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Temporal Topic Modeling to Assess 
Associations between News Trends 
and Infectious Disease Outbreaks
Saurav Ghosh1, Prithwish Chakraborty1, Elaine O. Nsoesie2,3,4, Emily Cohn2, 
Sumiko R. Mekaru3,5, John S. Brownstein2,3,5,6 & Naren Ramakrishnan1

In retrospective assessments, internet news reports have been shown to capture early reports of 
unknown infectious disease transmission prior to official laboratory confirmation. In general, media 
interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the 
extent to which media interest during infectious disease outbreaks is indicative of trends of reported 
incidence. We introduce an approach that uses supervised temporal topic models to transform large 
corpora of news articles into temporal topic trends. The key advantages of this approach include: 
applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, 
abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease 
outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that 
temporal topic trends extracted from disease-related news reports successfully capture the dynamics 
of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and 
China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling 
of temporal topic trends using time-series regression techniques can estimate disease case counts with 
increased precision before official reports by health organizations.

Infectious diseases are a threat to public health and economic stability of many countries. Open source indicators 
(e.g., news articles1,2, blogs3, search engine query volume4–7, social media chatter8–11 and other sources12) are an 
attractive option for monitoring infectious disease progression, primarily due to their sheer volume and capacity 
to capture early signals of disease outbreaks, and in some cases, trends in population health-seeking behavior. 
However, most prior work in digital surveillance using open source indicators has targeted specific diseases, 
such as influenza12,13 and hantavirus pulmonary syndrome (HPS)14. Therefore, there is a need to develop generic 
frameworks that are applicable to multiple infectious diseases.

Official surveillance reports released by health organizations (e.g., CDC, WHO, PAHO) are published with 
a considerable delay of weeks, months or even a year. Therefore, traditional surveillance systems are not always 
effective at real-time monitoring of emerging public health threats. Unlike traditional surveillance data, informal 
digital sources, such as news media, blogs, and micro-blogging sites (Twitter) are typically available in (near) 
real-time. Proper mining of signals from these digital sources can effectively help in minimizing the time lag 
between an outbreak start and formal recognition of an outbreak, allowing for an accelerated response to public 
health threats. The gains in supplementing traditional surveillance using digital sources have been discussed in 
Nsoesie et al.15, Salathé et al.16,17 and Hartley et al.18.

Our key contributions are as follows. (i) We introduce EpiNews, a generic temporal framework for analyzing 
disease-related news reports using a supervised topic model. The supervised topic model discovers multiple dis-
ease topics of interest and their associated temporal trends of prominence in news media. (ii) EpiNews captures 
trends in disease progression, such as periodicity, peaks and troughs via temporal trends of disease topics in news 
media. (iii) When news coverage is adequate, EpiNews also estimates disease incidence before official reports by 
health agencies using time-series regression models interposed over the temporal trends of disease topics.
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We validated our method against disease case count reports, as available from public health agencies in U.S., 
China, and India. Disease-related news articles were provided by HealthMap19, an internationally recognized, 
global disease alert system capturing outbreak reports from over 200,000 electronic news sources. EpiNews was 
evaluated on multiple outbreaks in the recent past, such as whooping cough in U.S. (2012)20, periodic outbreaks 
of avian influenza A(H7N9)21,22 and hand, foot, and mouth disease (HFMD) in China (2013 and 2014), periodic 
outbreaks of acute diarrheal disease (ADD) in India (2013 and 2014), major dengue outbreaks in China (2014)23 
and India (2013). Our experiments indicate that EpiNews was successfully able to capture the dynamics of the 
mentioned outbreaks and estimate the case counts in many of these instances before official reports were pub-
lished. However, inconsistent news coverage was found to adversely affect the performance of our approach.

Materials and Methods
Data sources. In this section, we discuss the data sources used to analyze the infectious disease outbreaks. 
We first describe the case count reports collected from public health agencies and complete our discussion about 
the HealthMap data used in this study.

Disease case counts. For each country, we collected case count data corresponding to multiple diseases over a 
certain time period. In Table 1, we show the disease names (along with methods of transmission), health agencies 
from which case counts were collected, time period over which case counts were obtained and temporal granular-
ity (daily, monthly, weekly or yearly) of the obtained case counts corresponding to each country.

