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ABSTRACT
Reconstructing system dynamics from sequential data traces
is an important algorithmic challenge with applications in
computational neuroscience, systems biology, paleontology,
and physical plant engineering. Here, we formalize a key
computational task in network reconstruction, namely re-
covering complex order-theoretic constraints among the sys-
tem variables underlying a given dataset. Specifically, we fo-
cus on the problem of reconstructing partial orders (posets)
from their linear extensions. We discuss the theoretical com-
plexity of this problem, a general framework to pose and
study various inference tasks, and sketch algorithmic results
for mining restricted classes of posets.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining; I.2.6
[Artificial Intelligence]: Learning

General Terms: Algorithms.

Keywords: partial orders, posets, linear extensions.

1. INTRODUCTION
The problem of reconstructing system dynamics from se-

quential data traces is an important one, with applications
in computational neuroscience [5], systems biology [1, 10],
paleontology [9], and physical plant engineering [4]. In these
applications, we are given time-indexed discrete symbol se-
quences or continuous-valued measurements, and the aim
is to recover an underlying system-wide network model (re-
flecting connectivity, hierarchy, or strength of influences) of
the observed temporal data. A key step in such network re-
construction is to elucidate order-theoretic constraints (e.g.,
lag, lead, or lack thereof) among the system variables un-
derlying a given dataset.

In neuroscience, for instance, the goal is to ascertain the
connectivity of the neuronal network from sequential infor-
mation (time stamps, delays) about individual neuron fir-
ings. In systems biology, researchers seek to reconstruct an
underlying reaction pathway by studying correlations be-
tween enzyme concentrations and protein levels. In pale-
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ontology, the approach is to infer evolutionary relationships
between various taxa, in particular whether evidence sup-
ports that some species definitely originated (or not) before
another species. Finally, in physical plant engineering, the
data comprises symbol sequences indicative of process stages
and diagnostics, and the goal is to identify causative rela-
tionships that might precede an event of interest.

Network reconstruction algorithms for unraveling system
dynamics fall into two main categories. In the first category,
we assume a generative model for data and seek to infer pa-
rameters of this model, conditioned on observed data. This
is typically approached probabilistically , e.g., using ML or
MAP estimation. In the second category, we identify con-
straints inferable from the given data and attempt to piece
together these constraints into a system-wide model that
summarizes, reconciles, or compresses the individual con-
straints.

Here, we formalize problems that require the inference of
order constraints from sequential data to reconstruct par-
tial order information, in particular, to infer partial orders
(posets) from linear extensions. Mannila and Meek [6] stud-
ied a version of these problems; they cast it in a probabilis-
tic setting and also presented algorithms to mine a specific
category of posets. We carefully study the theoretical com-
plexity of this problem, present a general framework to pose
and study various inference tasks, and algorithms for mining
restricted classes of posets.

2. PRELIMINARIES
Let V be a finite set of cardinality n ≥ 0. A partial order

or poset on V is a binary relation P ⊆ V ×V that is reflexive,
transitive, and antisymmetric. For any u, v ∈ V , we write
u ≤P v (or simply u ≤ v when P is clear) if (u, v) ∈ P and
u <P v (or simply u < v when P is clear) if u ≤P v and
u 6= v. The rank rank(v; P ) of element v in poset P is 1 plus
the number of elements less than v:

rank(v; P ) = 1 + |{u ∈ V | u <P v}|.

Poset P is a total order on V if, for all u, v ∈ P , either
u ≤ v or v ≤ u. A total order T on P determines a unique
n-tuple (v1, v2, . . . , vn) of the elements of V such that v1 <
v2 < · · · < vn; we employ this tuple notation when we need
the explicit order of elements. Note that ranks are unique
in total orders; if T = (v1, v2, . . . , vn), then rank(vi; T ) = i.
Let P be a poset on V . A linear extension of P is a total
order L on V such that P ⊂ L; E (P ) is the set of all linear
extensions of P . We say that P generates E (P ).

Let P be a poset on V and let u, v ∈ V . The element v
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Figure 1: Hasse diagram of the example poset

covers the element u in P if u < v and there is no w ∈ P
such that u < w < v. It is easy to prove that, if v covers
u in P , then there is some linear extension of P in which u
and v are immediately adjacent. The Hasse diagram H(P )
of P is the directed acyclic graph G = (V, A) have vertex set
V and arc set A = {(u, v) | v covers u}. Alternately, the arc
set of the Hasse diagram of P is the smallest binary relation
on P whose transitive closure is P .

As an example, let V = {1, 2, 3, 4, 5, 6, 7}, and let

P = {(1, 6), (1, 3), (2, 1), (2, 3), (2, 4), (2, 5), (2, 6),

(4, 1), (4, 3), (4, 5), (4, 6), (5, 3), (6, 3),

(7, 1), (7, 3), (7, 4), (7, 5), (7, 6)}

be a binary relation on V . The reader may verify that P
is a poset on V . Figure 1 illustrates a Hasse diagram of a
poset and the linear extensions it generates.

