange.

The BioSPICE community charged itself with design-
ing and building a toolset that could both support current
modeling efforts and serve as a base for future modeling
efforts. Since it is unlikely that any single tool, or small col-
lection of tools, will satisfy the wide variety of modelers
and modeling efforts, any specific task has numerous tools
available. Thus, the BioSPICE community is engaged in
two types of standardization efforts for tools: data formats
and programmatic interfaces.

The exchange of formatted data within the BioSPICE
community is difficult because a large number of data types
are of interest to at least some part of the community. Popu-
lar data types, such as models and time series, were quickly
identified and standardized by the community as high-
priority items. However, there is also interest in exchanging
data for gene expression, molecular interactions, imaging,
protein mass spectroscopy, kinetics, flow cytometrics, and
flux balance. The standards creation process is driven by
the community and mostly distributed. There is a clear-
inghouse for archiving agreed-on standards, but there is no
corresponding authority for creating standards. Tools must
have some internal format for representing data. Initially,
this is their standard for that data format. If no one else is
interested in using this type of data, there is no need to pro-
mulgate the standard. However, another group interested
in using the same type of data will have its own internal
format. At some point, there is a desire to interchange data
between the tools. The groups then meet and decide on a
commonly acceptable interchange format. When a format
achieves a plurality within its domain, it is recommended
to the community as a standard for adoption.

Although data formats solve the problem of static in-
teractions between tools, they cannot coordinate computa-
tions between tools. The number of possible tool-tool inter-
actions is too great to define individual standards. Instead,
standards are defined for the most commonly performed

interactions, and a formal tool description language is pro-
posed for describing tool capabilities not captured by one
of the standards. Common interactions include tasks such
as performing a simulation and parameter estimation. The
tool description language is referred to as a meta-interface:
it is intended that any particular tool be describable in terms
of operations provided by the language. The operations
are functions applied to the data types standardized by the
community. However, this tool description language only
specifies the syntax for tools, not the semantics. It is pos-
sible to connect tools that have compatible data types but
a nonsensical meaning to their combined computation.

7. Conclusions

We have described our experiences documenting and im-
proving the modeling process of a group of theoretical
biologists. The revised modeling process is based on the
observed process and incorporates a disciplined method-
ological approach along with proven techniques for re-
ducing the cost of errors, reducing development time, and
making iterations of the modeling process more consistent.
The primary improvements come from introducing multi-
ple forms of testing throughout the modeling life cycle and
by making modelers explicitly address previously undoc-
umented modeling tasks. The modeling support environ-
ment we have built for this revised process meets many of
our defined modeling goals and is testable for its effects
on the modeling process. Further case studies of model-
ers using this process will give clear guidance for future
improvements, along with the unfulfilled modeling goals.

Further progress in pathway modeling desperately
needs new tools and a better modeling process as described
here. The BioSPICE community estimates that the size and
complexity of existing models (which are about as large
as the modeling process prior to what BioSPICE could
handle) must grow by two orders of magnitude to capture
the control mechanisms of important processes in mam-
malian cells. Currently, manual parameter estimation and
manual error diagnosis consume a significant portion of
the model development time. We hope that by automating
these tasks, tools such as JigCell and others developed as
part of BioSPICE can supply one of the two needed or-
ders of magnitude. Supporting the additional complexity
required is an open question.
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