
Yong Cao,
Debprakash Patnaik, Sean Ponce, Jeremy Archuleta,

Patrick Butler, Wu-chun Feng, and Naren Ramakrishnan

Virginia Polytechnic Institute and State University

 Reverse-engineer the brain
National Academy of Engineering Top 5 Grand Challenges

Cited from Sciseek.com

Action Potentials (Spikes)

Axon Terminal
(transmitter)

Dendrites
(receiver)

Axon
(wires)

Neuron

Question:

How are the neurons
connected?

2

 Reverse-engineer the brain
National Academy of Engineering Top 5 Grand Challenges

Neurons grown on MEA Chip Multi-Electrode Array (MEA)

A

B

C

Spike Train Stream

time

A
B
C

3

 Reverse-engineer the brain
National Academy of Engineering Top 5 Grand Challenges

Find Repeating
Patterns

Infer
Network Connectivity

4

 Fast data mining of spike train stream on
Graphics Processing Units (GPUs)

Multi-Electrode Array
(MEA)

MEA Chip

NVIDIA GTX280
Graphics Card

GPU Chip

5

 Fast data mining of spike train stream on
Graphics Processing Units (GPUs)

 Two key algorithmic strategies to address
scalability problem on GPU
  A hybrid mining approach
  A two-pass elimination approach

6

 Event stream data: sequence of neurons firing

7

€

E1,t1(), E2,t2(),..., En ,tn()

A 1 1 1
B 1 1
C 1 1 1
D 1 1 1 1

N
e

u
ro

n

Time

Event of Type A occurred at t = 6

Event of Type D occurred at t = 5

8

  Pattern or Episode

 Occurrences (Non-overlapped)

Inter-event constraint

A 1 1 1 1
B 1 1 1
C 1 1 1
D 1 1 1

N
e

u
ro

n
s

Time

1

1

1

1

1

1

1

1

Episode appears twice in the event stream.

 Data mining problem:

 Find all possible episodes / patterns which
occur more than X-times in the event sequence.

 Challenge:
 Combinatorial Explosion: large number

of episodes to count

9

…
…

€

A→ B
B→ A
A→C

…
…

Episode
Size/Length:

€

A→ B→C
A→C→ B
B→ A→C
B→C→ A…

…

2 3 4

€

A→ B→C→ D
A→C→ B→ D
A→C→ D→ B
A→ D→ B→C
A→ D→C→ B

…… 1

€

A
B

…
…

 Mining Algorithm
(A level wise procedure to control combinatorial explosion)

10

  Generate an initial list of candidate size-1 episodes
  Repeat until - no more candidate episodes

  Count: Occurrences of size-M candidate episodes
  Prune: Retain only frequent episodes
  Candidate Generation: size-(M+1) candidate episodes

from N-size frequent episodes
  Output all the frequent episodes

Computational bottleneck

 Counting Algorithm (for one episode)

11

5 10

A1 A2 B4 A5 C10 B12 C13 D17

Event Stream

Accept_A() Accept_B() Accept_C() Accept_D()

Episode:

A1

A2

B4

A5

C10

B12 C13

D17

  Find an efficient counting algorithm on
GPU to count the occurrences of
 N size-M episodes in an event stream.

 Address scalability problem on GPU’s
massive parallel execution architecture.

12

  One episode per GPU thread (PTPE)
 Each thread counts one episode
 Simple extension of serial counting

13

Event Stream

N
 E

p
is

o
d

e
s

N GPU
Threads

GPU

SP

SM

MP

…

SP

SM

MP

SP

SM

MP

Global Memory

  Efficient when the number of episode is larger than the
number of GPU cores.

 Not enough episodes/thread, some GPU cores
will be idle.

 Solution: Increase the level of parallelism.
 Multiple Thread per Episode (MTPE)

14

Event Stream

N
 E

p
is

o
d

e
s

N GPU
Threads

M Event Segments

N
 E

p
is

o
d

e
s

NM GPU
Threads

 Problem with simple count merge.

15

 Choose the right algorithm with respect to the
number of episodes N.

 Define a switching threshold - Crossover point (CP)

16

If N < CP

Use
MTPE

Use
PTPE

Yes No

€

CP = MP × BMP ×TB × f (size)
MP : Number of multi - processors

BMP : Block per multi - processor

TB :Thread per block

Performance
Penalty Factor

GPU
computing
capacity

17

5 10

A1 A2 B4 A5 C10 B12 C13 D17
Event Stream

Accept_A() Accept_B() Accept_C() Accept_D()

Episode:

A1

A2

B4

A5

C10

B12 C13

D17

 Problem: Original counting algorithm is
too complex for a GPU kernel function.

 Problem: Original counting algorithm is
too complex for a GPU kernel function.