HealthMap. Disease-related news articles were found to be indicative of infectious disease outbreaks14. We col-
lected such articles related to the mentioned diseases in Table 1, for each country under consideration, from 
HealthMap. The HealthMap corpus is a publicly available database from which we collected the disease-related 
articles, reported during the time period of interest. Each article contains the reported date and the correspond-
ing location information in the form of (lat, long) co-ordinate pairs. We converted the location co-ordinates to 
location names (country, state) via reverse geocoding. Reverse geocoding is defined as the process of finding 
a readable address or place name for a given (lat, long) pair. For example, (26.562851, − 81.949532) was con-
verted to (United States, Florida) after reverse geocoding. Each HealthMap article was passed through a series 
of preprocessing steps. For China, majority (87.94%) of the articles were published in either Traditional Chinese 
or Simplified Chinese. We translated the textual content of these articles to English for ease of analysis using 
Google translate (https://translate.google.com/). Because of the unavailability of ground truth for these articles, 
we couldn’t validate the performance of Google translate in this context. However, Google translate is one of 
the state-of-the-art commercial machine translations used today. Recent advances in deep learning and neural 
machine translation have made it a reliable tool for Chinese-to-English translation. For more details, see http://
www.androidauthority.com/google-translate-machine-learning-chinese-718813/. Prior research25–27 on Chinese 
sentiment analysis has shown that using Google translate to translate Chinese reviews into English reviews 
improves the sentiment classification performance. In Pak et al.26, Google translate also yielded better results for 
the sentiment classification task in comparison to another commercial machine translation service named Yahoo 
Babelfish (http://babelfish.yahoo.com/).

EpiNews. In this section, we describe in details the components of our proposed framework EpiNews. In 
Fig. 1, we show a flowchart depicting the sequential modeling process in EpiNews. The first component is the 
HealthMap preprocessing step which takes the HealthMap corpus as input and outputs the set   where each 
element represents a three-dimensional tuple of the form {word(w), location(l), timepoint(t)}:count. The second 
component, referred to as temporal topic modeling, is used to extract temporal topic trends from  . The final 
component, referred to as EpiNews-ARNet, is responsible for generating estimates of disease case counts using 
past available case counts and temporal topic trends extracted by the supervised topic model.

HealthMap preprocessing. The first component of EpiNews deals with the preprocessing of HealthMap articles 
through a series of preprocessing steps, such as removal of non-textual elements, tokenization28,29, lemmatiza-
tion30 and removal of stop words via BASIS Technologies’ Rosette Language Processing (RLP) tools31,32. For more 
details on these steps, see Supplementary Section ‘HealthMap preprocessing’. The set of unique words in these 

Country Disease names (Methods of transmission) Health agencies Time period
Temporal 

granularity

U.S.
Whooping cough (airborne, direct contact) 

Rabies (zoonotic) Salmonellosis (food-borne)  
E. coli infection (waterborne, food-borne)

Project Tycho24 (https://www.tycho.
pitt.edu/) January 2010–December 2013 Weekly

China H7N9 (zoonotic) HFMD (direct contact, 
airborne) Dengue (vector-borne)

National Health and Family Planning 
Commission (http://en.nhfpc.gov.cn/) January 2013–December 2014 Monthly

India ADD (food-borne) Dengue (vector-borne) 
Malaria (vector-borne)

Integrated Disease Surveillance 
Programme (http://www.idsp.nic.in/) January 2013–December 2014 Weekly

Table 1. Disease names (along with routes of transmission), health agencies from which case counts were 
collected, time period over which case counts were obtained and temporal granularity (daily, monthly, 
weekly or yearly) of the obtained case counts corresponding to each country. H7N9 stands for avian 
influenza A, ADD stands for acute diarrheal disease and HFMD stands for hand, foot, and mouth disease.

https://translate.google.com/
http://www.androidauthority.com/google-translate-machine-learning-chinese-718813/
http://www.androidauthority.com/google-translate-machine-learning-chinese-718813/
http://babelfish.yahoo.com/
https://www.tycho.pitt.edu/
https://www.tycho.pitt.edu/
http://en.nhfpc.gov.cn/
http://www.idsp.nic.in/
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processed articles were found to contain general- (e.g., cold, contagious, nausea, blood, food-borne, waterborne, 
sanitation) as well as specific- (e.g., rabies, whooping, h7n9, dengue, salmonella, malaria) disease related terms. In 
Table 2, we show country-wise distribution of the total number of HealthMap news articles along with unique 
words and location names extracted from all the corresponding articles.

Following Rekatsinas et al.14, the processed corpus for each country was transformed to a collection of tuples 
of the form {w, l, t}:count, where count is the number of news articles mentioning the word w associated with the 
location l and time point t in the tuple. For this transformation, we assumed that for each country, each processed 
article consists of words from a vocabulary V, corresponds to a discretized time window t ∈  {1, 2, … , T} and is 
geotagged with a location l from a set of locations L in the country. For China, disease case counts were available 
on a monthly granularity and as such each time point t represents a period of 1 month. However, for diseases in 
U.S. and India, case counts were obtained on a weekly basis and as such time point t represents a period of 1 week 
or more specifically, epidemiological week (hereafter referred to as epi week). For example, the tuple (salmonella, 
(United States, Kansas), 2013-10-06):9 denotes that the word salmonella was mentioned in 9 articles referring to 
the state of Kansas in U.S. over the epi week extending from 6th October 2013 to 12th October 2013. For each 
country, let Nl represent the collection of tuples for each location l ∈  L and   denote the set of all tuple collections 
Nl until time point T. This transformed set   was analyzed to extract the temporal trends of disease topics as 
discussed in the following section. Both Nl and   were updated for each country, as we proceed along the time 
window.