The set of linear extensions of P is readily computed to be

E (P ) = {(2, 7, 4, 1, 5, 6, 3), (7, 2, 4, 1, 5, 6, 3),

(2, 7, 4, 1, 6, 5, 3), (7, 2, 4, 1, 6, 5, 3),

(2, 7, 4, 5, 1, 6, 3), (7, 2, 4, 5, 1, 6, 3)},

where the six linear extensions are given in tuple notation.
Much attention has been given to the combinatorial prob-

lems of counting and generating the linear extensions of a
given poset. Brightwell and Winkler [2] prove that the prob-
lem of determining the number of linear extensions of a given
poset is #P-complete. Pruesse and Ruskey [8] provide an al-
gorithm that generates all linear extensions of a given poset,
which may be exponential in n in number.

3. PROBLEM DEFINITIONS
In this paper, we investigate problems whose input is a

set Υ of total orders on a fixed base set V . The problem
space that we have in mind results in a poset that generates
(or approximately generates) Υ, in the senses we develop
below. The simplest nontrivial problem from the problem
space asks whether there is a single poset that generates the
input set.

Generating Poset

INSTANCE: A set Υ of total orders on V = {1, 2, . . . , n}.

QUESTION: Is there a poset P on V that generates Υ, that
is, such that E (P ) = Υ?

A poset cover for a set Υ of total orders on V is a set P
of posets such that the union of all linear extensions of all
posets in P is Υ, that is, such that Υ =

S

P∈P E (P ). There
is always at least one poset cover of Υ, since Υ is a poset
cover of itself. The computationally interesting problem is
to minimize the number of posets in a poset cover.

Poset Cover

INSTANCE: A nonempty set Υ = {L1, L2, . . . , Lm} of total
orders on V = {1, 2, . . . , n}.

SOLUTION: A poset cover P = {P1, P2, . . . , Pk} of Υ such
that k is minimum.

Heath and Nema [3] have recently proved that Poset
Cover is NP-complete. Hence, to investigate polynomial-
time solvable variants of Poset Cover, we restrict our at-
tention to particular classes of posets and poset covers whose
elements come from a particular class. Let C be a predicate
applicable to posets (perhaps C characterizes the Hasse di-
agram of a poset). A poset on V that satisfies C is called
a C-poset. Each such predicate defines this class of posets:
{P | P is a C-poset}.

We define two problems for each such predicate C.

Generating C-Poset (GENPOSETC)

INSTANCE: A nonempty set Υ = {L1, L2, . . . , Lm} of total
orders on V = {1, 2, . . . , n}.

QUESTION: Is there a C-poset P on V that generates Υ,
that is, such that C(P ) is true and E (P ) = Υ?

C-Poset Cover (COVERC)

INSTANCE: A nonempty set Υ = {L1, L2, . . . , Lm} of total
orders on V = {1, 2, . . . , n}.

SOLUTION: A poset cover P = {P1, P2, . . . , Pk} of Υ such
that k is minimum and C(Pi) is true for every Pi ∈ P.

As a simple example, let PATH be the predicate that de-
scribes a poset whose Hasse diagram is a simple path. There
is exactly one linear extension associated with a PATH-
poset, namely, itself. Hence, both GENPOSETPATH and
COVERPATH are easily solved in polynomial time.

4. ALGORITHMS FOR MINING PARTIAL
ORDERS

Here, we sketch some algorithmic results for particular
problems in our problem space.

First, the Generating Poset problem can be solve in
time polynomial in n, the cardinality of V , and m, the car-
dinality of Υ, as we show in the following theorem.

Theorem 1. The decision problem Generating Poset
can be solved with an O(mn2)-time algorithm that takes a
set of total orders Υ as input and finds the poset P that
generates Υ, if it exists.

Proof. The correctness and time-complexity of the Gen-
erating Poset algorithm in Figure 2 proves the theorem. The
time complexity of Generating Poset is clear from the com-
ments in the pseudocode. It remains to show that the result
returned by Generating Poset is the correct one.

If there is no poset that generates Υ, then Generating
Poset will return failure, which is correct. Otherwise, let ρ
be any poset cover of Υ. Since ρ ⊂ Li, for each i, we must
have ρ ⊂

Tm
i=1 Li = P .

