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Abstract

Multi-level spatial aggregates are important for
data mining in a variety of scientific and engineer-
ing applications, from analysis of weather data (ag-
gregating temperature and pressure data into ridges
and fronts) to performance analysis of wireless sys-
tems (aggregating simulation results into config-
uration space regions exhibiting particular perfor-
mance characteristics). In many of these applica-
tions, data collection is expensive and time con-
suming, so effort must be focused on gathering
samples at locations that will be most important
for the analysis. This requires that we be able to
functionally model a data mining algorithm in or-
der to assess the impact of potential samples on
the mining of suitable spatial aggregates. This pa-
per describes a novel Gaussian process approach
to modeling multi-layer spatial aggregation algo-
rithms, and demonstrates the ability of the resulting
models to capture the essential underlying qualita-
tive behaviors of the algorithms. By helping cast
classical spatial aggregation algorithms in a rigor-
ous quantitative framework, the Gaussian process
models support diverse uses such as directed sam-
pling, characterizing the sensitivity of a mining al-
gorithm to particular parameters, and understand-
ing how variations in input data fields percolate up
through a spatial aggregation hierarchy.

1 Introduction
Many important tasks in data mining, scientific computing,
and qualitative modeling involve the successive and system-
atic spatial aggregation and redescription of data into higher-
level objects. For instance, consider the characterization of
WCDMA (wideband code-division multiple access) wireless
system configurations for a given indoor environment. In
noisy channels, the performance goal is to quantitatively as-
sess the relationship between the signal-to-noise ratio (SNR)
and the bit error rate (BER) or bit error probability (BEP)
of the realized configuration. To improve performance in of-
fice environments (characterized by doorways, walls, cubi-
cles), a common trick used is to incorporate space-time trans-
mit diversity (STTD). Instead of a single transmitter antenna,
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Figure 1: Mining configuration spaces in wireless system
configurations. The shaded region denotes the largest por-
tion of the configuration space where we can claim, with
confidence at least 99%, that the average bit error probability
(BEP) is acceptable for voice-based system usage. Each cell
in the plot is the result of the spatial and temporal aggregation
of hundreds of time-consuming wireless system simulations.

the base station uses two transmitter antennas separated by a
small distance. If the signal from one of the antennas is weak,
the signal from another is likely to be high, and the over-
all performance is expected to improve. In this application,
it is important to assess how the power-imbalance between
the two branches impacts the BEP of the simulated system,
across a range of SNRs (see Fig. 1; [Verstak et al., 2002]).

Characterizing the performance of WCDMA systems re-
quires the identification of multi-level spatial aggregates in
the high-dimensional configuration spaces of wireless sys-
tems. The lowest level (input) contains individual Monte
Carlo simulation runs providing unbiased estimates of BEPs.
This space is high-dimensional (e.g. ≥ 10), owing to the mul-
titude of wireless system parameters (e.g. channel models,
fading characteristics, coding configurations, and hardware
controls). Wireless design engineers prefer to work in at most
two or three dimensions (e.g. to study the effect of power im-
balance on system performance) for ease of tunability and de-
ployment. The next level of spatial aggregation thus contains
buckets which aggregate data in terms of two dimensions, us-
ing various consistency constraints and design specifications.
Finally, the third level aggregates buckets into regions of con-
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Figure 2: Key steps in vector field analysis.

strained shape; the shape of the regions illustrates the nature
of joint influence of the two selected configuration parame-
ters on performance. Specific region attributes, such as width,
provide estimates for the thresholds of sensitivity of configu-
rations to variations in parameter values.

The results of such mining are important for both qualita-
tive and quantitative analysis. For instance, when the average
SNRs of the two branches are equal, the BEP is minimal and
the width of the mined region in Fig. 1 depicts the largest ac-
ceptable power imbalance (in this case, approximately 12dB).
However, the width is not uniform and the region is narrower
for smaller values of the SNRs. The qualitative result is that
system designs situated in the lower left corner of the con-
figuration space are more sensitive to power imbalance in the
two branches.

