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Abstract Visual analytics is the science of marrying interactive visualizations and analytic
algorithms to support exploratory knowledge discovery in large datasets. We argue for a
shift from a ‘human in the loop’ philosophy for visual analytics to a ‘human is the loop’
viewpoint, where the focus is on recognizing analysts’ work processes, and seamlessly
fitting analytics into that existing interactive process. We survey a range of projects that
provide visual analytic support contextually in the sensemaking loop, and outline a research
agenda along with future challenges.
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1 Introduction

The emerging field of visual analytics seeks to address the needs of exploratory discov-
ery in big data (Kielman et al. 2009; Thomas and Cook 2005). The approach is to marry
the big data processing capabilities of analytics with the human intuitive capabilities of
interactive visualization. The rationale is that data is too large for purely visual methods,
requiring the use of data processing and mining; yet, the desired tasks are too exploratory
for purely analytical methods, requiring the involvement of human analysts, using visualiza-
tion as a medium for human interaction with the data. This approach must be situated within
an understanding of human cognitive reasoning processes. Thus, visual analytics research
necessitates an interdisciplinary approach.

Targeted tasks in visual analytics are those that are exploratory in nature, where the
questions are ill-defined or unknown a priori and training data is not available. Tasks are
strategic in nature, and must be translated into operational questions during the course of
the analysis. For example, in intelligence or business analysis, analysts may be confronted
with large amounts of textual information that they must make sense of. Stasko points out
that while text analytics and visualizations are helpful in structuring the information, even-
tually the analyst must “read and understand the actual text documents” to gain semantic
insight and report a finding (Stasko et al. 2008). Cybersecurity analysts must defend net-
works against attack or misuse. While known attack methods may be easily detectable by
pattern analysis, creative new attacks are continually being developed by innovative adver-
saries. The analysts goal here is to seek, identify, track, understand, prevent, and document,
such attacks (Fink et al. 2009).

To date, exemplar research in visual analytics has varied in its emphasis on the visual
or the analytics, and the degree of interaction. Simoff et al. (2008) discuss the challenge
of transitioning from interaction between computational analytic runs, to interaction dur-
ing analytic runs. Keim et al. (2010) describe visual analytics as a problem solving process
following the mantra: ‘analyze first; show the important; zoom, filter, and analyze further;
details on demand.’ For example, Jigsaw (2008) supports visual analytics of text collections
by first conducting entity extraction and link analysis, and then enabling users to explore
the results in a variety of visual representations. Van Wijk et al. (1999) demonstrate the
use of iterative model testing and refinement by experts to develop a final visual repre-
sentation that communicates a valuable insight. InSpire (2012) and StreamIt (2011) exploit
complex topic modeling to visualize document collections, and users can make parameter
adjustments (e.g., by changing keyword weights) to compute entirely new views of the col-
lection. iPCA (2009) users can navigate a principal component analysis model with sliders
for adjusting model parameters, thus manipulating the role of eigenvalues and eigenvectors
in data reduction.

Interaction is thus the critical glue that integrates analytics, visualization, and human
analyst. But how should this interaction be designed? A common phrase used to describe
interactive analytics is ‘human in the loop,’ representing the need for analytic algorithms
to occasionally consult human experts for feedback and course correction. However, we
believe human-in-the-loop thinking leads to inevitable usability problems, as analysts are
presented with results out of context, without understanding their meaning or relevance, and
interactive controls are algorithm specific and difficult to understand. In place of the flood
of data, analysts are confronted with navigating a flood of disconnected algorithms and their
parameters/settings.
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Our hypothesis is that we must move beyond human-in-the-loop to ‘human is the loop’
analytics. The focus here is on recognizing analysts’ work processes, and seamlessly fit-
ting analytics into that existing interactive process. For example, Pirolli and Card’s model
of the sensemaking loop for analysts (Pirolli and Card 2005) (see Fig. 1) describes the com-
plex interactive process that analysts conduct. The two major sub-loops involve foraging
for relevant information and synthesis of hypotheses. The dual search loop involves the
cognitively challenging process of generating hypotheses from found evidence, and simul-
taneously searching for evidence that supports potential hypotheses, while managing the
potential effects of cognitive bias (Heuer 1999). This philosophy means that algorithms
must be redesigned from the ground up to fit into this model, learning from the interactions
that analysts are already performing in their sensemaking process and displaying results
naturally within the context of that process. In this article, we present several examples of
this approach to visual analytics and a research agenda to realize it.

2 Interaction in visual analytics

To emphasize the relevance of interaction, and to illustrate through examples the ‘human is
the loop’ philosophy, we survey four projects from our group. The projects can be variously
classified (see Table 1) in terms of the problem domain they study and in terms of the
granularity of interaction.

The two broad analysis tasks we consider are related to clustering and storytelling.
Clustering (Jain et al. 1999) needs almost no introduction to this audience. As a classical
technique for data analysis it has become increasingly repurposed for new uses, with the
advent of novel applications in bioinformatics (Sese et al. 2004; Ernst et al. 2005; Xu et al.
2002; Monti et al. 2003), intelligence analysis (Petrushin 2005; Liang et al. 2003; Baron
and Freedman 2008), and web modeling (Miao et al. 2009; Aghabozorgi and Wah 2009;
Cadez et al. 2003). Clustering is closely related to spatialization and dimension reduction,
where the goal is to ensure that a dataset is laid out spatially in a way that reflects the user’s
notions of dissimilarity or distance.

