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ABSTRACT

Due to constant shifts in population and changing demograph-

ics, school boundary processes take place to make adjustments to

school attendance zones. This spatial problem has multiple crite-

ria like locations of schools, their capacity utilization, proximity,

presence of geographical/ man-made barriers, etc. In this paper,

we formulate the problem of designing school boundaries as a

spatially-constrained clustering/ regionalization problem and pro-

pose an automated approach called REGAL for solving it. REGAL

is two-stage framework that starts by creating a candidate solu-

tion with regard to domain constraints such as school locations

and spatial contiguity. Then a local search method improves the

quality of the candidate solution by optimizing population balance

and compactness of school zones while satisfying problem con-

straints. Experimentally, we demonstrate the efficacy of the REGAL

framework on actual datasets from two school districts in the US.
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1 INTRODUCTION

In the US, public school systems function through school districts,

geographical areas where schools share the same administrative

structure [6]. Usually, the boundaries of a county or a city determine

the jurisdictional area of a school district, within which each school

has a designated geographical area known as school attendance zone

(SAZ). A SAZ outlines where students in a particular neighborhood
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will attend public elementary, middle, and high school. Each SAZ

spans across smaller-sized geographical areas called planning units

or student planning areas (SPAs) [7]. The School Board may modify

a SAZ to maintain or improve operational efficiency and/or to

maximize instructional effectiveness. In general, adjustments may

relieve facility crowding, ensure better utilization of existing space,

better allocate program resources, reduce operating costs, and/or

avoid underutilizing school facilities. This problem is an application

of districting [4], where majority of existing works have focused

on political districting [9], sales territory design [10], etc. Scant

attention has been paid to the geography of schools [1].

Motivated by this, we revisit the school boundary formation

problem by making use of the geospatial data of two school districts

in the US. Starting from school locations, boundaries are formed by

aggregating the smaller areas (SPAs) into larger regions (SAZs) such

that the areas inside a region are geographically contiguous. While

demarcating the SAZs, a school planner aims to balance factors

such as school capacity, compactness, proximity, stability, spatial

contiguity, demographics, etc. In Figure 1, we show some possible

scenarios that can arise while designing SAZs. This is a spatially-

constrained clustering problem, also called regionalization [2].

(a) (b)

(c) (d)

Figure 1: The boundaries of schools (black dots) are formed by grouping the
smaller SPAs into larger, geographically contiguous SAZs. Considering fac-
tors like compactness and population balance, SAZs can fall into the follow-
ing scenarios: (a) unbalanced schools with non-compact SAZs (b) balanced
schools with non-compact SAZs (c) unbalanced schools with compact SAZs,
and (d) balanced schools with compact SAZs (desirable).
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Considering these factors, we formulate school boundary forma-

tion as a non-linear discrete (NP-hard) optimization problem and

propose a two-stage REGionalization Algorithm via Local search,

called REGAL, for solving it. The first stage initializes a candidate

solution (vector) that satisfies problem-specific constraints: SPA as-

signment must be mutually exclusive and into spatially contiguous

SAZs; and, there must be one school of each level per SAZ. Then in

the second stage, the compactness and capacity utilization of the

candidate solution is improved by applying a local search method.

2 PROBLEM STATEMENT

Areas. Let
∏
=

{
π (1),π (2), · · · ,π (N )} represent the set of SPAs

where |∏ | = N .

Attributes. Let each SPA be denoted by a tuple

π = (L, P ,C),
where, L = [(x1,y1), (x2,y2), . . . , (xt ,yt ), (x1,y1)] is the set of geo-
graphic coordinates (latitude and longitude) defining the bound-

ary polygon of a SPA, P =
(
n0, n1, n2, ..., , n12

)
is the vector of

grade-wise (K-12) student population residing1 in this SPA, and

C =
(
cES , cMS , cHS

)
is a vector containing the capacities of any

elementary school (ES), middle school (MS) or high school (HS)

present in this SPA. Most SPAs do not contain a school, and thus

have C = (0, 0, 0). Alternatively, we can aggregate grade-wise stu-

dent counts into ES, MS and HS student populations such that

P =
(
nES ,nMS ,nHS

)
, where

nES =
∑5
д=0 nд nMS =

∑8
д=6 nд nHS =

∑12
д=9 nд ,

by assuming that every ES, MS and HS consists of grades K-5, 6-8

and 9-12, respectively. Mappings of grade levels to school levels are

generally consistent across all the schools in a school district.