To obtain a contradiction, assume that there are x, y ∈ V
such that x 6<ρ y while y covers x in P . Let Li ∈ Υ be
such that x and y are adjacent in Li, that is, in tuple no-
tation, we may write Li = (v1, v2, . . . , vs, x, y, vs+3, . . . , vn).
Let L′

i = (v1, v2, . . . , vs, y, x, vs+3, . . . , vn). Then, L′
i 6∈ Υ,

since every total order in Υ has x < y. But, L′
i is a lin-

ear extension of ρ. Since ρ is a poset cover of Υ, we have



ALGORITHM: Generating Poset

INPUT: A set Υ = {L1, L2, . . . , Lm} of total orders on
V = {1, 2, . . . , n}.

OUTPUT: A poset P on V such that E (V ) = Υ, if one
exists.

First, compute the intersection of the total orders.

Let

P =
m
\

i=1

Li,

the largest poset on V that has every Li as a linear exten-
sion. P can be constructed in O(mn2), since there are O(n2)
elements in each Li.

Now, check the cardinality of E (P ). Use the algorithm
of Pruesse and Ruskey [8] to generate the linear extensions
of P in O(n) amortized time per total order generated. If
that algorithm ever generates an m + 1st total order, then
there is a total order in E (P ) − Υ; in that case, abort the
generation of linear extensions and return failure. Other-
wise, the algorithm will terminate after generating precisely
the m total orders in Υ. In that case, return P . In either
case, verifying whether E (P ) = Υ can be done in O(mn)
time.

Figure 2: Polynomial-time algorithm to solve Gen-
erating Poset

L′
i ∈ Υ, a contradiction. We conclude that ρ = P . The

theorem follows.

We now restrict our attention to a particular class of
posets. In a poset, a hammock is a triple (u, S, v) such that
u, v ∈ V , S ⊂ V , |S| > 1, and

S = {w ∈ V | w covers u}

= {w ∈ V | v covers w};

in this case, we say that the hammock (u, S, v) is determined
by u and v. We also say that the subgraph of the Hasse
diagram of P generated by {u, v}∪S is a hammock. Consider
the Hasse diagram in Figure 4. Vertices 3 and 7 determine
the hammock (3, {4, 14}, 7). The figure, in fact, contains
three hammocks, namely, (3, {4, 14}, 7), (6, {9, 12}, 11), and
(11, {2, 8, 13}, 10).

Poset P is a hammock-poset if there exists a partition

V1, V2, . . . , Vs

of V that satisfies the following properties:

1. |V1| = |Vs| = 1;

2. For every i satisfying 1 ≤ i < s, either |Vi| = 1 or
|Vi+1| = 1;
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Figure 3: Hasse diagram of a hammock-poset

3. If |Vj | > 1, Vj−1 = {u}, and Vj+1 = {v}, then (u, Vj , v)
is a hammock in P ;

4. If |Vj | = |Vj+1| = 1, Vj = {u}, and Vj+1 = {v}, then
Vj = {w ∈ V | v covers w} and Vj+1 = {w ∈ V |
w covers u}.

The Hasse diagram of a hammock-poset is a hammock chain.
The Hasse diagram in Figure 4 is a hammock chain, with
partition

{3}, {4, 14}, {7}, {1}, {6}, {12, 9}, {11}, {2, 8, 13}, {10}, {5}.

In a hammock chain, a link vertex is a vertex in a singleton
Vi, while a hammock vertex is a vertex in a partition block
Vi containing more than one element. In Figure 4, the link
vertices are 3, 7, 1, 6, 11, 10, and 5, while the hammock
vertices are 4, 14, 12, 9, 13, 2, and 8. Note that every
cutpoint in the Hasse diagram is a link vertex.

Let HAMMOCK be the predicate that is true only for
hammock-posets. We find that the Generating Poset
problem can be solved more efficiently for hammock-posets
than in the general case of Theorem 1.

Theorem 2. There is an O(nm + n2)-time algorithm to
solve GENPOSETHAMMOCK.

Proof. The correctness and time-complexity of the Gen-
erating Hammock-Poset algorithm in Figure 4 proves the
theorem. The time complexity is clear from the comments
in the pseudocode. The proof of the correctness of the algo-
rithm will be presented in a later publication.

Most sets of total orders do not have a corresponding gen-
erating poset. Hence, the Poset Cover problem is usually
the one that must be addressed. Let Υ be a set of total or-
ders on V . A poset P on V is feasible if E (P ) ⊆ Υ, that is,
if every linear extension of P is one of the total orders. Any
solution to the Poset Cover problem must consist of one
or more feasible posets for the input set Υ. The number of
feasible posets for Υ may be exponential in m. However, if
we restrict our attention to some particular classes of posets,
it may be possible to show that the number of feasible posets
in that class is polynomial in m and indeed can be generated
in polynomial time.

Let KITE be the predicate that is true for a hammock-
poset that contains exactly one hammock; call such a poset
a kite-poset. For k > 1, let KITE(k) be the predicate that
is true for a kite-poset whose single hammock has exactly
k hammock vertices. The set of feasible kite-posets can be
generated in polynomial time.