Each input data point captures the results of a wireless sys-
tem simulation which takes hours or even days (the simula-
tions in Fig. 1 were conducted on a 200-node Beowulf cluster
of workstations). Thus it is imperative that we focus data col-
lection in only those regions that are most important to sup-
port our data mining objective, viz. to qualitatively assess the
performance in configuration spaces. This requires that we
model the functioning of the data mining algorithm, in order
to optimize sample selection for utility of anticipated results.
Modeling data mining algorithms in this manner is useful for
closing the loop, characterizing the effects of the data mining
algorithm’s parameters, and improving our understanding of
how variations in data fields percolate up through the layers.
A particularly interesting application is to use such modeled
structures to design information-theoretic measures for eval-
uating experimental designs [MacKay, 1992] and for active
data selection [Cohn et al., 1996; Denzler and Brown, 2002].

In order to address these goals, this paper develops a novel
Gaussian process approach to modeling algorithms that mine
spatial aggregates. We first overview the Spatial Aggregation
mechanism for spatial data mining and the Gaussian process
approach to Bayesian modeling. We then show how to inte-

grate the two approaches in order to achieve our goal of prob-
abilistically modeling spatial data mining algorithms. We il-
lustrate this ability within the context of identifying pockets
underlying the gradient in a field — an application that cap-
tures many of the interesting characteristics of more complex
studies like the wireless application.

2 Spatial Aggregation
The Spatial Aggregation Language (SAL) [Bailey-Kellogg et
al., 1996; Yip and Zhao, 1996], provides a set of operators
and data types, parameterized by domain-specific knowledge,
for uncovering and manipulating multi-layer geometric and
topological structures in spatially distributed data. SAL ap-
plications construct increasingly abstract descriptions of the
input data by utilizing knowledge of physical properties such
as continuity and locality, expressed with the vocabulary of
metrics, adjacency relations, and equivalence predicates. To
understand the SAL approach (see Fig. 2), consider a SAL
program for analyzing flows in a vector field (e.g. wind ve-
locity or temperature gradient).

In the first level, the goal is to group input vectors (a) into
paths so that each sample point has at most one predeces-
sor and at most one successor. SAL breaks the process into
two key steps, one capturing locality in the domain space (i.e.
sample location), and the other capturing similarity in the
feature space (i.e. vector direction). A neighborhood graph
aggregates objects with a specified adjacency predicate ex-
pressing the notion of locality appropriate for a given domain.
As shown (b), a sample point’s neighbors include all other
points within some specified radius r. Feature comparison
then must consider only neighbors in this graph, thereby ex-
ploiting physical knowledge to gain computational efficiency
while maintaining correctness. Here we break feature com-
parison into a sequence of predicates and graph operations.
In particular, we first filter the graph (c), applying a predicate
that keeps only those edges whose direction is similar enough



(within some angle tolerance θ) to the directions of the vec-
tors at the endpoints. The remaining graph has some “junc-
tion” points where vector direction suggests multiple possible
neighbors, and the most appropriate path extension from the
point must be chosen. A similarity metric sums the distance
between the junction and a neighbor, weighted by a constant
d, and the difference in vector direction at the junction and
the neighbor. The most similar neighbor for the junction is
selected ((d) and (e), for successor and predecessor junctions,
respectively).

The remaining graph edges are collected and redescribed
as more abstract streamline curve objects (f), for the second
level of analysis. Again, computation is localized so that
only neighboring streamlines are compared. The neighbor-
hood graph here (not shown) uses an adjacency predicate that
declares streamlines neighbors if their constituent points were
in the first level. It is then straightforward to identify conver-
gent flows (g) with an equivalence predicate that tests when
constituent points form a junction in the graph in (c). If de-
sired, these flow bundles can be abstracted and analyzed at an
even higher level.