Fig. 1 The sensemaking process and leverage points for analyst technology as identified through cognitive
task analysis. From Pirolli and Card (2005)



J Intell Inf Syst

Table 1 Four projects that straddle multiple granularities of ‘human is the loop’ interaction

Project Type of user interaction Analysis task User input Visual feedback

ForceSPIRE Instance-level interaction Spatializing Implicit Updated

(instances = data points) (semantic interactions) spatialization

Scatter-Gather Bundle-level interaction Clustering Explicit Updated clustering

(bundles = clusters) (scatter gather constraints)

Analyst’s Instance-level interaction Storytelling Explicit Updated stories

Workspace (instances = documents) (path constraints)

Bixplorer Bundle-level interaction Storytelling Explicit Compositional

(bundles = biclusters) (entity constraints) patterns

Of recent interest has been the ability to impart prior domain knowledge to data min-
ing algorithms in the form of constraints (Wang and Davidson 2010; Davidson et al.
2007; Wagstaff et al. 2001; Davidson and Ravi 2005), clustering nonhomogeneous datasets
(Hossain et al. 2010; Momtazpour et al. 2012), or providing expressive forms of user input
(Alonso and Talbot 2008; Hwang et al. 2011; Huang and Mitchell 2006). In the below sec-
tions we are motivated by how users can steer the iterative process by which users can
inspect clustering or spatialization outcomes, and how the system can provide feedback
using visual analytic means. In particular, our desire was to provide natural interfaces for
users by which they can critique results and, at the same time, operationalize their input into
an effective mechanism to recluster the results. Our thesis is that ‘a little domain knowledge
goes a long way’, and enabling the user in the loop to supply input can be significantly more
effective than trying to design a clever clustering algorithm.

The second analysis task we study involves storytelling (Kumar et al. 2006; 2008), the
investigative process of ‘connecting the dots’ between seemingly disconnected information
(Hossain et al. 2011, 2012a, b, c; Wu et al. 2012). Storytelling is an accepted metaphor
in analytical reasoning and in visual analytics (Thomas and Cook 2005). (By storytelling,
we do not mean creative writing activities, e.g., composing a novel, or designing an ani-
mated movie (Kelleher and Pausch 2007), but rather the task of connection building between
desired end-points.) Different researchers have employed this metaphor in different con-
texts. For instance, it has been used to denote generating event timelines (Guha et al. 2005),
filling in the gaps in chains of evidence, threading information across dialogs, tracking col-
lective reasoning patterns across a corpus (Rzhetsky et al. 2006), information organization
based on narrative structures (Kuchinsky et al. 2002), topic tracking, and, in general, deci-
phering genealogy from a collage of information (Shaparenko and Joachims 2007). The
common theme to all of them is their ability to present spatial/temporal/spatio-temporal
progressions of multifaceted information. Many software tools exist to support story build-
ing activities (Eccles et al. 2008; Hsieh and Shipman 2002; Wright et al. 2006; i2group ).
Analysts are able to lay out evidence according to spatial cues and incrementally build
connections between them. Such connections can then be chained together to create sto-
ries which either serve as end hypotheses or as templates of reasoning that can then be
prototyped. However, sophisticated analytic support for storytelling remains a significant
research frontier. We describe how we have demonstrated visual analytic approaches for
exploring connections in document collections and for building stories between possibly
disparate end points.
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The other distinction being made in Table 1 refers to whether user input and control of the
knowledge discovery process occurs at the level of instances (i.e., the original data points)
or at the level of a higher-level abstraction as a result of some grouping/bundling process.
Two examples of such grouping could be clusters or biclusters (Madeira and Oliveira 2004),
described in greater detail below. Both forms of interaction are relevant for different appli-
cations. Finally, as Table 1 shows, it is helpful to view all projects through a common lens,
viz. the type of user input they accommodate and how the visual feedback is presented back
to the user in the context of their analytic process.

2.1 ForceSPIRE

ForceSPIRE (Endert et al. 2012a) is a visual analytics system (Fig. 2) to generate mean-
ingful spatializations from text data, i.e., laying out documents visually such that the layout
reflects user notions of similarity and distance. ForceSPIRE supports visual data exploration
through interpreting the user interaction and performing implicit model steering operations
(Endert et al. 2012b). Such user interactions are tailored towards the domain expertise and

Fig. 2 ForceSPIRE can automatically generate spatializations from text that respect user’s interactions
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tasks of users, while providing implicit computational support are called semantic interac-
tions. As a result, these semantic interactions such as repositioning documents, highlighting
phrases as they read a document, annotations, and search results train the underlying dimen-
sion reduction model towards understanding the features important to the user. For example,
by the user moving two documents closer together in the spatialization, ForceSPIRE can
determine the characteristics responsible for the similarity through metric learning tech-
niques. The resulting computation incrementally adjusts the spatialization in accordance
with this user input.

It is instructive to contrast ForceSPIRE with approaches that require explicit user input
for model steering. For example, tools such as IN-SPIRE (PNNL 2012) enable model steer-
ing through users explicitly selecting features (keywords) through a menu. While more
expressive, such explicit user input does not provide the flexibility that may be desired for
visual data exploration.

Implicit user feedback entails providing the feedback of the model through the visualiza-
tion, rather than explicitly via the weighted dimensions. For example, ForceSPIRE provides
an updated spatialization as a result of a semantic interaction (an entity viewer window also
exists, where dimension weighting can be individually viewed and adjusted). Similarly, pre-
vious work on observation-level interaction also uses the updated spatialization as a medium
for communicating the learned domain knowledge (Endert et al. 2011).