Temporal topic modeling. The second component of EpiNews deals with the topic and pattern discovery prob-
lem. The set   of all tuple collections Nl can be treated as a three-dimensional matrix of size V ×  L ×  T where the 
dimensions are represented by words (size V), locations (size L) and time points (size T). Each element xw,l,t in   
represents the total number of articles mentioning the word w (w ∈  V) referring to location l (l ∈  L) over the time 
point t (t ∈  1, 2, 3, … , T). We assume that each entry in a non-zero element xw,l,t of   is associated with a latent 
disease topic and therefore, such hidden disease topics can be modeled in terms of three dimensions of  . Our 
goal is to extract the hidden disease topics and their corresponding associations with each dimension of  . 
Following previous literature on topic models14,33–35, we implemented a supervised temporal topic model for this 
purpose. We supervise the discovery process of each disease topic by providing a set of prior words (also called 

Figure 1. Flow chart depicting the sequential modeling process in EpiNews. 

Country
Total number of HealthMap 

news articles
Total number of 

unique words
Total number of unique location 

names or (country, state) pairs

China 11,209 21,879 30

India 1,204 17,160 30

U.S. 9,872 59,687 51

Table 2. Country-wise distribution of the total number of HealthMap news articles along with unique 
words and location names extracted from all the corresponding articles.
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seed words)35. These seed words are user-provided prior knowledge of each infectious disease and they encourage 
the topic model to find evidence of these disease topics in the HealthMap corpus. This supervised method helps 
in improving the discovery of word co-occurrences within each topic as the model tends to discover words that 
are related to the words in the seed set. Additionally, we model time and location jointly14 with the word 
co-occurrence patterns. This enables tracking of temporal and spatial patterns of these disease topics in the news. 
For more details on the supervised topic model, see Supplementary Section ‘Generative process of the supervised 
topic model’.

The supervised topic model takes   as input, discovers K disease topics and decomposes   into four 
two-dimensional matrices as shown below. Each two-dimensional matrix represents the association between the 
discovered disease topics and the dimensions in  .

•	 ξ: A K ×  T matrix where each row represents a discrete probability distribution over the time points (1, 2, 3, … , T)  
for a specific topic z ∈  1, 2, 3, … , K. Each row of ξ (ξz) represents the temporal topic trends or distribution for 
the disease topic z ∈  1, 2, 3, … , K.

•	 φs: A K ×  S matrix where each row represents a discrete probability distribution over the set S of seed words 
for a specific topic z ∈  1, 2, 3, … , K. φs is hereafter referred to as the seed topic distribution.

•	 φr: A K ×  V matrix where each row represents a discrete probability distribution over the set of regular words 
for a specific topic z ∈  1, 2, 3, … , K. The set of regular words refers to all the words in vocabulary V including 
the seed words. φr is hereafter referred to as the regular topic distribution.

•	 θ: A L ×  K matrix where each row represents a discrete probability distribution over K topics for a specific 
location l ∈  L.

For more details on ξ, φs, φr and θ, see Supplementary Section ‘Generative process of the supervised topic 
model’. Inference in this probabilistic model is conducted as follows. To compute the output parameters θ, φr, φs 
and ξ in the supervised topic model given input observed data  , we need to solve an inference problem. In topic 
models, exact computation is intractable33 and thus we are interested in approximate inference of the model 
parameters. Since collapsed gibbs sampling36–38 is a straight-forward, easy to implement, and unbiased approach 
that converges rapidly to a known ground-truth, it is typically preferred over other possible approaches33,39 in 
large scale applications of topic models14,37,40. Thus we used collapsed gibbs sampling as the inference scheme for 
the supervised topic model. For more details on the inference process, see Supplementary Section ‘Inference via 
collapsed gibbs sampling’.

To apply the model in practice, seed words for each disease topic were extracted by examining the content of 
a subset of news articles mentioning the disease. Additionally, following similar techniques as in Chakraborty 
et al.13, we also examine a number of expert websites, such as CDC and WHO, to identify the most important 
keywords for a particular disease. Considering space limitations, seed words used in this study are shown in 
Supplementary Tables 1, 2 and 3 corresponding to diseases in U.S., China, and India respectively.

Estimation of disease case counts. The final component of EpiNews is concerned with estimation of disease case 
counts using relevant information such as past case counts and temporal topic trends (ξ). Let D be the disease of 
interest. Without loss of generality, let the zth disease topic corresponds to D. Furthermore, let SD,T denotes case 
counts of D and ξz,T denotes temporal trend value for zth disease topic at a time point T. In general, reports of case 
counts published by health organizations are delayed (see Chakraborty et al.13, Wang et al.41) and hence, at time 
point T case counts are available only till T′ <  T with a delay δ =  T − T′. However, temporal topic trend values 
ξ ξ ξ( , , , )z z z T, 1 , 2 ,  are available till T. Hence, we can formally define the case count estimation problem as esti-

mating SD,T using past case counts (SD) available till T′ and temporal topic trends (ξz) available till T. In general, 
disease case counts have a publication delay of 1 time point (T′ =  T −  1) and hence, estimating SD,T at T is equiva-
lent to 1-step ahead estimation.