Spatial relationship. Let G (∏) = (V ,E) be the contiguity/ adja-
cency graph associated with SPAs

∏
such that each SPA π (i) ∈ ∏

has a corresponding node v(i) ∈ V , and there exists an edge

(v(i),v(j)) ∈ E between two nodes if and only if their respective

SPAs, π (i) and π (j), have an edge in common (rook contiguity). For

most real world school districts, G (∏) is a fully connected graph.

This graph can be encoded as an adjacency list and is used while

determining spatial contiguity of a region.

Valid partition. Let � = (S(1),S(2), . . . ,S(K )) denote a partition
of N areas into K regions2 where

• | S(k ) |> 0 ∀k ∈ {1, 2, . . . ,K},
• ∏

=
⋃K
k=1

S(k ) ∀k ∈ {1, 2, . . . ,K},
• S(k )⋂S(k ′) = ϕ ∀k,k ′ ∈ {1, 2, . . . ,K} and k � k ′.

Any partition is considered valid if each of its constituent regions

• is fully connected, i.e.G(S(k )) is connected∀k ∈ {1, 2 . . . ,K},
• contains one school inside it.

The set of all valid partitions together form the feasible search space

Ω of the problem.

1The entire residing population is assumed to attend public schools.
2The value of K varies depending on whether we are considering ES, MS or HS
boundary formation.

Criteria/Desirability. A valid partition � ∈ Ω is considered de-

sirable if each of its constituent regions S have

• total residing student population roughly equal to the base

capacity of the school inside it, and

• a geographically compact shape.

The desirability of a region S is dependent on the following:

(1) Target balance. In a region, the balance between the re-

siding student population T and the base capacity c of the
school they attend is calculated as

U (S) =




1 − T + ϵ1

c + ϵ2





, (1)

where | · | indicates absolute value and ϵ1, ϵ2 are infinitesi-
mally small constant such that ϵ1/ϵ2 � 1. This score normal-

izes across schools of widely varying capacity and identifies

invalid regions (i.e., not containing a school) by assigning

very high values.

(2) Target compactness. It is determined in a non-linear man-

ner by comparing the area A of a region (shape) to the area

of a circle with equal perimeter p as

V (S) = 1 − 4πA

p2
. (2)

The score ranges from 0 to asymptotically approaching 1,

where 0 means perfectly compact (i.e., a circle). It is not possi-

ble for the score to reach 1 since any region must necessarily

have non-zero area and perimeter.

Both target scores are normalized to lie in the range [0, 1], and they
reflect how far a region is from its target state of 0: the lower the

score, the better its desirability.

Objective function. Given the target scores for every region, we

define the objective of the problem as:

F (�) =
∑
S∈�

w ×U (S) + (1 −w) × V (S), (3)

wherew ∈ [0, 1] is the weight parameter for balancing the above

criteria. The value ofw is empirically set based on design preference.

Our goal is to obtain the partition �∗ that best minimizes the

objective function F. Hence the problem can be formulated as:

�∗ = argmin
�∈Ω

F (�). (4)

3 THE PROPOSED FRAMEWORK: REGAL

REGAL solves the problem of school boundary formation in two

stages. In Figure 2, we show the components of our framework.

They are discussed in detail in the subsequent subsections.

3.1 Initialization

It starts by identifying SPAs that contain schools and marking them

as seed areas. Each seed area is uniquely assigned to a new region

(seeded region) in order to ensure only one school per region. This is

the seeding phase. The seeding strategy is tailored to the application

at hand and is guided by the constraints inherent to the problem.