Theorem 3. Let Υ = {L1, L2, . . . , Lm} be a nonempty
set of total orders on V = {1, 2, . . . , n}. The set of all fea-
sible kite-posets for Υ can be generated in O(n2(nm log m))
time.

Proof. Suppose that P is a feasible kite-poset of Υ.
Then, there exist two integers i and j such that 1 ≤ i <
j ≤ n, j − i ≥ 3, there is a unique element u ∈ V of rank
i, there is a unique element v ∈ V of rank j, and (u, S, j)
is the unique hammock of P with S ⊂ V having cardinality
j−i−1. There are only O(n2) possible i, j pairs to consider.

Fix one i, j pair satisfying 1 ≤ i < j ≤ n and j − i ≥ 3.
If L = (v1, v2, . . . , vn) is a total order on V , then define its
i, j-restriction to be

L(i, j) = (v1, v2, . . . , vi−1, vi, vj , vj+1, . . . , vn).



ALGORITHM: Generating Hammock-Poset

INPUT: A set Υ = {L1, L2, . . . , Lm} of total orders on
V = {1, 2, . . . , n}.

OUTPUT: A hammock-poset P on V such that E (V ) =
Υ, if one exists.

First, determine the rank frequency of Υ. Let F =
(fij) be an n × n frequency matrix, where fij is the count
of the number of total orders in Υ for which the rank of
i ∈ V is j. Note that every row of F sums to m. Frequency
matrix F can be constructed in O(mn) time by iterating
through each of the n elements of the m total orders and
incrementing the appropriate count.

Second, classify every vertex as a link or hammock

vertex. Consider a single vertex i ∈ V . Let j1, j2, . . . , jk

be the ranks for which fi,jr
> 0. Without loss of generality,

assume that j1 < j2 < · · · < jk. If k = 1, then fi,j1 = m,
and we classify vertex i as a link vertex of rank j. Otherwise,
every fi,jr

< m. If k does not divide m, then return failure.
If it is not true that every fi,jr

= m/k, then return failure. If
there exists r, with 1 ≤ r < k, such that jr+1 − jr 6= 1, then
return failure. Otherwise, classify vertex i as a hammock
vertex with rank j1. Classification can be done in O(n2)
time.

Third, construct a candidate poset P . For i, j ∈ V
with i 6= j, let ρi and ρj be the ranks assigned above. Then,
i <p j if ρi < ρj as integers. Clearly, P can be constructed
in O(n2) time.

Finally, check that P is a hammock-poset and gen-

erates Υ. If so, return P . If not, return failure. This step
can be accomplished in O(n2 + mn) time.

Figure 4: A polynomial-time algorithm to solve

COVERHAMMOCK

Sort the elements of Υ by their i, j restrictions. This can
be done in O(mn log m) time using merge sort. Let Lr ∈ Υ.
There is a feasible kite-poset that has linear extension Lr

if and only if there are (j − i − 1)! elements of Υ having
the same i, j restriction as Lr. This is easily determined by
scanning the sorted total orders in O(mn) time.

The computation requires O(n2(nm log m)) time. The
theorem follows.

In fact, if we restrict our attention to KITE(2)-posets, the
Poset Cover problem is solvable in polynomial time.

Theorem 4. There is an O(m1.5n+n(nm log m+mn))-
time algorithm to solve COVERKITE(2).

Proof. For a set Υ of total orders on V , the set of all
feasible posets that satisfy the predicate KITE(2) can be
generated in O(n(nm log m)) time by restricting the algo-
rithm of Theorem 3 to i, j pairs such that j−i = 3. Let p be
the number of feasible posets returned; clearly, p = O(mn),
since every total order is associated with n − 1 kite-posets
satisfying KITE(2). Construct an undirected graph with
vertex set Υ and an edge between Lr and Ls if one of the
generated posets has both Lr and Ls as linear extensions.
This graph has m vertices and p edges. We can find a max-
imum matching in the graph using the algorithm of Micali
and Vazirani [7], which runs in O(m1/2p) = O(m1.5n) time.
Choosing the kite-poset for each of the edges in a maximum

matching plus one edge for every unmatched vertex yields
an optimal solution to COVERKITE(2).

5. CONCLUSIONS
This short paper has briefly formalized problems related

to identifying sets of posets that summarize or compress
order-theoretic data sets. Through formalization, we hope
to open the door for greater research into these problems.
While the problems bear much resemblance to classical set
cover problems, they also have striking differences, as the
objects to be used in a solution are only available implicitly,
rather than explicitly given as in set cover problems. There
are also variations of Poset Cover that ask for approx-
imate solutions. For example, one might allow a solution
that is a set of posets that has linear extensions outside of
the input set of total orders; in this case, one must decide
what it means to have a good approximation.
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