Liu et al. (2011) describe how after performing similar observation-level interaction, the
system can provide explicit feedback to the user regarding the model learning. Through
performing this type of observation-level interaction, the users are given a set of weights that
correspond to their newly generated spatialization. As such, this work focuses on explicitly
showing the user the dimensions that were adjusted based on their interaction (i.e., the
feedback from the system to the users).

However, how can a system support a mixture between these two forms of feedback?
One can see that as the number of dimensions increase (and become more abstract), explicit
feedback may not be effective or meaningful to the users. Further, the results of a user study
of ForceSPIRE (where explicit feedback can be obtained by the entity viewer window)
shows that users may not prefer, or need, this form of feedback (Endert et al. 2012a). Sim-
ilarly, users may require some feedback to gauge what information the system is learning
based on their interaction, and given the ability to provide more fine-grained model steering
(e.g., steering at the entity-level, rather than at the document level).

One possibility is to maintain this feedback within the spatialization. That is, instead
of providing a separate view for the explicit feedback, augmenting the spatialization to
include this sort of information may be beneficial. For example, ForceSPIRE includes entity
underlining within the text of a document to inform users of which keywords are entities
in the model. However, this depth of information could be increased, to highlighting words
on a color ramp based on their weight. Then, if users find inconsistencies in the entity
weighting scheme, adjustments can be made, and the bi-directional learning can continue.

To enable the implicit model learning of ForceSPIRE and semantic interaction, an inver-
sion of the mathematical projection model is used. The decision of inverting a mathematical
projection model may be a good fit for systems where the semantic interactions are pri-
marily observation-level interactions. However, other forms of semantic interactions may
not lend themselves to directly inverting a projection model (e.g., highlighting text, per-
forming a search, etc.). One possibility for these forms of interaction is to create a forward
model for each of these, by which the inversion can take place. For example highlight-
ing can be automated given the weights of entities. Then, as users manually highlight (or
change the highlighting that the system recommended), the system can invert the model
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used for highlighting to maintain mathematically valid visualizations. The fundamental
principles of semantic interaction still apply to these interactions, as they generalize beyond
spatializations and observation-level interactions.

The updating of the spatial layout in ForceSPIRE is very important, as it provides the
opportunity to show the user what has changed from one layout to the other. That is, it
provides the user feedback on what the system has learned from their previous semantic
interaction. Models that are incremental in nature (where the calculation of the lowest-
stress configuration is incrementally obtained) more easily support this concept, as the
user can observe the model achieving the state. For example, users can gain insight into
both the characteristics of the model, as well as the weighting vector, through observing
a force-directed model settling out. Figure 3 illustrates a series of spatializations showing
the progression of the spatialization when using ForceSPIRE. The co-creation of the spa-
tial layout of the dataset through semantic interaction fosters visual data exploration and

Fig. 3 Sample interactions in ForceSPIRE
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sensemaking. An important design principle here is that the incremental learning of the
model closely mirrors the incremental formalism (Hsieh and Shipman 2002) exhibited by
the analyst’s sensemaking process, both conceptually and spatially.

2.2 Scatter-gather

We now turn to our second example of a visual analytic framework for clustering. This
framework aims to incorporate user input at the level of clusters, rather than instances.

In our experiences working with diverse application scientists, we have identified an
interaction style (Pirolli et al. 1996)—scatter/gather clustering—that helps users iteratively
restructure clustering results to meet their expectations. As the names indicate, scatter and
gather are dual primitives that describe whether clusters in a current segmentation should
be broken up further or, alternatively, brought back together. By combining scatter and
gather operations in a single step (referred to as scatter-gather clustering), we support very
expressive dynamic restructurings of data.

To illustrate the idea of scatter/gather clustering, we use a synthetic dataset composed of
1000 two-dimensional points (see Fig. 4(a)). The dataset is composed of four petals and a
stalk each containing 200 points. When the user applies simple k-means clustering, with a
setting of four clusters (i.e., k = 4), the flower is divided into four parts as shown in Fig.
4(b) where the petals are indeed in different clusters, but each of the petals also takes up
one-fourth of the points from the stalk of the flower. When a setting of five clusters is used,
the user obtains the clustering shown in Fig. 4(c). It is evident that the five clusters generated
by k-means are not able to cleanly differentiate the stalk from the petals.

A conventional clustering algorithms like k-means does not take user expectation as an
input to produce better clustering results. Even constrained clustering algorithms would
require an inordinate number of user interactions to clearly separate the stalk from the petals.
In the scatter-gather clustering framework, the user can provide an input to the algorithm
regarding the expected outcome as shown in Fig. 5. The constraints shown in the middle of
the figure should be read both from left to right and from right to left. Reading from left to
right, we see that the user expects the four clusters to be broken down (scattered) into five
clusters. Reading from right to left, we see that the stalk is expected to gather points from
all current clusters, but there is a one-to-one correspondence between the desired petals to
the original petals. Figure 5 shows that the results of such a scatter/gather clustering provide
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Fig. 4 Clustering the flower dataset. (a) The dataset has 1000 2D points arranged in the form of a flower.
(b) Result of k-means clustering with k = 4. (c) k-means clustering with k = 5. Points from the stalk spill
over into the petals
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Fig. 5 Clustering the flower dataset with user provided input: Scatter/gather constraints when imposed over
a clustering with four clusters yields five clusters with well-separated petals and center with the stalk, unlike
Fig. 4(c)

well-separated petals and stalk, unlike the result provided by simple k-means with k=5 (as
shown in Fig. 4(c)). Thus, instead of being frustrated by choosing a seemingly arbitrary
parameter value for k, the analyst directly manipulates the cluster reorganization scheme.
The interaction fits the analyst’s cognitive process of incrementally redistributing specific
clusters to test hypotheses.