The seeded regions are partial clusters that need to be grown

using the adjacency relationship contained in G (∏). To do so, we

select a region S randomly at each step for growth. If S shares a
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Figure 2: Outline of the REGAL framework.

boundary with unassigned areas, they are added to S in no specific

order. The growth process is repeated until every SPA has been

assigned to a cluster. It outputs a partition�0 such that every region

in it is spatially-contiguous. These areas are randomly assigned to

clusters without consideration for the quality of the region. This

results in some regions being far from their target state, having a

distorted, non-compact shape, or having disproportionate student

populations. Hence, a local search procedure is applied in the next

stage to balance these clusters and improve solution quality.

3.2 Local search

It starts with the (feasible) solution returned by the previous stage

and searches its immediate neighborhood for better solutions. Be-

fore searching, a neighborhood relation needs to be established

to ensure that the neighboring solutions are feasible. The spatial

contiguity constraint is imposed on neighboring solutions by using

rook contiguity (neighbors sharing an edge).

Given a solution �, its neighboring solution set N∗ (�) is con-
structed by altering the membership of areas located on the bound-

ary of two regions, i.e., by moving an area from its present region

(donor) to a neighboring region (recipient). Hence, every candidate

solution has multiple neighboring solutions and each neighbor-

ing solution differs by a single assignment. How to move through

neighboring candidate solutions is based on local improvement (at

region-level) in the objective function. The algorithm keeps track

of the best solution found in each iteration and terminates when

there is no improvement in the functional value for a predefined

number of steps. We integrate three well-known search methods

within our framework as elucidated below.

• Stochastic Hill Climbing (SHC) [8]

• Simulated Annealing (SA) [5]

• Tabu Search (TS) [3]

In SHC, the search is somewhat akin to a steepest descent algo-

rithm except that the order of picking up better or equally good

solutions (uphill moves) from the neighboring solution set is ran-

dom. Though SHC is a fast algorithm, it is prone to getting stuck

in a local optimum due to its greedy nature. SA and TS avert this

trapping by probabilistically allowing downhill moves3.

4 EXPERIMENTATION

In this section, we detail the experimental setup, including the

dataset, model parameters, metrics, and discuss the results.

3Accepting inferior solutions is a randomization move that helps to escape local optima
and perform a more extensive search for the global optimal solution.

4.1 Dataset

For this study, we collaborated with two rapidly growing school

districts, say District A and District B, located in the mid-Atlantic

region of the US. District A was divided into 1315 SPAs and con-

tained 188 schools– 138 ES, 26 MS and 24 HS. District B had 454

SPAs and 86 schools– 55 ES, 16 MS and 15 HS. The data consists of

the following shapefiles:

• SPA: Geographical coordinates of the area and grade-wise

count of student population

• School: Location coordinates, school type and capacity.

4.2 Parametric setup

We set the value of w in the objective function (Eq. 3) to 0.8 and

0.7 for District A and District B respectively. The local search proce-

dures are run until there is no improving moves for 3 consecutive

iterations and the best solution is returned. The parameters for

search methods are set based on literature and are given below.

• SA: Using cooling rate α = 0.85, we vary the temperature T
from 0 to 10−9.

• TS: Tabu list of length 80 was used.

4.3 Performance Metrics

Regional metrics. These metrics are used to assess the quality of

an individual region S in the partition �.

• Balance score (BS): If a region S contains a school with

capacity c and hasT students attending that school, then the

balance score is computed as

B (S) = 100 ·
(
1 −





c −T

c






)
, (5)

If a school’s attending population is equal to its capacity, it

will have a perfect balance score of 100.

• Compactness score (CS): If a region’s shape has area A

and perimeter p, it’s compactness is calculated as

C (S) = 100 ·
(
4πA

p2

)
, (6)

Given this metric, a circle would be the most compact shape

with a score of 100.

• Quality score (QS): The quality of a region, say S, deter-
mines how close S is to it’s target state as

Q (S) = w · B (S) + (1 −w) · C (S) , (7)

wherew is the weight parameter (see Equation 3). The higher

the score, the better is the quality of the region.
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Table 1: Comparing the performance of local search techniques for designing the school attendance zones of both the districts.

