
POSTER: A Semantic-aware Approach to Reasoning
about Network Traffic Relations∗

Hao Zhang Danfeng (Daphne) Yao Naren Ramakrishnan
Department of Computer Science, Virginia Tech

Blacksburg, VA, USA
{haozhang, danfeng, naren}@cs.vt.edu

ABSTRACT
This paper addresses the problem of reasoning about rela-
tions between network packets on a host or in a network.
Our analysis approach is to discover the causal relations
among network packets, and use the relational structure of
network events to identify anomalous activities that cannot
be attributed to a legitimate cause. The key insight that
motivates our traffic-analysis approach is that higher-order
information such as the underlying relations of events is use-
ful for human experts’ cognition and decision making. We
design a new pairing method that produces special pairwise
features, so that the discovery problem can be efficiently
solved with existing binary classification methods. Prelimi-
nary experiments involving real world HTTP and DNS traf-
fic show promising evidence of the accuracy of inferring the
network traffic relations using our semantic-aware approach.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection

Keywords
Network Security, Anomaly Detection, Classification

1. INTRODUCTION
This paper addresses the issue of reasoning about network

traffic relations. We aim to develop a traffic monitoring tool
that helps identify anomalous network traffic events, which
may be caused by misconfigured hosts, infected hosts, or
external attackers. The key insight that motivates our ap-
proach is that higher-level information such as the under-
lying relations or semantics of events is useful for human
experts’ cognition, reasoning, and decision making in cy-
ber security [3]. Thus, analyzing relations among network
events may provide important insights for identifying net-
work anomalies. We focus on discovering the causal relations
of network packets in this work.

∗This work has been supported in part by NSF grants CAREER
CNS-0953638 and CCF-0937133.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’13, November 4–8, 2013, Berlin, Germany.
Copyright 2013 ACM 978-1-4503-2477-9/13/11 ...$15.00.
.

Most network analysis methods for filtering individual
packets or aggregation statistics fail to fulfill this goal of
event-relation discovery, with some exceptions. The most
advanced solutions today aim to identify correlating traffic
events or attributes (e.g., IP addresses). Gu et al. demon-
strated the effectiveness of correlation analysis across multi-
ple hosts of a network in detecting similarly infected bots [4].
King et al. constructed directed graphs from logs to show
network connections for dissecting attack sequences [6]. These
solutions mainly leverage domain knowledge of networked
systems (e.g., protocol or system specifications) or attack
behaviors (e.g., botnet command and control).

We present a new learning-based method and demonstrate
with experiments that discovering fine-grained causality in
network traffic is feasible. The causality of network pack-
ets provide contextual interpretations to the behaviors of
systems and networks, illustrating why sequences of events
occur and how they relate to each other. Because of the tran-
sitivity, the problem of discovering the packet dependencies
among a set of events may be transformed into discover-
ing the dependency of pairs of events, which we defined as
pairwise relation.

General techniques for learning and recognizing directional
causal relations of network traffic events do not exist. Most
of the existing learning-based security studies are on binary
classification problems, where an unknown instance (e.g.,
email, code, or network packet) needs to be classified into
two classes – legitimate or suspicious. Our relation discovery
work also differs from existing service dependency analysis
(e.g., [1, 7]), because of i) our finer granularity (request vs.
flow) and ii) different relation semantics.

2. THE PROPOSED APPROACH
The goal of our analysis is to infer the causality of the

packets and infer the anomalies by enforcing specific security
policy. The main operations in our analysis are Data Col-
lection, Pairing, Data Labeling, Training, Classifi-
cation, and Security Policy Enforcement. The Data
Labeling, Training, and Classification operations are
standard for machine learning based methods.

We introduce a new feature extraction method referred
to as Pairing. This operation converts individual network
events into event pairs with comparable pairwise attributes,
so that conventional binary classification techniques can then
be applied to discover the relations between packets. We
also present the use of root-trigger policy in security policy
enforcement to report anomalies.

A overview of our approach follows.

• Data Collection is intended to record and store the
events to be analyzed. Each event e has one or more
attributes (A1, . . . , Am) describing its properties.
• Pairing is used to extract pairwise comparison re-

sults of events’ attributes. Its inputs are two events
e = (A1, . . . , Am) and e′ = (A′

1, . . . , A
′
m). The output

is the event pair (e, e′) withm pairwise attribute values
(B1, . . . , Bm), where a pairwise attribute Bi(i ∈ [1,m])
represents the comparison result of attributes Ai and
A′

i. That is, Bi = fi(Ai, A
′
i), where fi() is a com-

parison function (e.g., isEqual, isGreaterThan, isWith-
inThreshold, isSubstring, etc) for the type of the i-th
attribute in the events.
• Data Labeling is the operation that produces the

correct causal relations for the event pairs in a small
training dataset. We choose a binary label (1 or 0) to
indicate the existence or non-existence of any causal
relation in an event pair, e.g., < (e, e′), 1 > represents
that event e triggers e′.
• Training is the operation that produces a machine

learning model with labelled training data. We adopt
two feature selection methods (Information Gain and
Gain Ratio) to find an optimal set that could improve
the effectiveness of machine learning classifiers.
• Classification is the operation to use the trained ma-

chine learning model to predict causal relations on new
event pairs {Pij = (ei, ej)}. We build and compare
three common supervised machine learning classifiers
– Naive Bayes, a Bayesian network, and a support vec-
tor machine (SVM) [2].
• Security Policy Enforcement is the operation in-

tended to apply security policies to the classification
results and report anomalous events.