The way in which constraints from Fig. 5 are incorporated to revise a clustering is cov-
ered in detail in (Hossain et al. 2012c). Essentially, we prepare a contingency table relating
the current clustering to the target clustering, and use a non-linear optimization framework
to propagate the given mean prototypes through the contingency table, to identify prototypes
for the target clustering.

Figure 6 illustrates the use of scatter-gather clustering by an analyst studying the bat
biosonar system. The expert is trying to find partitions of a woolly horseshoe bat ear. The
expert at first partitions the object into two clusters using k-means clustering (Fig. 6(a)).
The expert finds the partitions interesting. He observes that the boundary and the vertical
ridges are in the same cluster (green), and the rest of the ear is in another cluster. This
fosters a thought in the expert’s mind that the vertical ridges could be separated to form a
new cluster. The expert also believes that there could be less prominent layers in the borders
of the ear. Being unsure about the constraints, the expert provides a uniform scatter/gather
constraint table of size 2× 3 indicating that he desires three clusters out of the two clusters.

L
ig

h
t 

B
lu

e

R
ed

Y
el

lo
w

Green

Red

Y
el

lo
w

R
ed

L
ig

h
t 

B
lu

e

Light Blue

Red

Yellow

G
re

en
R

ed
Y

el
lo

w
L

ig
h

t 
B

lu
e

Yellow

Red

Light Blue

(a) (b) (c) (d)

Fig. 6 An example of interactive scatter/gather clustering of a woolly horseshoe bat ear. The expert partitions
the ear into four clusters beginning from a setting of two clusters. (a) to (b)—The expert supplies a 2 × 3
constraint table to generate three clusters from two, and the vertical ridge is lost in the result; (b) to (c)—
the expert supplies constraints in a 3 × 3 table to retrieve the vertical ridge; (c) to (d)—the expert provides
constraints in a 3 × 4 matrix to scatter the border into two layers but to keep the rest of the clusters the same
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Our scatter/gather clustering provides the result shown in Fig. 6(b). The partitioning of
Fig. 6(b) was able to pick up two border layers, but the vertical ridges now diminish inside
the surrounding cluster. At this point, the expert believes that it is more important to reveal
the shape of the vertical ridges rather than discovering the layers in the boundary. The expert
now provides an S/G constraint table to merge two boundaries (light blue and red), and split
the mid region of the ear (yellow) into two clusters. The resulting clusters are shown in Fig.
6(c) where the vertical ridges are well separated in one cluster. The expert now desires to
split the border into two layers that he previously merged. Setting up an S/G constraint table
of size 3 × 4 as shown in the middle of (c) and (d) objects of Fig. 6, the user obtains four
clusters. These four clusters contain two layers of border (green and red), vertical ridges
(light blue), and the flat region of the ear (yellow).

Unlike the way user interaction is used in ForceSPIRE the reader should note that user
input is given here not at the instance level (i.e., specific data points) but at the cluster
level, viz. which clusters should be broken up or brought back together. Thus, scatter-gather
provides a fundamentally different type of interaction paradigm for visual analytics that fits
into the analyst’s process of redistributing clusters.

2.3 Analyst’s workspace

We now shift our attention to navigating and mining large document collections. Analyst’s
Workspace (AW) is a visual analytics environment that i) closely mimics information orga-
nization layouts employed by analysts, ii) relates multiple representations to accommodate
different strategies of exploration, and iii) provide automated algorithmic assistance for for-
aging connections and hypothesis generation. It is primarily targeted at datasets such as the
VAST (Symposium on Visual Analytics Science and Technology) 2011 Challenge dataset
(Mini Challenge 3: Investigation into Terrorist Activity). This dataset contains 4,474 doc-
uments, which are primarily synthetic news stories from a fictitious city newspaper, and
the goal is to uncover the nature of a threat embedded in the document collection. Most of
this collection is actually noise, with only about thirteen of the documents being relevant to
uncovering the plot. Another feature of this dataset is that even if the analyst uncovers all
thirteen documents, some analysis is still required to actually determine the actual form of
the underlying threat.

AW provides the user with a plethora of interaction tools for use with large screen dis-
plays (e.g., familiar click-and-drag selection rectangles, multi-click selections) as well as
information organization facilities (e.g., graph layout, temporal ordering). Because these
operations are local, they only affect the local area or the currently selected documents and
hence enable the analyst to freely mix spatial metaphors (see Fig. 7).

While the primary visual elements in AW are full text documents, we also provide sup-
port at the entity level. Documents are marked up based on extracted entities, and the analyst
can use context menus to quickly identify new entities and create aliases between entities
(Fig. 8). Double clicking an entity of interest in a document opens an entity object, which
is initially displayed as a list of documents in which that entity appears. Entities can also
be collapsed down to a representational icon (Fig. 9), and AW automatically draws links
between entities when they co-occur in a document. These two features allow the ana-
lyst to rapidly construct and explore social networks, which are commonly used tools in
intelligence analysis.

AW also provides basic facilities for text-based search. Search results are displayed as
lists of matching documents in the space, like the entities. The documents are color coded
to tell the analyst the state of a document: open, previously viewed, or never viewed.
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Fig. 7 An active session in Analyst’s Workspace. Full text documents and entities share the space, with a
mixture of spatial metaphors, such as clusters, graphs and timelines all in evidence. The yellow lines are the
links of the derived social network

Visual links play a strong role in AW. These allow a number of relationships to be
expressed, freeing spatial proximity to be used to express more complex relationships more
directly related to making sense of the dataset.