EpiNews-ARNet. For 1-step ahead case count estimation, we used a regularized version of autoregressive model 
with external input variables (ARX) where external input variables are represented by the temporal topic trends 
(ξz). We used Elastic Net42 as the regularization model in ARX. This estimating component of EpiNews is desig-
nated as EpiNews-ARNet and defined below in equation (1).
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where, ŜD T,  is the estimated case count for disease D at time point T and γi, ηj are the regression coefficients fitted 
using Elastic Net constraints as given below in equation (2).
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where, λ1 and λ2 are the regularization coefficients for the L1 and L2 components of Elastic Net, respectively. The 
Elastic Net combines the properties of Least Absolute Shrinkage and Selection Operator (LASSO)43,44 and Ridge 
regression44 models. This combination allows for learning a sparse model like LASSO, while still maintaining the 
regularization properties of Ridge. If λ1 equals to 0, equation (2) equates to a Ridge estimator. On the other hand, 
if λ2 equals to 0, equation (2) corresponds to a LASSO estimator.
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There are broadly two components to equation (1) which captures different signals about the diseases as fol-
lows. (i) Internal component (p): This component is an autoregressive model that captures the signal embedded 
in past case counts and thus describes a delayed model. p indicates the order of autoregression. (ii) External 
component (q, r, s): This component can also be thought of as an autoregressive component over the temporal 
topic trends (ξz) where q is the number of time points to look back. The temporal topic trends are subjected to two 
additional transformations as follows. (a) Shift indicator (s): Often, the incidence of news reports is not concur-
rent with the incidence of diseases, as recorded in the case counts. EpiNews-ARNet incorporates this information 
by shifting the temporal topic trend value ξz,T by s steps. The shift can be positive (indicating a lagging trend), 
negative (indicating a leading trend) or zero (indicating a co-incident trend). (b) Rolling transformation (r): 
Disease case counts (SD) do not follow a strictly linear relationship with temporal topic trends (ξz). One of the 
simplest methods is to detrend the signals using difference of trend values instead of absolute values. However, 
our experiments showed that such transformations using a single time point often lead to unstable estimates. As 
such, we define a rolling transformation g over a window length r given below in equation (3).

= − −g x x T x T r( ) ( ) ( ) (3)r T

Essentially, such transformations aim to capture the changes in trend values over a period and were found to be 
more indicative than absolute values. We ran a cross-validation step to find the optimal (p, q, r, s) parameters.

Converting temporal topic trends to sampled case counts. We described EpiNews-ARNet using the temporal 
topic trends or distribution (ξz) as the external input variables. It is to be noted that the disease case counts (SD) 
and the temporal topic distribution (ξz) are typically at different numerical scales since values in a distribution 
range from 0 to 1. To improve numerical stability we converted the temporal topic distributions to estimated case 
counts using multinomial sampling45 over the time range. In multinomial sampling, samples are drawn from a 
multinomial distribution45. The case counts estimated via multinomial sampling from the temporal topic distri-
butions are hereafter referred to as sampled case counts. To calculate the sampled case counts (Ξ D) for disease D, 
the corresponding temporal distribution ξz for zth topic was used as the multinomial distribution and the total 
number of case counts available till T′ <  T at T (due to delay in reporting of case counts) was used as the number 
of samples to be drawn from the distribution. See Algorithm (1) for more details.

Algorithm 1: Multinomial sampling to convert temporal topic distribution to sampled case counts.

Input: Temporal topic distribution: ξz,1, … , ξz,T

 Total number of case counts till time point T′: 
′ = ∑ ′′=

′TS S( )D T t
T

D t, 0 ,

Output: Sampled case counts from temporal topic distribution: Ξ D,1, … , Ξ D,T

1 p ←  ξz,1, … , ξz,T

2 n ←  TSD,T′

3 Draw n time points 0 ≤  ts ≤  T using multinomial sampling where p is the multinomial distribution and n is the total number of samples to 
be drawn.

4 For each time point 0 ≤  ts ≤  T, sampled case count ΞD ts,  is calculated as the frequency of occurrence of ts in the above n number of samples 
(time points) drawn from the multinomial distribution p.

Results
In this section, we present an empirical evaluation of our proposed framework EpiNews. We first evaluated the 
disease topics discovered by the supervised topic model. Next, we analyzed whether the temporal topic trends 
(ξ) extracted by the supervised topic model are able to capture disease dynamics - including seasonality, abrupt 
peaks and troughs. Finally, we evaluated the quality of case counts estimated by EpiNews-ARNet against the 
actual disease case counts.