SAL’s uniform spatial reasoning mechanism, instantiated
with appropriate domain knowledge, has proved success-
ful in applications ranging from decentralized control de-
sign [Bailey-Kellogg and Zhao, 1999; 2001], to weather data
analysis [Huang and Zhao, 1999], to analysis of diffusion-
reaction morphogenesis [Ordóñez and Zhao, 2000]. Recent
work has focused on optimizing sample selection for applica-
tions where data collection is expensive, including identifying
flows in multi-dimensional gradient fields [Bailey-Kellogg
and Ramakrishnan, 2001] and analyzing matrix properties via
perturbation sampling [Ramakrishnan and Bailey-Kellogg,
2002]. This paper provides the mathematical foundations
necessary for the modeling of such SAL programs to support
the meta-level reasoning tasks outlined in the introduction.

3 Gaussian Processes
Gaussian processes have become popular in the last few
years, especially as a unifying framework for studying mul-
tivariate regression [Rasmussen, 1996], pattern classifica-
tion [Williams and Barber, 1998], and hierarchical model-
ing [Menzefricke, 2000]. The underlying idea can be traced
back to the geostatistics technique called kriging [Journel
and Huijbregts, 1992], named after the South African miner
Danie Krige. In kriging, the unknown function to be modeled
(e.g., ozone concentration) over a (typically) 2D spatial field
is expressed as the realization of a stochastic process. A prior
is placed over the function space represented by this stochas-
tic process, by suitably selecting a covariance function. Given
measured function values at sample locations, kriging then
proceeds to estimate the parameters of the covariance func-
tion (and any others pertaining to the random process). Using
such values a prediction of the response variable can then be
made for a new sample point, typically using MAP or ML in-
ference. This basic approach is still popular in many tasks of
spatial data analysis.

Even though parameters are estimated in this approach, it
is important to note that kriging is fundamentally a memory-

based technique, since the estimated parameters only describe
the underlying covariance function of a stochastic process.
Thus, predictions of the response variable for new sample
points are conditionally dependent on the measured values
and their sample points; by unrolling the effect of the pa-
rameters of the random process, we can directly express this
dependency.

Kriging is often motivated as a local modeling technique,
capable of approximating or interpolating functions with mul-
tiple local extrema, and generalizes well to applications ex-
hibiting anisotropies and trends. The stochastic prior is also
viewed as a mathematically elegant mechanism to impart any
available domain knowledge to the modeling technique. In
1989, Sacks et al. [Sacks et al., 1989] showed how krig-
ing can actually be used to model processes with determin-
istic outcomes, especially in the context of computer exper-
iments. The justification for modeling a deterministic code
as a stochastic process is often that even though the re-
sponse variable is deterministic, it may ‘resemble the sam-
ple path of a suitably chosen stochastic process’ [Sacks et
al., 1989]. Alternatively, using a stochastic process prior can
be viewed as a Bayesian approach to data analysis [Sivia,
1996], and this is the idea emphasized by most recent com-
puter science research in Gaussian processes [Gibbs, 1997;
Rasmussen, 1996]. The stochastic process can be suitably
formulated to ensure that the model reproduces the same re-
sponse value for repeated invocations of a given sample input
(i.e., absence of random error). For instance, the Gaussian
prior can be chosen so that the diagonal entries of the covari-
ance matrix are 1, meaning that the model should interpolate
the data points.

In the recent past, Gaussian processes have become popu-
lar in the statistical pattern recognition community [MacKay,
1997] and graphical models literature [Jordan (ed.), 1998].
Neal established the connection between Gaussian processes
and neural networks with an infinite number of hidden
units [Neal, 1996]. Such relationships allow us to take tradi-
tional learning techniques and re-express them as imposing a
particular covariance structure on the joint distribution of in-
puts. For instance, we can take a trained neural network and
mine the covariance structure implied by the weights (given
mild assumptions such as a Gaussian prior over the weight
space). Williams motivates the usefulness of such studies and
describes common covariance functions [Williams, 1998].

Williams and Barber [Williams and Barber, 1998] describe
how the Gaussian process framework can be extended to clas-
sification, where the modeled variable is categorical. Essen-
tially, the idea is to (i) use a logistic function to conduct tradi-
tional Gaussian regression modeling, and (ii) adopt a softmax
function to bin the logistic output into a given set of classes.
This means that the logistic function uses a “latent variable”
as input in its computation, since its values are not provided
by the dataset.