While Analyst’s Workspace is designed to be support a flexible approach to sensemaking,
it does encourage a particular analytic approach that we observed being used by the analysts.
This is a strategy that Kang et al. referred to as “Find a Clue, Follow the Trail” (Kang et al.
2009). In this strategy, the analyst identifies some starting place and then branches out the
investigation from that point, following keywords and entities.

In AW, a starting point can be provided by the entity browser Fig. 10, which allows the
analyst to order entities by the number of occurrences in the dataset. The analyst opens this
entity and gets a list of documents in which this entity appears. The analyst then works
through these documents, opening new entities or performing searches as new clues are
found. Since all of the search results are independent objects in the space and there is a visual
record of which documents have been visited, AW can support both a breadth-first and a
depth-first search through the information. As the investigation progresses, the analyst uses

Fig. 8 An ’Al-Qaeda’ entity viewed in AW displaying a list of the files in which this entity appears. The
green files are currently open in the workspace, the red have been viewed and rejected by the analyst, and
the white files have not yet been viewed
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Fig. 9 A section of the generated social network from an AW session. Here, the entities have all been
collapsed down to iconified form

the space to arrange the information as it is uncovered, building and rebuilding structures to
reflect his or her current understanding of the underlying narrative.

While this approach has been shown to be fairly effective (Kang et al. 2009), it does not
permit greater characterization of the dataset and does not support more complex questions
that the analyst might ask. For example, this approach relies entirely on the analyst to pick
the right keywords and entities to “chase,” and can miss less direct lines of investigation.
It is common for terrorists to use multiple aliases or code words that can easily thwart
this approach. However, it is possible that common patterns of behavior or other document
similarities might help the analyst to uncover some of these connections.

AW’s story generation framework is exploratory in nature so that, given starting and end-
ing documents of interest, it explores candidate documents for path following, and heuristics
to admissibly estimate the potential for paths to lead to a desired destination. The generated
paths are then presented to the AW analyst who can choose to revise them or adapt them for
his/her purposes.
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Fig. 10 AW’s entity browser,
here showing the people
identified in the dataset, sorted
by the number of documents in
which each appears

A story between documents d1 and dn is a sequence of intermediate documents d2,
d3, . . . , dn−1 such that every neighboring pair of documents satisfies some user defined cri-
teria. Given a story connecting a start and an end document, analysts perform one of two
tasks: they either aim to strengthen the individual connections, possibly leading to a longer
chain, or alternatively they seek to organize evidence around the given connection. The
notions of distance threshold and clique size are used to mimic these behaviors.

The distance threshold refers to the maximum acceptable distance between two neighbor-
ing documents in a story. Lower distance thresholds impose stricter requirements and lead
to longer paths. The clique size threshold refers to the minimum size of the clique that every
pair of neighboring documents must participate in. Thus, greater clique sizes impose greater
neighborhood constraints and lead to longer paths. These two parameters hence essentially
map the story finding problem to one of uncovering clique paths in the underlying induced
similarity network between documents.

Figure 11 describes the steps involved in generating stories for interaction by the AW
analyst. For document modeling, a bag-of-words (vector) representation is used where the
terms are weighted by tf-idf with cosine normalization. The search framework has three key
computational stages:

1. construction of a concept lattice,
2. generating promising candidates for path following, and
3. evaluating candidates for potential to lead to destination.

Of these, the first stage can be viewed as a startup cost that can be amortized over multi-
ple path finding tasks. The second and third stages are organized as part of an A* search
algorithm that begins with the starting document, uses the concept lattice to identify candi-
dates satisfying the distance and clique size requirements, and evaluates them heuristically

Input 
documents

Stop-word 
removal and 

stemming

Analyst’s 
input

Heuristic 
search

Document 
modeling

Concept
lattice  

generation

Fig. 11 Pipeline of the storytelling framework in AW
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for their promise in leading to the end document. Hossain et al. (2011; 2012a) describe the
storytelling algorithms in great details.

The analyst may also need the discovery of paths through the dataset to be more efficient.
For example, the analyst may have uncovered that a revolutionary in South America shares
the same last name as a farmer in the Pacific Northwest who has been implicated in some
nefarious affairs and wishes to ask if there is any link between them other or if their last
name is a coincidence. An exhaustive background check of the two men is possible through
AW if the dataset is relatively small, but it is an indirect and time consuming process.

Figure 12 shows an example of the usage of AW and our algorithms. In this scenario, the
analyst requests a story connecting a pair of interesting documents. The algorithm returns a
story but the analyst is not satisfied with parts of the story. The analyst then requests infor-
mation about documents in the surrounding neighborhood of an intermediate document.
Having explored the local neighborhood, the analyst identified two additional documents
that form a more meaningful connection and extends the original story. An important design
principle here is that the invocation and output of the storytelling algorithms occurs within
the analyst’s spatial layout, thus fitting naturally into their cognitive sensemaking process.
The end points of the story provide spatial anchors for the new information.

2.4 Bixplorer

Bixplorer is a visual analytics prototype (Fiaux 2012) that supports interactive exploration
of textual datasets in a spatial workspace using biclusters. A bicluster, or biclique, is a
complete bipartite subgraph in a relation, i.e., where every entity in one set is connected to
all entities of another set. Biclusters across entity types serve as an important abstraction by
‘bundling’ relationships into cohesive units that are key navigation aids as well as units of
knowledge discovery in themselves.