2.1 Pairing Operation
The Pairing operation extracts features of event pairs.

An event attribute may be of the numeric, nominal, string,
or composite type. Various comparison functions are chosen
based on the attribute types.
• Numeric attributes can be compared by computing

their difference, e.g., the interval TimeDiff between the
timestamps of two network events, i.e. Bi = Ai −A′

i.
• A nominal attribute (e.g., file type, protocol type) cat-

egorizes the property of an event. Comparing nominal
attributes usually involves string comparison, e.g., sub-
string or equality tests.
• For the string type of attributes, we compute the sim-

ilarity of the attribute values as the pairing attribute
value. That is, Bi = fs(Ai, A

′
i), where function fs

is a similarity measure, e.g., normalized edit distance.
Taking HTTP packets as an example, we can compute
a pairwise attribute HostSim by measuring the similar-
ities between two host fields in the HTTP headers.
• A composite attribute contains multiple values, e.g., a

destination address is composed of four octets for the
IP address and an integer for the port. The compari-
son of two composite values is made by comparing the
sub-attribute values separately. Therefore, we define
a bitmap to store the comparison between the source
and destination IPs. Each bit refers to the difference
between one octet of two IPs or between two ports.

To reduce the complexity of the analysis, a heuristic is to
pair up events whose timestamps are close. In our study,
only the events whose timestamps differ by less than a cer-

tain threshold τ are compared. The purpose is to avoid
making meaningless pairs for packets whose time difference
is greater than τ .

2.2 Security Policy Enforcement
We use root-trigger policy as an example to explain the

security policy enforcement. This policy is to determine
whether the activity is legitimate or not based on the legit-
imacy of the initial cause of the event, i.e., the root trigger
of the event. According to this definition, anomalous events
are the events that do not have a valid root trigger. These
events may be due to malware activities or host/server mis-
configuration. A specific root-trigger security definition is
based on user intention [8], where a valid root trigger should
be related to a user activity (e.g., a function call to retrieve
user inputs, mouse clicks, or keyboard inputs). In what fol-
lows, we refer to the events that do not have any valid root
triggers as vagabond events.

Algorithm 1 Find-root Algorithm.

Input: set = {(ei → ej)} and an event ek.
Output: a set roots, where each in roots is a root of ek.
1: define a set roots to store the results
2: define a queue Q and enqueue ek onto Q
3: while Q 6= ∅ do
4: event n← dequeue Q
5: let a set ps← all of n’s parents
6: for each event e ∈ ps do
7: if e is of type root then
8: roots = roots+ {e}
9: else if e /∈ Q then

10: enqueue e onto Q
11: end if
12: end for
13: end while
14: return roots

Algorithm 1 finds all the roots of an event ek, given all
the pairwise causal relations. The input of the algorithm is a
set of all the pairwise relations {(ei → ej)} and an event ek.
The output is a set containing all the roots of ek. In order
to compute the transitive reduction of a directed graph, we
use a queue Q to perform breadth-first traversal.

The root-trigger security policy is suitable for identifying
network activities that are not triggered by users, including
but not limited to:
• Spyware exfiltrating sensitive information through out-

bound network traffic from the monitored host,
• Bots’ command-and-control traffic, and attack activ-

ities (e.g., spam or DoS traffic) originated from the
monitored host,
• Websites collecting and reporting user data.

One future direction is to systematically investigate the de-
sign and use of complex policies for network assurance.

3. PRELIMINARY EVALUATION
We use the Weka library [5] and implement the prototype

in Java. The data we evaluate are summarized in Table 1
(τ is the threshold for the maximal time interval of a pair of
events). Dataset I is composed of the user’s events and out-
bound HTTP traffic that are sampled from a 20-participant
user study. Each participant was asked to actively surf the
web for 30 minutes on a laptop equipped with our data col-

lection program. We set the threshold as 30 seconds, as
97.2% of the HTTP requests fall within that interval range.
Dataset II is obtained by using tcpdump to continuously col-
lect outbound DNS queries and HTTP packets from a gra-
date student’s workstation for 19 days. We collected types A

and AAAA DNS queries and the packets containing GET, HEAD,
or POST HTTP information. Due to the wide prevalence of
DNS prefetching, we choose a relaxed threshold of 15 sec-
onds, which covers 97.8% of the event pairs.

Data Type τ (s) # of Pairs Size (MB)

I HTTP 30 572,725 38.61
II DNS & HTTP 15 1,833,306 113.56

Table 1: An overview of datasets in the experiments.