Disease topic discovery. To evaluate the discovered disease topics, we looked at the words having higher 
probabilities in the seed topic distributions (φs) and regular topic distributions (φr). Considering space limita-
tions, we present the analysis of φs and φr in Supplementary Tables 1, 2 and 3 corresponding to disease topics in 
U.S., China and India respectively. For each country, both φs and φr were extracted from HealthMap data span-
ning over the entire time period shown in Table 1. For each disease topic (z), we show the seed words and their 
corresponding probabilities (sorted in descending order) in the seed topic distribution φz

s. Seed words having 
higher probabilities in φz

s serve as informative prior words in the topic discovery process as they are mentioned 
frequently in news articles related to the zth disease topic. For example, seed words such as food, salmonella,  
product, fda, drug, contamination serve as informative prior words for the discovery of salmonellosis topic in U.S. 
since they have higher probabilities in the seed topic distribution (see Supplementary Table 1). On the other hand, 
seed words such as enteritidis, newport provide less prior information due to their low probability values in the 
seed topic distribution. To understand how the supervised topic model discovers words from the HealthMap 
corpus related to these input seed words, we also show some of the regular words having higher probabilities in 
the regular topic distribution φz

r. For a particular disease topic, these regular words with higher probabilities are 
mentioned frequently in news articles related to that disease and also capture different aspects (causes and clinical 
symptoms, methods of transmission, etc.) of the disease that the topic represents. For example, in Supplementary 
Table 1 we show these regular words (having higher probabilities in the regular topic distribution φz

r) for the sal-
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monellosis topic in U.S. Words such as diarrhea, nausea, vomit are related to clinical symptoms of salmonellosis. 
On the other hand, words such as eat, contaminated, restaurant, meat, beef are related to causes of salmonellosis.

Detection of outbreak patterns. We also examined the temporal distribution or trends (ξz) for each dis-
ease topic (z) in a specific country (Figs 2, 3 and 4) and their correlations with the disease case counts. For each 
country, temporal topic trends (ξz) were extracted from HealthMap data spanning over the entire time period 
shown in Table 1. We made several important observations as follows.

Disease seasonality. In U.S., case counts of salmonellosis and E. coli infection exhibit strong periodic outbreaks, 
both peaking during the summer (see Fig. 2(e) and (g)). Temporal topic trends extracted by EpiNews were able to 
capture the periodicity of these two diseases, particularly periodic outbreaks of salmonellosis and E. coli infection 
in 2010, 2012 and 2013. However, during 2011, temporal topic trends failed to monitor the peak season properly 
though they show a tendency to increase during summer. For salmonellosis in 2013, the temporal topic trends 
captured the major peak of the outbreak at the start of the season while failing to capture the seasonal activity 
towards the end. For rabies, although the topic trends captured the general characteristics it failed to detect some 
major outbreaks, such as the outbreak in the summer of 2010 (see Fig. 2(c)).

In China, H7N9 and HFMD case counts exhibit strong periodic outbreaks, with H7N9 peaking during the 
winter and HFMD peaking during the summer (see Fig. 3(a) and (c)). For H7N9, temporal topic trends extracted 
by EpiNews were able to detect the seasonal outbreaks during March–April 2013 and January–February 2014. 
However, for HFMD, peaks in temporal topic trends precede the peaks in case counts during the summer of 2013 
and 2014 respectively. Therefore, temporal topic trends for HFMD exhibit a negative shift (leading indicator) with 
respect to the case counts.

In India, case counts of ADD exhibit periodic outbreaks, peaking during the summer of 2013 and 2014 (see 
Fig. 4(a)). Temporal topic trends detected the seasonal outbreak in the summer of 2013 but failed to capture the 
outbreak in the summer of 2014.

Sudden peaks/troughs. In U.S., whooping cough outbreaks do not exhibit yearly periodicity unlike salmonellosis 
and E. coli infection (see Fig. 2(a)). There was a major outbreak of whooping cough during the summer of 2012 
and EpiNews detected this sudden increase (peak) in case counts by displaying higher topic trends during the 
entire period of the outbreak. EpiNews also did not detect outbreaks during periods (summer of 2011 and 2013) 

Figure 2. Correlation between disease case counts and temporal topic distributions or trends (ξz) extracted 
by EpiNews for (a) whooping cough, (c) rabies, (e) salmonellosis, and (g) E. coli infection in U.S. Along with 
the temporal topic trends (ξz), we also showed the correlation between disease case counts and sampled case 
counts (generated by multinomial sampling from temporal topic trends) for (b) whooping cough, (d) rabies, 
(f) salmonellosis, and (h) E. coli infection. Note, the sampled case counts and disease case counts share almost 
similar numerical range. However, the temporal topic trend values are at different numerical range (ranging 
from 0 to 1) with respect to the disease case counts.
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known to have low incidences (troughs) of whooping cough by displaying lower topic trends, suggesting low false 
alarm rate.

In China and India, dengue case counts exhibit seasonal outbreaks with peaks in case counts appearing during 
the months of September and October. However, China experienced a severe dengue outbreak in 201423 in com-
parison to the outbreak in 2013 with the peak value of case counts exceeding 25,000 in the month of October (see 
Fig. 3(e)). Temporal topic trends detected this sudden massive increase in case counts by displaying a sharp spike 
during the outbreak period. India also experienced a large dengue outbreak in 2013 with the peak value of case 
counts exceeding 3,000 during a particular epi week in October (see Fig. 4(c)). EpiNews was able to detect this 
outbreak by displaying higher topic trends during the peak period. Malaria case counts in India exhibit irregular 
outbreaks or peaks (see Fig. 4(e)). EpiNews was successful in capturing majority of these outbreaks though it 
failed to detect some major peaks, such as the peak during the month of June 2014.