Consider Fig. 13 involving a relation capturing attendance of students in specific classes,
we might infer a bicluster involving a set of students {S1,S2,S3} all of whom attend the same
set of classes {C1,C2,C3,C4}. Biclusters are typically maximal, i.e., additional students and
additional classes cannot be added into the bicluster because they will not have a relation to
each other (in the original matrix).

Since biclusters are discovered in a single relation, we can ‘compose’ biclusters discov-
ered separately across two relations by (approximately) matching the biclusters across the
common domains. Jin et al. (2008) present this approach to identify compositional patterns
in multi-relational datasets. As shown in Fig. 14, biclusters from three different relations can
be chained using the common interfaces of people (between the first and second relation)
and places (between the second and third relation). The results of such compositions can be
read sequentially from one end to the other, not unlike a story. For instance in the scenario
from Fig. 14, we might learn about ‘a group of faculty from CS and other departments’,
many of whom ‘are planning a trip to Austin, Texas and nearby places’, the dates of which
are approximately aligned with ‘the second week of May 2012’; this might lead us to infer
that they are likely HCI researchers planning to attend the CHI’12 conference. Documents
supporting these relationships can then be inspected to gather evidence for this hypothesis.
Thus, by relating biclusters across multiple relations we can ‘bundle’ relationships from a
diversity of domains in a coherent manner. Such bundling and composition constitute one
of the key features of Bixplorer.

Bixplorer is closest in spirit to hybrid matrices and node-link diagrams. NodeTrix, the
work of Henry et al., allows exploration of social networks through a hybrid visualization of
adjacency matrices (for dense subgraphs) and node-link diagrams (for sparse connections



J Intell Inf Syst

The analyst requests a story connecting a pair of interesting 
documents. 

Unsatisfied with the strength of the connection, the analyst requests 
information about documents in the surrounding neighborhood (i.e., 
within the local clique).

Having explored the local neighborhood, the analyst has identified 
two additional documents that form a more meaningful connection 
and extends the original story.

The generated story between the two endpoints. The system has identified 
two linking documents, and connected them together into a linked story.

A list of the neighbors of the third document. The lines 
provide visual links to open documents.

New connections have been manually added to extend the story

Fig. 12 Illustration of interactively finding a story in AW

between the subgraphs) (Henry et al. 2007). Through clustering and linking clusters, users
can explore relationships of a single type, such as co-authorship between authors. NodeTrix
generates initial clusters, and then allows users to group or ungroup nodes to explore how
they interact with the layout. OntoTrix by Bach et al. extends this technique to work with
ontologies with multiple types of relationships (Bach et al. 2011). Thus allowing clustering
and linking nodes of different types within the same graph. Bixplorer is different in that we
use biclusters as the key unit of information organization rather than clusters and individual
relationships.
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Fig. 13 Example bicluster extracted from a student to classes relationship. Dark cells represent relationships,
orange cells represent relationships part of this specific bicluster

Bixplorer uses closed itemset mining algorithms such as CHARM (Zaki and Hsiao 2002)
and LCM (Uno et al. 2003); the results of such algorithms are then chained and made avail-
able for sensemaking (Fig. 15). Initially, the workspace is empty. Throughout the course
of their analysis, users add documents and biclusters into the workspace. The workspace
enables users to organize and visualize biclusters and documents together, and the links
between them, in a single space. Figure 16 shows Bixplorer on a large, high-resolution dis-
play. Previous studies and tools have shown that a spatial workspace such as this enables
users to create spatial representations (e.g., clusters, timelines, etc.) to capture their insights
about the dataset (Andrews et al. 2010; Shipman and Marshall 1999; Endert et al. 2012). As
such, biclusters and documents can be repositioned within the space by the user. A ‘Link
to...’ function from the context menu allows users to create custom links between elements.
User-defined links are shown in blue, whereas white links are computationally determined
by the data mining.

We conducted a user study of Bixplorer with the Atlantic Storm dataset. Initial text
extraction and mining was done offline, resulting in 437 unique entities, 4257 relation-
ships, and 1001 biclusters. We learnt that each of the users was successful in integrating

Fig. 14 Chaining biclusters
through multiple relations by
approximately matching sets of
entities across common domains
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Fig. 15 Sample area of graph workspace with biclusters and documents connected

biclusters into the spatial analysis of the dataset, leveraging the visual representation of
relationships in a variety of ways. Although none of the users in this study had previous
experience or knowledge of biclusters, each of them was able to quickly integrate biclusters
into their process.Biclusters were used to quickly scan relationships, to provide an overview
of relationships involving a specific document, and to transition between the overview to
the documents that are contained in the bicluster. Thus, user explored bicluster chains by
intermittently injecting documents into the chain. This enabled a rapid exploration of the
dataset, and users were able to quickly follow leads of suspicious entities and identify the
latent plot. Biclusters also played a significant role in the final analytic product of the users.
The spatial workspace was used to visually maintain the biclusters and documents that the
users deemed relevant. Therefore, their findings were based on not only the documents,
but also the biclusters. Users referred to the biclusters as a collection of evidence through
which two or more documents were connected. Also, users found biclusters to be a useful
label for a particular region of the workspace, capturing and representing the relationships

Fig. 16 Bixplorer on a large, high-resolution display
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there at a high level. Thus, biclusters are a powerful visual representation of entity relation-
ships within a data set. The encouraging results of this study show potential for future work
exploring the benefits of biclusters not only as a visual representation of relationships, but
also as a complex glyph with which users can interact.

3 Future opportunities

We have given an overview of four varied visual analytics projects, each of which pro-
vides rich capabilities for human interaction. We now present some possible themes that can
serve to make interaction even more central, thus helping further the ‘human is the loop’
philosophy.