District A

Models

Schools Elementary School Middle School High School

ABS ACS AQS ABS ACS AQS ABS ACS AQS

Stochastic Hill
Climbing

80.637 ± 0.309 35.159 ± 1.135 71.542 ± 0.360 88.892 ± 0.396 27.221 ± 2.466 76.558 ± 0.597 94.296 ± 1.040 23.320 ± 2.281 80.101 ± 0.933

Simulated
Annealing

80.845 ± 0.381 36.295 ± 1.426 71.935 ± 0.453 88.822 ± 0.500 27.576 ± 2.267 76.573 ± 0.648 94.457 ± 1.136 22.329 ± 2.179 80.032 ± 1.026

Tabu search 80.819 ± 0.276 36.637 ± 1.408 71.982 ± 0.307 88.994 ± 0.214 29.988 ± 2.559 77.193 ± 0.541 95.19 ± 0.542 25.447 ± 2.704 81.241 ± 0.681

District B

Models

Schools Elementary School Middle School High School

ABS ACS AQS ABS ACS AQS ABS ACS AQS

Stochastic Hill
Climbing

89.298 ± 0.862 36.147 ± 1.298 73.352 ± 0.687 93.433 ± 1.062 32.370 ± 3.617 75.114 ± 1.284 95.843 ± 2.255 30.483 ± 2.992 76.235 ± 1.752

Simulated
Annealing

90.324 ± 0.883 36.976 ± 1.623 74.320 ± 0.777 93.835 ± 0.703 33.398 ± 3.305 75.704 ± 1.123 96.879 ± 1.905 28.941 ± 2.827 76.497 ± 1.503

Tabu search 90.012 ± 0.877 36.303 ± 1.704 73.899 ± 0.791 93.777 ± 0.977 33.844 ± 3.362 75.797 ± 1.173 96.866 ± 2.100 30.760 ± 3.176 77.034 ± 1.511

Figure 3: Error plots showing the variation of configuration metrics with parameter w for District B: ABS (balance) in green, ACS (compactness) in orange and
AQS (quality) in blue. The desirable range for parameterw is marked by the green patch.

Configuration metrics. To evaluate the quality of an output con-

figuration/ partition � we use configuratioin metrics, which are

mean of the earlier defined regional metrics. They are as follows:

• Average balance score (ABS)

• Average compactness score (ACS)

• Average quality score (AQS)

4.4 Results

In real-world, practical design considerations should guide the

selection of parameters. The parameterw (see Equation 3) controls

the relative importance of population balance and compactness

objectives in the final partition which is expected to have good

population balance (high ABS score) and compactness (high ACS

score). To identify a suitable range for parameterw , every model

was simulated 51 times by varying the value ofw from 0 to 1 in steps

of 0.1 and the error plots of the configuration metrics are obtained.

For space limitation, we only show the plot for District B in Figure

3. We observe the ideal range for parameter w to lie in [0.6, 0.8].
For District A and B, we set w equal to 0.8 and 0.7, respectively.

and report the mean and standard deviation of the configuration

metrics in Table 1 for comparing the local search methods. We

didn’t observe a significant difference in the performance of these

techniques. The randomizing moves in TS and SA gives them edge

over the greedy SHC. We also compared the plan generated by TS

with the highest quality score with the existing ones in both school

districts. Overall, we noticed the automated plans to improve the

balance in schools without sacrificing the compactness of SAZs.

5 CONCLUSION

In this paper, we present school boundary formation as a discrete

non-linear optimization problem and propose a regionalization

framework called REGAL for solving it. Experimentally we demon-

strated the efficacy of our approach on two real-life school datasets

for designing school boundaries. The REGAL approach seems to be

a useful tool for school planners to use during the school boundary

process. One important implication of this work is that REGAL can

be an effective tool connecting a mathematical model’s ability to

handle complexity and human’s intuition and experience to solve a

highly subjective spatial problem like school redistricting.
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