18

Accept_A() Accept__B() Accept_C() Accept_D()

A1

A2

B4

A5

C10

B12 C13

D17

  Large shared memory usage
  Large register file usage

  Large number of branching instructions

SP

SM

MP

…

SP

SM

MP

SP

SM

MP

Global Memory

19

5 10

A1 A2 B4 A5 C10 B12 C13 D17

Event Stream

Accept_A() Accept_B() Accept_C() Accept_D()

Episode:

€

A (−,5]⎯ → ⎯ ⎯ B (−,10]⎯ → ⎯ ⎯ C (−,5]⎯ → ⎯ ⎯ D

A1 A2 B4 A5 C10

B12

C13 D17

 Solution: PreElim algorithm
 Less constrained counting Simple kernel function
 Upper bound only

  A simpler kernel function

20

Shared Memory Register Local Memory
PreElim 4 x Episode Size 13 0
Normal Counting 44 x Episode Size 17 80

 Solution:
 Two-pass elimination approach

21

Event Stream

E
p

is
o

d
e

s

Threads

Event Stream

Fe
w

e
r

E
p

is
o

d
e

s

Threads

PASS 1: Less Constrained Counting PASS 2: Normal Counting

  A simpler kernel function

22

Shared Memory Register Local Memory
PreElim 4 x Episode Size 13 0
Normal Counting 44 x Episode Size 17 80

Local Memory Load
and Store

Divergent Branching

Two Pass 24,770,310 12,258,590
Hybrid 210,773,785 14,161,399

Compile Time Difference

Run Time Difference

 Hardware

 Computer (custom-built)
 Intel Core2 Quad @ 2.33GHz
 4GB memory

 Graphics Card (Nvidia GTX 280 GPU)
 240 cores (30 MPs * 8 cores) @ 1.3GHz

 1GB global memory
 16K shared memory for each MP

23

 Datasets

 Synthetic (Sym26)
 60 seconds with 50,000 events

 Real (Culture growing for 5 weeks)
 Day 33: 2-1-33 (333478 events)
 Day 34: 2-1-34 (406795 events)

 Day 35: 2-1-35 (526380 events)

24

25

 PTPE vs MTPE

Crossover points

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

T
im

e
 (

m
s

)

Episode Size

PTPE MTPE

26

  Performance of the Hybrid Approach

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

T
im

e
 (

m
s

)

Episode Size

PTPE MTPE Hybrid

Sym26 dataset, Support = 100

Episode Number:

Crossover points

27

 Crossover Point Estimation

  is a better fit.

  A least square fit is performed.

€

f (size) =
a
size

+ b

 Two-pass approach vs Hybrid approach

28

99.9% fewer
episodes

  Performance of the Two-pass approach

29

0K

40K

80K

120K

160K

1 2 3 4 5

One Pass 93.2 1839.8 16139.7 132752.6 7036.6

Two Pass 160.4 1716.6 12602.6 41581.7 1844.6

T
im

e
 (

m
s

)

Episode Size

One Pass Two Pass

1 2 3 4 5

Total # 64 6210 33623 173408 6288

First Pass Cull 18 2677 21442 169360 6288

0K

40K

80K

120K

160K

200K

E
p

is
o

d
e

 #

Episode Size

Total # First Pass Cull

2-1-35 dataset, Support = 3150

  Percentage of episodes eliminated by each pass

30

2-1-35 dataset, episode size = 4

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

3
0

0
0

3
0

5
0

3
1

0
0

3
1

5
0

3
2

0
0

3
2

5
0

3
3

0
0

3
3

5
0

3
4

0
0

3
4

5
0

3
5

0
0

3
5

5
0

3
6

0
0

3
6

5
0

3
7

0
0

3
7

5
0

3
8

0
0

3
8

5
0

3
9

0
0

3
9

5
0

4
0

0
0

Support

First Pass Second Pass

 GPU vs CPU

•  GPU is always faster than CPU
–  5x - 15x speedup
–  Fair comparison

•  Two-pass algorithm used
•  Maximum threading for both

31

 Massive parallelism is required for conquering
near exponential search space

 GPU’s far more accessible than high
performance clusters

 Frequent episode mining – Not data parallel

 Redesigned algorithm
 Framework for real-time and interactive analysis

of spike train experimental data

32

 A fast temporal data mining framework on GPUs

 Commoditized system
 Massive parallel execution architecture

 Two programming strategies
 A hybrid approach

 Increase level of parallelism

 (data segmentation + map-reduce)

 Two-pass elimination approach
 Decrease algorithm complexity

 (Task decomposition)

33

 Questions.

34

  Parallel Execution via
pthreads

  Optimized for CPU
execution
 Minimize disk access
 Cache performance

  Implements Two-Pass
Approach
 PreElim – Simpler/

Quicker state machine
 Full State Machine –

Slower but is required to
eliminate all
unsupported episodes

.

.

.

A
B
D
E
F
Z
G
.
.
.

A
B
C
D
E
F
G
H
…
…

AEF

EFG

ACE

ACDE

 Level-wise
 N-size frequent episodes => (N+1)-size

candidates
1

1

1

1

1

1

1

1

1

1

+
A
B
C
D

A
B
C
D

A
B
C
D