3.1 Mixing interaction modes

Users refer to information in different regions of spatializations with different contexts and
metaphors (Andrews et al. 2010; Robinson 2008). Common metaphors include topical clus-
ters, timelines, geospatial layouts, and social networks. Users frequently mix metaphors
within the same workspace as either separate or nested schemas (Andrews et al. 2010;
Robinson 2008). These metaphors may be well defined or ambiguous, and may evolve over
time. This mixed-metaphor use of a spatialization poses challenges to layout and clustering
models that are generally designed to compute a single model layout across the entire visu-
alization. For example, iCluster (Drucker et al. 2011) which enables direct manipulation of
a cluster model, could be combined with ForceSpire (Endert et al. 2012b) to enable dynamic
layout of clusters, in much the same way as analysts currently do manually.

Challenge 1: How do we detect, interpret, compute, and visualize mixed models that
represent mixed metaphors?

Challenge 2: How can we learn which model best captures the user’s domain
knowledge based on the layout?

Existing work has manually identified users’ spatial metaphors (Andrews et al. 2010;
Robinson 2008). Work in spatial parsers has developed heuristics for recognizing certain
patterns (Marshall et al. 1994). Currently, tools make assumptions regarding user intentions
(Endert et al. 2012b) or require explicit interaction by the user, such as switching views.

One way to organize mixed models is to operate at multiple levels of scale (Table 2).
When all data points can feasibly be displayed on the screen, dimensionality reduction (DR)
models can be used to lay out space, but this is less appropriate for larger datasets where the
data points overfill the screen. At larger scales, cluster models can be aggregate data into
visual groups. At even larger scales, information retrieval (IR) algorithms become essen-
tial to streaming or sampling data to dynamically display relevant data. A consistent direct
manipulation approach to interaction can be applied across each level of scale. For exam-
ple, IR algorithms can query for data relevance based on dimension weights learned by DR
models, and learn from user actions such as placing uninteresting data in the ‘trash pile.’

Challenge 3: How should direct manipulation be used to steer models across multiple
scales?
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Table 2 Multi-scale models

Levels of scale Display scale Database scale Cloud scale

Usage Description System lays out data System groups clusters System uses layout to

according to users of data in the layout query very large data

spatial organization according to users and retrieve additional

feedback grouping feedback relevant data

Data scale of manipulation <1 Million <1 Billion >1 Trillion

Algorithms Dimensionality reduction Clustering, Classification, Information retrieval,

Topic modeling sampling, streaming

Visualization Spatial layout; Visual Groups, hierarchy, Salience, 3rd

proximity = similarity containment; Visual dimension; Visual

group = similarity salience = similarity

Interactive feedback Similarities, dimension Group counts and Object relevance,

for machine learning weights, object weights contents, centroid keyword dimensions

landmarks, labels and weights

ForceSpire can be viewed as initial steps in this direction; it combines several of these
techniques (e.g. document repositioning, highlighting, annotations, searching) in one sys-
tem that tightly couple with the underlying dimension reduction model (Endert et al. 2012b).
In addition to providing spatial constraints, the fundamental enhancement of this form of
interactions is the ability to provide these constraints directly on the information (e.g.,
pinning a document to a specific location), and performing interactions that change the
dimension-weighting scheme applied to the underlying dimension reduction models. For
example, highlighting a phrase that contains a set of keywords implies increasing the weight
of the corresponding dimensions (Endert et al. 2012b). The spatialization updates to reflect
the incremental insights generated, creating a symbiotic relationship between the user’s
sensemaking and the system’s machine learning.

3.2 Expressive forms of feedback for data mining algorithms

We have re-iterated the importance of user-provided feedback but thus far the forms of
feedback considered are typically critiques of current results or preferences or constraints
of desired outputs. It is not difficult to contemplate more structured and more expressive
forms of feedback that will require significant re-tooling of algorithms.

Challenge 4: Can we design expressive forms of feedback more naturally adapted to
the visual forms of interaction that users desire?

For instance, in the storytelling algorithm described above, users typically are able to pro-
vide feedback in the form of ‘I would prefer this story NOT use this document’ or ‘I would
prefer that the story provide a justification for why this entity participates in it.’ Such a feed-
back is quite non-trivial to translate back into the algorithmic machinery. This is because the
algorithm is geared toward finding paths through document similarity networks, and thus the
constraint must be translated into inequalities involving paths, and solved simultaneously to
ensure that previously discarded paths become superior.
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Going forward, it is conceivable that as visual analytics applications proliferate we will
need to be more organized in terms of how we design user feedback/interaction mechanisms
and the way in which such feedback is incorporated into constraints:

Challenge 5: Can we develop a taxonomy of user feedback and algorithmic constraints
that can be used to standardize application development?

3.3 Space as a medium between human intuition and machine learning

Visualizations are intended to provide a visual representation of structure within informa-
tion, with the purpose of illuminating patterns, relationships, trends, and other observable
features within a dataset. Through continuous visual exploration, the features within the
visual representation establish meaning to the user. For example, a two-dimensional spatial-
ization of text reports may initially reveal themes or groups of related information. However,
through exploration, more meaning and insight is generated, and the spatial layout begins to
help the user construct a mental model of the data (Andrews et al. 2010; Endert et al. 2012).

An emerging opportunity for visual analytics is combining the computational advan-
tages of data mining with the cognitive abilities of users by considering the visualization
as a medium for interaction and analysis, and therefore an artifact to help facilitate com-
mon ground between user and system (Clark and Brennan 1991). Common ground (an
understood shared knowledge between two or more parties) is created by the computational
generation of the visualization, and the user-driven exploration and interaction with it.