Sampled case counts. Along with the temporal topic trends (ξz), we also showed the corresponding sampled case 
counts (Ξ D) generated via multinomial sampling (see Algorithm (1)) from ξz for a disease D in Figs 2(b,d,f and h), 
3(b,d and f) and 4(b,d and f). The figures show that the sampled case count values share similar numerical range 
as the disease case counts while maintaining shapes of the temporal topic trends. On the other hand, the temporal 
topic trend values are at different numerical range (ranging from 0 to 1) with respect to the case counts.

Estimating case counts. As official reports of case counts by health agencies are usually lagged by a single 
time point (week or month), reliable early estimates of disease incidence can facilitate the allocation of public 
health resources to enable effective control measures. Therefore, we aim to perform 1-step ahead estimation of 
disease case counts starting from a particular time point. For the purpose of experimental validation, we used his-
torical HealthMap data over a certain time period as the static training set in a specific country (referred to as the 
static training period) and progressively utilized the remaining time points as the evaluation period over which 
we evaluated the case count estimates of EpiNews-ARNet. To estimate case counts at a particular time point T 
within the evaluation period, we utilized HealthMap data from t =  0 up to t =  T and extracted disease topics using 
the supervised topic model. The disease case counts at T were next estimated using past case counts available up 
to t =  T′ (T′ =  T −  1) and temporal topic trends (or, sampled case counts) available up to t =  T. In Table 3, we show 
the total time period of study, static training period and the evaluation period for each country.

Figure 3. Correlation between disease case counts and temporal topic distributions or trends (ξz) extracted 
by EpiNews for (a) H7N9, (c) HFMD, and (e) dengue in China. Along with the temporal topic trends (ξz), we 
also showed the correlation between disease case counts and sampled case counts (generated by multinomial 
sampling from temporal topic trends) for (b) H7N9, (d) HFMD, and (f) dengue. Note, the sampled case counts 
and disease case counts share almost similar numerical range. However, the temporal topic trend values are at 
different numerical range (ranging from 0 to 1) with respect to the disease case counts.
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Baselines. For the task of 1-step ahead estimation, we compared the performance of EpiNews-ARNet against 
2 baseline methods, namely EpiNews-ARMAX and Casecount-ARMA. In Casecount-ARMA, we fitted an 
autoregressive-moving-average model (ARMA46) over past disease case counts to generate case count esti-
mates. Casecount-ARMA doesn’t use any information related to temporal topic trends (ξz). However, in case of 
EpiNews-ARMAX, we used an autoregressive—moving-average model with external input variables (ARMAX46) 
where external input variables incorporate the information embedded in temporal topic trends. For more details 
on the baseline methods, see Supplementary Section ‘Baseline methods for case count estimation’. We also com-
pared temporal topic trends against sampled case counts (generated by multinomial sampling from the temporal 
topic trends) as the external input variables, for the applicable methods EpiNews-ARNet and EpiNews-ARMAX.

Evaluation. We evaluated the case count estimates of each method over the evaluation period by comparing them 
against the actual case counts using normalized root-mean-square error (NRMSE). In Table 4, we present a compar-
ative performance evaluation of the methods for 1-step ahead estimation in terms of NRMSE values corresponding 
to diseases in U.S., China and India respectively. Table 4 provides multiple insights as follows. (i) EpiNews-ARNet 
with sampled case counts as external variables is the best performing method achieving lowest NRMSE values for 
majority (8 out of 10) of the {country, disease} combinations. (ii) Two exceptions are {China, HFMD} and {U.S., 
E. coli infection} where EpiNews-ARNet and EpiNews-ARMAX with temporal topic trends as external variables 
achieve lowest NRMSE values respectively. (iii) Both EpiNews-ARNet and EpiNews-ARMAX perform better over-
all with sampled case counts as external variables than temporal topic trends. (iv) For none of the {country, disease} 
combinations, Casecount-ARMA is able to achieve lowest NRMSE values indicating the significance of incorporat-
ing temporal topic trends or sampled case counts as external variables for estimating case counts.

Figure 4. Correlation between disease case counts and temporal topic distributions or trends (ξz) extracted 
by EpiNews for (a) ADD, (c) dengue, and (e) malaria in India. Along with the temporal topic trends (ξz), we 
also showed the correlation between disease case counts and sampled case counts (generated by multinomial 
sampling from temporal topic trends) for (b) ADD, (d) dengue, and (f) malaria. Note, the sampled case counts 
and disease case counts share almost similar numerical range. However, the temporal topic trend values are at 
different numerical range (ranging from 0 to 1) with respect to the disease case counts.

