

Towards Chip-on-Chip Neuroscience Fast Mining of Neuronal Spike Streams Using Graphics Hardware

Yong Cao,
Debprakash Patnaik, Sean Ponce, Jeremy Archuleta, Patrick Butler, Wu-chun Feng, and Naren Ramakrishnan

Virginia Polytechnic Institute and State University

Motivation

-Reverse-engineer the brain *媒 $\begin{aligned} & \text { GRANDCHALENGES } \\ & \text { FORENGEERNG }\end{aligned}$
National Academy of Engineering Top 5 Grand Challenges

Question:
How are the neurons connected?

Motivation

Reverse-engineer the brain
GRAND CHALLENGES FOR ENGINEERING
National Academy of Engineering Top 5 Grand Challenges

Motivation

Reverse-engineer the brain
GRAND CHALLENGES FOR ENGINEERING
National Academy of Engineering Top 5 Grand Challenges

Find Repeating Patterns

Infer
Network Connectivity

Contributions

-Fast data mining of spike train stream on Graphics Processing Units (GPUs)

GPU Chip

NVIDIA GTX280
Graphics Card

Contributions

-Fast data mining of spike train stream on Graphics Processing Units (GPUs)
-Two key algorithmic strategies to address scalability problem on GPU

- A hybrid mining approach
- A two-pass elimination approach

Background

- Event stream data: sequence of neurons firing

$$
\left\langle\left(E_{1}, t_{1}\right),\left(E_{2}, t_{2}\right), \ldots,\left(E_{n}, t_{n}\right)\right\rangle
$$

Background

- Pattern or Episode

$$
A \xrightarrow{(0,5]} B \xrightarrow{(5,10]} C \xrightarrow{(0,5]} D
$$

Occurrences (Non-overlapped)

Episode appears twice in the event stream.

Background

Data mining problem:

Find all possible episodes / patterns which occur more than X -times in the event sequence.
Challenge:
Combinatorial Explosion: large number of episodes to count

Episode

Size/Length: $\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
A	$A \rightarrow B$	$A \rightarrow B \rightarrow C$	$A \rightarrow B \rightarrow C \rightarrow D$	
B	$B \rightarrow A$	$A \rightarrow C \rightarrow B$	$A \rightarrow C \rightarrow B \rightarrow D$	
\vdots	$A \rightarrow C$	$B \rightarrow A \rightarrow C$	$A \rightarrow C \rightarrow D \rightarrow B$	
\vdots	\vdots	$B \rightarrow C \rightarrow A$	$A \rightarrow D \rightarrow B \rightarrow C$	
	\vdots	\vdots	$A \rightarrow D \rightarrow C \rightarrow B$	

Background

- Mining Algorithm

(A level wise procedure to control combinatorial explosion)

- Generate an initial list of candidate size-1 episodes
- Repeat until - no more candidate episodes
- Count: Occurrences of size-M candidate episodes
- Prune: Retain only frequent episodes
- Candidate Generation: size-($M+1$) candidate episodes from N -size frequent episodes
- Output all the frequent episodes

Computational bottleneck

Background

Counting Algorithm (for one episode)

Episode: $A \xrightarrow{(0,5]} B \xrightarrow{(5,10]} C \xrightarrow{(0,5]} D$
Accept_A() Accept_B() Accept_C() Accept_D()

Event Stream

Problem Statement

- Find an efficient counting algorithm on GPU to count the occurrences of N size-M episodes in an event stream.
-Address scalability problem on GPU's massive parallel execution architecture.

A Naïve Approach

- One episode per GPU thread (PTPE)

E Each thread counts one episode
Simple extension of serial counting

- Efficient when the number of episode is larger than the number of GPU cores.

Small Scale

\checkmark Not enough episodes/thread, some GPU cores will be idle.
Solution: Increase the level of parallelism. Multiple Thread per Episode (MTPE)

Small Scale

- Problem with simple count merge.