Challenge 6: How can visualizations serve as artifacts for common ground between
algorithms and users?

For instance, consider a two-dimensional spatialization created algorithmically (see
Fig. 17). Similarity between data points is typically shown as relative Euclidean distance

HOW TO NEGOTIATE COMMON GROUND

Similarity

COMPUTATION:
• Distance function
• Stress reduction/ 
minimization

COGNITION:
• Related terms
• Past connection known
• Domain expertise

Fig. 17 Negotiating common ground between computation and cognition
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between any two points. Computationally, this distance was determined by a distance func-
tion that calculated, based on several features of the data, and how far those two points
should be apart. Such an output is easily interpretable by the user. However, users often
have domain knowledge that contradicts the features used in distance function calculations.
To share this knowledge with the system, they can interact with parameters of the distance
reduction algorithm to reflect this knowledge. As a result, the system and user engage in a
discourse to facilitate the process of common ground.

To strengthen this process, user interactions can be designed to occur directly within
the visual representation of the data, instead of directly on model parameters. User inter-
action approaches such as semantic interaction (Endert et al. 2012), relevance feedback
(MacArthur et al. 2002), and distance function learning (Brown et al. 2012) help facilitate
this capability. These approaches present opportunities to engage users with metric learning,
semi-supervised machine learning, and other computationally valuable methods of model
steering without requiring expertise in data mining. Further, the ability for these approaches
to enable the interactions purely within the visual space strengthens the process of common
ground.

Challenge 7: How can domain knowledge be captured and communicated spatially?

In instantiating these features, the important distinction is in how the user communi-
cates knowledge back to the system. Instead of directly manipulating model parameters, the
insights that are gained spatially can be communicated spatially. If the user identifies two
documents that are computationally placed far apart (implying dissimilarity), the distance
function can be trained by relocating those two points closer together in the spatialization.
As a result, the domain knowledge of the user is captured, interpreted, and extrapolated
across the entire dataset (Endert et al. 2012), resulting in other data points correcting their
relative distances from each other. The success of these approaches for user interaction
in visual analytics has the potential to transform the analytic workflow of visual analytics
users. Instead of structuring sensemaking around the computational models, the focus shifts
back to thinking visually while maintaining the computational advantages of data mining.

3.4 Towards design principles

Our examples suggest design principles for ‘human is the loop’. User input and visual feed-
back are conducted and presented within the context of the analyst’s process. User input
includes both the algorithm invocation command as well as the parameters and settings for
the algorithm execution. Implicit steering is perhaps the ultimate form of in-context input
as it passively takes advantage of interactions the analysts are already performing anyway
(Endert et al. 2011), and the already existing objects/parameters of those interactions.

Yet, explicit steering can be carefully inserted within context as well. In the AW example,
the user may explicitly invoke the algorithm to find connections, but the parameters evolve
directly out of the user’s spatial layout and analytic process. Analysts frequently pose hypo-
thetical connections by drawing a dotted line between entities, and thus also can trigger a
connection finding algorithm. This perhaps suggests a potential implicit approach in which
the invocation is automatic for proximal objects and numerous connections are visualized
as a background distribution. Thus, space becomes the medium for computation.

At the opposite end of the spectrum would be completely out-of-context approaches. For
example, the user might be required to export the data and load it into a separate algorithm
while specifying numerous complex parameters, and then compare results back to their
manual layout. The design tension is to strive for as much in-context as possible, while
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preserving user control and expressiveness. It should be noted that the implicit approach,
while appearing indirect to algorithm designers since interpretation is required, appears
direct to the users because the operations are on objects of their concern, and in the domain
of their expertise. Such implicit approaches map more closely to the user’s flow of analysis
(Elmqvist et al. 2011). When users stay in this ‘cognitive zone’ (Green et al. 2009), they can
more effectively engage in sensemaking. Empirical evidence suggests that users prefer the
implicit approach (Endert et al. 2012a) when carefully designed.

Interactions must also be cumulative. In many cases, the analyst must come to a con-
clusion incrementally (Shipman and Marshall 1999). If the conclusion were given to the
analyst at the very beginning, it is likely that the analyst would not understand nor recog-
nize it as a meaningful conclusion because it would be out of context. The analyst needed
to experience the process. Sensemaking is inherently situated. Furthermore, there typically
is not a single conclusion, but rather the analyst explores multiple alternative hypotheses so
as to avoid confirmation bias (Heuer 1999). Thus, algorithms must incrementally adapt and
compute over potentially large interaction data throughout this process.

This approach also suggests a highly integrated design in which many algorithms are
simultaneously responding to user input. We are not suggesting a single panacea tool, but
rather a compositional approach. In sensemaking for example, there are numerous oppor-
tunities for better integrating the foraging and synthesis halves of the sensemaking process
(Andrews and North 2012).

4 Conclusion

We have provided a tour of visual analytics projects with a peek into the type of capabilities
that might be enabled in the future. Beyond the interactive visualization and computational
construction of semantically associated information objects, our goal is to ultimately under-
stand how human analysts makes sense of data. The traditional viewpoint is that users can
specify reasoning structures or frameworks and algorithms can help fill in the blanks. But it
is not clear that such a viewpoint advances the user’s conceptualization. We have argued that
if space, visual entities, and algorithms become material objects that support joint reasoning
between human and the machine, then users can perform actions that establish understand-
ing to the algorithms, and be rewarded with results that fit naturally in the context of their
analytic process. This can significantly further the cause and objectives of visual analytics
research.
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