Country Total time period of study Static training period Evaluation period

U.S. January 2010–December 2013 January 2010–December 2011 January 2012–December 2013

China January 2013–December 2014 January 2013–March 2013 April 2013–December 2014

India January 2013–December 2014 January 2013–November 2013 December 2013–December 2014

Table 3. Total time period of study, static training period and the evaluation period for estimating disease 
case counts in each country.
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Discussion
In this paper, we studied the problem of monitoring and estimating outbreaks of multiple infectious diseases 
using disease-related online news reports obtained from HealthMap. We introduced EpiNews, a novel and 
generic temporal framework that combines supervised temporal topic models with time-series regression tech-
niques to monitor and estimate disease incidence. Experimental results demonstrate that EpiNews is able to cap-
ture the time varying incidence of multiple diseases via temporal topic trends. Our experiments also illustrate that 
EpiNews can estimate disease incidence 1-step ahead with increased accuracy using information from temporal 
topic trends.

EpiNews uses online news reports as the sole data source to capture disease dynamics during outbreaks. 
Therefore, it is generic in the sense that it is not tailored to a particular disease or class of diseases. Moreover, 
the set of diseases selected for each country represent a diversity of transmission pathways as shown in Table 1. 
Hence, the applicability of EpiNews to these diverse sets of diseases as demonstrated in this study showcases the 
potential generalizability of our approach to different class of diseases.

Temporal topic trends extracted by EpiNews from HealthMap news reports successfully captured dynamics of 
multiple outbreaks, such as whooping cough in U.S. during summer of 2012, periodic outbreaks of salmonellosis 
and E. coli infection in U.S., periodic outbreaks of H7N9 and HFMD in China, dengue outbreaks in India (2013) 
and China (2014). However, there are certain deviations where temporal topic trends could not monitor the 
trends in disease outbreaks properly. We posit that such deviations are a factor of multiple effects as follows. (i) 
Firstly, news media coverage during disease outbreaks is driven by interest. News coverage for certain diseases can 
be inconsistent over time. For salmonellosis and E. coli infection outbreaks in 2010, 2013 and 2014 (see Fig. 2(e) 
and (g)), the temporal topic trends capture the outbreak at the start of the season. However, as the outbreak sea-
son progresses, the temporal topic trends are unable to capture the outbreak dynamics accurately. This indicates 
that news media coverage is generally high during the start of a disease outbreak. However, we observe a decline 
in news media interest as the outbreak season progresses. (ii) Secondly, for diseases with low public interest, the 
coverage can be low even there is an ongoing disease outbreak. E.g., in case of the ADD outbreak in 2014 (see 
Fig. 4(a)), we observe no coverage in news media (lack of activity in temporal topic trends) even though the out-
break occurred on a massive scale. (iii) Finally, our framework is heavily reliant on news corpora and does not 
account for possible reporting errors. As such, articles with missing or incomplete textual content can affect the 
performance of our framework. E.g., in case of salmonellosis and E. coli infection outbreaks in 2011, the rise in 
temporal topic trends is comparatively lower during the outbreak period (see Fig. 2(e) and (g)) in comparison to 
the outbreaks in 2010, 2012, and 2014.

EpiNews supports monitoring and also 1-step ahead estimation of disease case counts with increased preci-
sion. Table 4 shows that EpiNews-ARNet yields lowest NRMSE values for all the diseases when compared to the 
baseline method Casecount-ARMA. This implies that incorporating information from temporal topic trends via 
EpiNews-ARNet results in improved estimation of case counts. It is also to be noted that EpiNews-ARNet with 
sampled case counts as external variables achieves lower NRMSE for most of the diseases than the variant using 
temporal topic trends. This validates our claim that using sampled case counts instead of actual topic trends as the 
external variables adds numerical stability to EpiNews-ARNet.

The performance of EpiNews-ARMAX is comparable to EpiNews-ARNet for diseases in U.S. However, for 
diseases in China and India, EpiNews-ARNet significantly outperforms EpiNews-ARMAX. In China and India, 
both disease case counts and temporal topic trends (or, sampled case counts) are characterized by sharp peaks 
during the outbreak period (see Figs 3 and 4). EpiNews-ARMAX performs poorly in such scenarios (see Table 4) 
in comparison to EpiNews-ARNet, mainly due to the unstable behavior of the ARMAX model when it comes to 
handling sharp gradients in input case counts or temporal topic trends. However, outbreak periods for diseases 
in U.S. are characterized by flat peaks with slow rise and fall (see Fig. 2). Therefore, EpiNews-ARMAX achieves 
comparable performance to EpiNews-ARNet, even performing better for E. coli infection. Therefore, we conclude 
that both EpiNews-ARMAX and EpiNews-ARNet are preferred approaches for estimating case counts of diseases 

Country Disease Casecount-ARMA

EpiNews-ARMAX EpiNews-ARNet

with temporal 
topic trends

with sampled 
case counts

with temporal 
topic trends

with sampled 
case counts

U.S.