4 Gaussian Processes for Spatial Aggregation
SAL programs construct multi-layer spatial aggregates based
on specified local adjacency relations, similarity metrics, and
consistency checks. We describe here how to capture the
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Figure 3: Modeling the reversal of gradients in a 1D field us-
ing Gaussian processes. (top) Original field. (bottom) Given
measured values of gradient vector angles at specific data
points (blue), the model posits that the conditional distribu-
tion of the angle at unseen data points is a Gaussian (shown
in red).

qualitative behaviors of such aggregates using Gaussian pro-
cesses. The essence of a Gaussian process is its covariance
structure, so we focus on determining covariance structures
in a SAL program. For example, in the two-layer SAL pro-
gram of Sec. 2, the parameters (r, θ, d) impose a covariance
structure by specifying the reach of the neighborhood graph,
enforcing the similarity of angles in the vector field, and pe-
nalizing for the distance at decisions involving junctions.

4.1 Covariance Structure
We now describe how to model the covariance structure of a
given SAL program. We give the mathematical framework
for the case of mining a 1D field to determine if there is a re-
versal of gradient as we move along the spatial dimension, but
essentially the same machinery applies to two and higher di-
mensional spaces. The basic problem is one of classifying 1D
points to determine the qualitative structure of same-direction
flows. Fig. 3 (top) depicts the given input field along the x di-
mension. As is shown, the field consists of unit vectors with
different orientation. The Gaussian process approach is first
to model an underlying regressed variable and then to use a
logistic or softmax function to bin the output into classes. In
our application, the regressed variable represents the gradient
and can be simply summarized as the angle of unit vector ori-
entation y in Fig. 3 (top). In other applications, the regressed
variable could be an unobserved ‘latent’ variable. In either
case, it is modeled as a function f of the input x.

First, assume f to be a Gaussian process on x, meaning that
the conditional probability distribution of y given a value of x
is a Gaussian. For instance, Fig. 3 (bottom) depicts measured
values of y superposed with distributions of y at two unseen
points. A covariance structure among the y values could, for
example, capture the intuition that adjacent values of y should
agree more than distant values. The goal of modeling is to

determine the extent and stringency of this neighborhood re-
lation — one of the defining parameters of a SAL program.
Specifically, we posit a process such as:

f(x) = α + Z(x) (1)

The idea then is to estimate a model f ′ of the same
form as f , on the basis of a given set of k observations
{(x1, y1), (x2, y2), . . . , (xk , yk)}. A typical choice for Z in
f ′ is a random process with zero mean and covariance σ2R,
where scalar σ2 is the estimated variance and R is a matrix
that captures the correlation between the inputs (i.e., the given
locations). Notice that even though the input is one dimen-
sion, the size of R depends on the number of locations for
which gradient measurements are available. The above model
for f also includes the constant term α; this can be estimated
based on the k observations, or we can substitute more com-
plex terms (e.g. linear), or even omit it altogether.

The functional form of R (including its parameterization)
in effect defines the stochastic process and must be carefully
chosen to reflect the underlying data’s fidelity or any domain-
specific assumptions about local variation. The parameters of
the process are then estimated using multidimensional opti-
mization involving a suitable objective function. For instance,
given the following form for R:

R(xi, xj) = e−ρ|xi−xj |
2

(2)

the problem reduces to estimating ρ from the given data.
Notice that this formulation for R implicitly enforces that
the model exactly interpolate the given data points, since
R(xi, xi) = 1. A common objective function for estimating
ρ is to minimize the mean squared error (MSE), E{(f ′−f)2}
between f and f ′. The ρ that minimizes MSE is given by the
solution to the optimization problem:

max
ρ

(

−
k

2
(ln σ2 + ln |R|)

)

(3)

where R is the symmetric correlation matrix formed from R.
For a new sample point xk+1, a prediction for the regressed
variable is given by:

f ′(xk+1) = α̂ + rT (xk+1)R
−1(y − α̂Ik) (4)

where r is the correlation vector between the response at xk+1

and all the other k points (derived from R), Ik is the identity
vector of dimension k, and α̂ is the estimate of α given by:

