

Towards Chip-on-Chip Neuroscience Fast Mining of Neuronal Spike Streams Using Graphics Hardware

Yong Cao,

Debprakash Patnaik, Sean Ponce, Jeremy Archuleta, Patrick Butler, Wu-chun Feng, and Naren Ramakrishnan

Virginia Polytechnic Institute and State University

Motivation

UrginiaTech

Fast data mining of spike train stream on Graphics Processing Units (GPUs)

Multi-Electrode Array (MEA)

NVIDIA GTX280 Graphics Card

- Fast data mining of spike train stream on Graphics Processing Units (GPUs)
- Two key algorithmic strategies to address scalability problem on GPU
 - A hybrid mining approach
 - A two-pass elimination approach

Event stream data: sequence of neurons firing

$$\langle (E_1, t_1), (E_2, t_2), ..., (E_n, t_n) \rangle$$

Data mining problem:

Find all possible episodes / patterns which occur more than X-times in the event sequence.

Challenge:

 Combinatorial Explosion: large number of episodes to count

Episode Size/Length: 1	2	3	4	
A	$A \rightarrow B$	$A \to B \to C$	$A \to B \to C \to D$	
В	$B \rightarrow A$	$A \to C \to B$	$A \to C \to B \to D$	
:	$A \rightarrow C$	$B \to A \to C$	$A \to C \to D \to B$	
	÷	$B \to C \to A$	$A \to D \to B \to C$	
			$A \to D \to C \to B$	
			:	
			<u> </u>	

9

Mining Algorithm

(A level wise procedure to control combinatorial explosion)

- Generate an initial list of candidate *size-1* episodes
- Repeat until no more candidate episodes
 - Count: Occurrences of size-M candidate episodes
 - Prune: Retain only frequent episodes
 - Candidate Generation: *size-(M+1)* candidate episodes from N-size frequent episodes
- Output all the frequent episodes

Computational bottleneck

Counting Algorithm (for one episode)

11

 Find an efficient counting algorithm on GPU to count the occurrences of *N size-M* episodes in an event stream.

 Address scalability problem on GPU's massive parallel execution architecture.

A Naïve Approach

One episode per GPU thread (PTPE)

Each thread counts one episode

Simple extension of serial counting

Efficient when the number of episode is larger than the number of GPU cores.

Small Scale

- Not enough episodes/thread, some GPU cores will be idle.
- Solution: Increase the level of parallelism.

Multiple Thread per Episode (MTPE)

Small Scale

Problem with simple count merge.

A Hybrid Approach

- Choose the right algorithm with respect to the number of episodes N.
- Define a switching threshold Crossover point (CP)

 Problem: Original counting algorithm is too complex for a GPU kernel function.

Problem: Original counting algorithm is too complex for a GPU kernel function.

- Large shared memory usage
- Large register file usage
- Large number of branching instructions

18

Solution: PreElim algorithm

- Upper bound only

A simpler kernel function

	Shared Memory	Register	Local Memory
PreElim	4 x Episode Size	13	0
Normal Counting	44 x Episode Size	17	80

Solution:

Two-pass elimination approach

A simpler kernel function

Compile Time Difference

	Shared Memory	Register	Local Memory
PreElim	4 x Episode Size	13	0
Normal Counting	44 x Episode Size	17	80

Run Time Difference				
	Local Memory Load and Store	Divergent Branching		
Two Pass	24,770,310	12,258,590		
Hybrid	210,773,785	14,161,399		

Hardware

- Computer (custom-built)
 - Intel Core2 Quad @ 2.33GHz
 - 4GB memory
- Graphics Card (Nvidia GTX 280 GPU)
 - •240 cores (30 MPs * 8 cores) @ 1.3GHz
 - 1GB global memory
 - 16K shared memory for each MP

Datasets

Synthetic (Sym26)

60 seconds with 50,000 events

Real (Culture growing for 5 weeks)

Day 33: 2-1-33 (333478 events)

Day 34: 2-1-34 (406795 events)

Day 35: 2-1-35 (526380 events)

PTPE vs MTPE

Performance of the Hybrid Approach

Sym26 dataset, Support = 100

Crossover Point Estimation

Two-pass approach vs Hybrid approach

Performance of the Two-pass approach

2-1-35 dataset, Support = 3150

Percentage of episodes eliminated by each pass

2-1-35 dataset, episode size = 4

GPU vs CPU

- GPU is always faster than CPU
 - 5x 15x speedup
 - Fair comparison
 - Two-pass algorithm used
 - Maximum threading for both

Conclusion and future work

- Massive parallelism is required for conquering near exponential search space
 - GPU's far more accessible than high performance clusters
- Frequent episode mining Not data parallel
 - Redesigned algorithm
- Framework for real-time and interactive analysis of spike train experimental data

Conclusion

A fast temporal data mining framework on GPUs Commoditized system Massive parallel execution architecture Two programming strategies A hybrid approach Increase level of parallelism (data segmentation + map-reduce) Two-pass elimination approach Decrease algorithm complexity (Task decomposition)

Questions.

CPU Implementation

- Parallel Execution via pthreads
- Optimized for CPU execution
 - Minimize disk access
 - Cache performance
- Implements Two-Pass Approach
 - PreElim Simpler/ Quicker state machine
 - Full State Machine Slower but is required to eliminate all unsupported episodes

Candidate Generation