Whooping cough 0.584 0.577 0.582 0.583 0.558

Rabies 0.875 0.888 0.886 0.877 0.865

Salmonellosis 0.445 0.978 0.450 0.441 0.430

E. coli infection 0.685 0.657 0.663 0.686 0.671

China

H7N9 1.096 0.850 0.888 1.027 0.712

HFMD 1.574 1.524 1.538 0.622 0.626

Dengue 1.076 0.639 0.634 1.094 0.549

India

ADD 1.226 1.285 1.119 0.844 0.833

Dengue 0.966 1.086 1.021 1.073 0.878

Malaria 1.060 1.062 1.047 1.016 0.963

Table 4. Comparing the performance of EpiNews-ARNet against the baseline methods EpiNews-ARMAX 
and Casecount-ARMA for 1-step ahead estimation of disease case counts. Metric used for comparing the 
case counts estimated by the methods against the actual case counts is the normalized root-mean-square error 
(NRMSE).
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characterized by flat outbreak peaks with slow rise and fall. However, when disease outbreaks exhibit sharp peaks, 
we recommend selecting EpiNews-ARNet for reliable estimation of case counts.

For dengue and HFMD in China, EpiNews-ARNet shows considerable improvement on 1-step ahead estima-
tion of disease incidence when compared to the baselines, specifically Casecount-ARMA (see Table 4). In order 
to have a clearer understanding of the improved performance of EpiNews-ARNet with respect to the baselines, 
we plotted the temporal correlation between actual case counts and case counts estimated by the methods in 
Fig. 5 corresponding to dengue and HFMD in China. It can be observed that EpiNews-ARNet with sampled case 
counts as external variables is able to estimate the peak in dengue case counts more accurately in comparison 
to the baselines (see Fig. 5(a)). For HFMD, EpiNews-ARNet with both topic trends and sampled case counts 
as external variables are able to estimate the peak in case counts, while the baselines fail to do so (see Fig. 5(b)). 
Casecount-ARMA’s inability to estimate the peaks in case counts for both dengue and HFMD implies that past 
case counts are not reliable indicators for estimating sudden increases or peaks in disease incidence and there-
fore, need to be augmented with disease signals from online news media for accurate estimation of outbreaks. 
However, inconsistent news coverage can adversely affect the timely estimation of outbreaks by EpiNews-ARNet 
as shown in Fig. 5(c). India experienced periodic outbreaks of ADD with peaks in case counts during the summer 
of 2013 and 2014. However, we observe a lack of news coverage (no peak in temporal topic trends) during the 
peak in 2014 compared to the peak in 2013 (see Fig. 4(a) and (b)). Therefore, the case count estimates generated 
by EpiNews-ARNet have a delayed peak with respect to the actual peak in case counts during the outbreak in 2014 
(see Fig. 5(c)). This delayed peak is due to the internal component (p) in equation (1) which extracts information 
from past case counts. In overall, our results over a range of diseases and world regions suggest that monitoring 

Figure 5. Temporal correlation between actual case counts and case counts estimated by the methods 
Casecount-ARMA, EpiNews-ARMAX and EpiNews-ARNet corresponding to (a) dengue and (b) HFMD 
in China. In (a) and (b), EpiNews-ARMAX -topic and EpiNews-ARNet -topic use temporal topic trends as 
external variables. On the other hand, EpiNews-ARMAX -sample and EpiNews-ARNet -sample use sampled 
case counts as external variables. In (c), we showed the temporal correlation between actual case counts and 
case counts estimated by EpiNews-ARNet -sample corresponding to ADD in India.
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progression of infectious diseases is feasible and disease incidence can be estimated with increased precision via 
efficient capturing of signals from online news media.

The effectiveness of online sources (news, tweets, search queries) to monitor and forecast the emergence and/
or spread of diseases is an ongoing topic of debate, as evidenced by the community response to the study of 
Lazer et al.47. They demonstrated that Google Flu Trends (GFT) was overestimating influenza-like illness (ILI) 
case counts in CDC reports. However, when GFT was combined with lagged CDC data, the authors observed 
a substantial improvement in estimating the CDC counts. In EpiNews based models (EpiNews-ARNet and 
EpiNews-ARMAX), unlike GFT, we have combined the lagged (past) disease case counts with the temporal topic 
trends extracted from the HealthMap news corpus in order to generate reliable case count estimates. However, 
during outbreak periods, inconsistent news media coverage and possible reporting errors can hamper forecasting 
performance as lagged case counts are not helpful in such scenarios and we must rely on external news trends for 
forecasting. Therefore, given consistent media coverage, EpiNews based models have the capability to generate 
reliable case count estimates (see Fig. 5(a) and (b)). However, in scenarios where news media depict a lack of 
(or inconsistent) coverage (Fig. 5(c)), we can supplement the model by leveraging information from physical 
data sources, such as climatic attributes (temperature48, precipitation49, and humidity50). The main take-away 
conclusion from Lazer et al.47, applicable to our work as well, is that models based on machine learning, such as 
developed here, need to be constantly tuned/retrained to ensure that model drift can be detected and corrected.
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