A Hybrid Approach

\checkmark Choose the right algorithm with respect to the number of episodes N.
\checkmark Define a switching threshold - Crossover point (CP)

Large Scale

Problem: Original counting algorithm is too complex for a GPU kernel function.
Episode: $A \xrightarrow{(0,5]} B \xrightarrow{(5,10]} C \xrightarrow{(0,5]} D$
Accept_A() Accept_B() Accept_C() \quad Accept_D()

Large Scale

Problem: Original counting algorithm is too complex for a GPU kernel function.

- Large shared memory usage
- Large register file usage
- Large number of branching instructions

Large Scale

Solution: PreElim algorithm
\checkmark Less constrained counting \rightarrow Simple kernel function
\checkmark Upper bound only
Episode: $A \xrightarrow{(-, 5]} B \xrightarrow{(-, 10]} C \xrightarrow{(-, 5]} D$

Event Stream

Large Scale

- A simpler kernel function

	Shared Memory	Register	Local Memory
PreElim	$4 \times$ Episode Size	13	0
Normal Counting	$44 \times$ Episode Size	17	80

Large Scale

Solution:

- Two-pass elimination approach

PASS 1: Less Constrained Counting PASS 2: Normal Counting

Large Scale

- A simpler kernel function

Compile Time Difference				
	Shared Memory	Reg	ister	Local Memory
PreElim	$4 \times$ Episode Size		13	0
Normal Counting	$44 \times$ Episode Size		17	80
Run Time Difference				
	Local Memory Load and Store		Divergent Branching	
Two Pass	24,770,310			12,258,590
Hybrid	210,773,785			14,161,399

Results

-Hardware
Computer (custom-built)

- Intel Core2 Quad @ 2.33GHz
-4GB memory
-Graphics Card (Nvidia GTX 280 GPU)
-240 cores (30 MPs * 8 cores) @ 1.3GHz
-1GB global memory
-16K shared memory for each MP

Results

- Datasets
-Synthetic (Sym26)
$\checkmark 60$ seconds with 50,000 events
\rightarrow Real (Culture growing for 5 weeks)
\rightarrow Day 33: 2-1-33 (333478 events)
\rightarrow Day 34: 2-1-34 (406795 events)
-Day 35: 2-1-35 (526380 events)

Results:

-PTPE vs MTPE

Results:

- Performance of the Hybrid Approach

Results:

-Crossover Point Estimation

$\bullet f($ size $)=\frac{a}{\text { size }}+b$ is a better fit.

- A least square fit is performed.

Results:

-Two-pass approach vs Hybrid approach

Execution Time on Support 3600

Results:

\checkmark Performance of the Two-pass approach

2-1-35 dataset, Support $=3150$

Results:

- Percentage of episodes eliminated by each pass

2-1-35 dataset, episode size $=4$

Results:

-GPU vs CPU

- GPU is always faster than CPU
$-5 x-15 x$ speedup
- Fair comparison
- Two-pass algorithm used
- Maximum threading for both

Conclusion and future work

- Massive parallelism is required for conquering near exponential search space
-GPU's far more accessible than high performance clusters
\checkmark Frequent episode mining - Not data parallel
-Redesigned algorithm
- Framework for real-time and interactive analysis of spike train experimental data

Conclusion

- A fast temporal data mining framework on GPUs
-Commoditized system
- Massive parallel execution architecture
- Two programming strategies
\rightarrow A hybrid approach
- Increase level of parallelism (data segmentation + map-reduce)
- Two-pass elimination approach
\rightarrow Decrease algorithm complexity
(Task decomposition)

Thank you.

Questions.

CPU Implementation

- Parallel Execution via pthreads
- Optimized for CPU execution
- Minimize disk access
\checkmark Cache performance
- Implements Two-Pass Approach
- PreElim - Simplerl

Quicker state machine

- Full State Machine -

Slower but is required to eliminate all unsupported episodes

Candidate Generation

- Level-wise

N-size frequent episodes => (N+1)-size candidates

Invent the Future