Data labeling. Our rules for HTTP traffic are similar to
what are used in [8]. We manually labeled 12% of HTTP
requests in the training datasets, which also indicates the
inadequacy of the existing rule-based approach. Rules for
labeling mixed DNS and HTTP traffic involve analyzing the
query of the DNS packet, type of DNS query(e.g., A or AAAA),
host of the HTTP request, and the protocol version of des-
tination IP address in HTTP header.

Classification. 10-fold cross-validation experiments demon-
strate that the accuracy of both training sets is greater than
99%. Due to the sparsity of relations in network traffic,
we define a cost matrix C =

[
0, 1
10, 0

]
that penalizes classify-

ing false negative with 10, while penalizing classifying false
positive only with 1. The binary classification accuracy for
pairwise causal relations is consistently high for the Bayesian
network and SVM methods (see Table 2). The naive Bayes
classifier yields lower average accuracy, indicating that the
conditional independence assumptions made by this classi-
fier might be strong.

Data
of pairs Naive Bayesian

SVM
Training Test Bayes Network

I 309,921 262,804 99.77% 99.85% 99.92%
II 916,650 916,656 98.98% 100% 100%

Table 2: Pairwise classification accuracy results of
train-n-test experiments. Sizes of training and test
data are shown.

Security Policy Enforcement (Correctness of root triggers).
Running the find-root procedure in Algorithm 1 on the pair-
wise classification results, we identify the root triggers of all
events and compare them to the ground truth values.

By enforcing the root-trigger policy, the evaluation shows
that for 99.0% of events, the roots are correct with respect
to the ground truth. The results are the same for all three
classifiers. Among the 99.0% events, we found 22 vagabond
events, which belong to either malicious behavior (e.g., re-
quest to altfarm.mediaplex.com) or misconfiguration on the
server (e.g., some requests to googleapi or twitter). There
are 1.0% events whose root triggers are not correctly found.
Manual investigation reveals that the wrong root triggers are
all false positives, which are caused either by i) null or trun-
cated attributes (e.g., referrer, hostname) due to the trans-
mission issues, or ii) timestamps out of the specified thresh-
old. The latter can be avoided by increasing the threshold
in the pairing operation, which, however, may increase the
computation overhead by generating unnecessary pairs.

Summary. The correctness of classifying the causal rela-
tion among network packets shows the feasibility and effec-
tiveness of our analysis approach. The root-trigger security
analysis allows us to identify network events linked to mali-
cious hosts or due to misconfiguration of web servers. The
classification performance is efficient in general and adequate
for fast traffic analysis.

4. CONCLUSIONS AND FUTURE WORK
Our learning-based technique to discover causal relations

shows promising application to analyzing host-based out-
bound HTTP and mixed HTTP and DNS traffic data. Our
experiments identified several types of network anomalies
caused by traffic to malicious servers or misconfigured servers.

Future work will proceed along three directions. First,
we plan to explore the incorporation of more complex secu-
rity policies, which could help detect more types of threats.
Second, we plan to explore the inference of more complex
boolean relationships across events [9] than simple pairwise
relations (e.g., at least two of three precursors must be present
for a given event). Finally, we intend to encapsulate the en-
tire framework, from pairwise relation construction, to clas-
sification, in a machine learning framework so that all neces-
sary parameters can be jointly optimized. Such an approach
can also help avoid making arbitrary thresholding decisions
and better explore the joint interplay between design deci-
sions.

5. REFERENCES
[1] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl.

Automating network application dependency discovery:
Experiences, limitations, and new solutions. In
Proceedings of OSDI, pages 117–130, 2008.

[2] C. Cortes and V. Vapnik. Support-vector networks.
Machine learning, 20(3):273–297, 1995.

[3] T. Green, W. Ribarsky, and B. Fisher. Visual analytics
for complex concepts using a human cognition model.
In Proc. IEEE VAST, pages 91 – 98, October 2008.

[4] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner:
Clustering analysis of network traffic for protocol- and
structure-independent botnet detection. In Proceedings
of the 17th USENIX Security Symposium, 2008.

[5] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data mining
software: an update. ACM SIGKDD Explorations
Newsletter, 11(1):10–18, 2009.

[6] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M.
Chen. Enriching intrusion alerts through multi-host
causality. In Proceedings of Network and Distributed
System Security (NDSS), 2005.

[7] A. Natarajan, P. Ning, Y. Liu, S. Jajodia, and S. E.
Hutchinson. NSDMiner: Automated discovery of
network service dependencies. In INFOCOM, pages
2507–2515, 2012.

[8] H. Zhang, W. Banick, D. Yao, and N. Ramakrishnan.
User intention-based traffic dependence analysis for
anomaly detection. In Security and Privacy Workshops
(SPW), 2012 IEEE Symposium on, pages 104–112.
IEEE, 2012.

[9] L. Zhao, M. J. Zaki, and N. Ramakrishnan. Blosom: a
framework for mining arbitrary boolean expressions. In
Proc. KDD’06. ACM, 2006.