α̂ = (ITk R−1Ik)−1ITk R−1y (5)

The variance in the estimate is given by:

σ̂2 =
(y − α̂Ik)T R−1(y − α̂Ik)

k
(6)

In this case, the optimization is one-dimensional due to the
presence of the single parameter ρ. With a different param-
eterization, we will employ multi-dimensional optimization
over the entire set of hyperparameters. When dimensional-
ity is large, the hyperparameters are estimated using MCMC
methods. Once such a modeling is complete, as discussed in
the previous section, we can relate a categorical class variable



to y using softmax functions. For instance, the reversal of the
gradient in Fig. 3 can be captured by first using the Gaussian
process model to make predictions of the gradient at untested
points and then determining if (and where) a zero crossing
occurs.

The above equations extend naturally to a 2D case such as
that described in Sec. 2. The covariance prior has to be suit-
ably parameterized and we also have the option of taking into
account any interactions between the two dimensions (both
linear and nonlinear).

4.2 Modeling Many Layers
When SAL programs consist of many layers, we need to de-
velop a sequence of Gaussian process models, each with a
suitable covariance function, which can then be superposed
to yield a composite covariance function. Recall that while
one could simply assess the covariance of the output field for
sample values of the parameters and a given input field, the
real purpose of a Gaussian process model is to express the co-
variance of the output as a function of the characteristics of
the input. This is the key property that allows reasoning about
closing the loop and selecting optimal samples. In addition,
Gaussian process models help capture the randomness inher-
ent in some of SAL’s computations, e.g. non-determinism in
labeling, and variations due to how ties are broken for aggre-
gation purposes. Refer again to Sec. 2 for an example of the
types of operations that the covariance model must capture.

At the very bottom of the hierarchy is the input data field.
For applications characterized by expensive data collection
(as in the introduction), it can be advantageous to start with a
sparse set of sample data. The Gaussian modeling approach
to regression is ideal for creating surrogate representations of
data fields from such a sparse dataset. That is, given a sparse
set of samples, interpolate a dense field satisfying those val-
ues and incorporating any appropriate domain knowledge, as
discussed above regarding kriging. Such surrogate functions
can then been used as the starting points for qualitative anal-
ysis [Bailey-Kellogg and Ramakrishnan, 2001].

The operators in a SAL level deal with both locality (which
object locations are close to which other ones, as encapsu-
lated in a neighborhood graph) and similarity (which object
features are close to which other ones, as encapsulated in met-
rics and predicates). For instance, in the example of Sec. 2,
two points are assigned to the same pocket if they are spa-
tially proximate and their flows converge. Here the Gaussian
process is classification (or more generally, density estima-
tion). A popular covariance structure for an n-dimensional
input field captures locality:

R(x(k), x(l)) = ζ

n
∏

i=1

e−ρi|x
(k)

i
−x

(l)

i
|η (7)

where the expression relates the function values at positions
x(k) and x(l). If η ∈ [0, 2], then the covariance function will
be positive definite, satisfying the normalization constraints
of a posteriori inference.

To see how to capture similarity, consider when two sam-
ple locations are classified into the same trajectory in Sec. 2.
In addition to being spatially proximate (as inferred by SAL’s
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Figure 4: A 2D pocket function.

neighborhood calculations), the underlying vector fields must
also be similar in direction. Expressing the covariance in
terms of position alone can cause the resulting estimated hy-
perparameters to be misleading or difficult to interpret, as
their effect is confounded with the underlying vector field.
One solution is to artificially inflate the dimensionality, so
that position and direction together describe the data. Besides
increasing the dimensionality, this approach spells trouble for
estimation using MCMC methods since significant portions
of the sample space will remain unsampled and it would be
difficult to assess their effects on the minimized functional.
An alternative solution is to use the fact that the vector field
is itself a surrogate and add a term to the covariance outside
the above structure, capturing the contribution due to similar-
ity in the vector field. We place a Gamma prior on this term
with a shape parameter that ensures that its role is secondary
to the covariance structure on position (directional similar-
ity alone is not enough for high covariance at the output; the
sample locations also must be spatially proximate). This is
recognized in the statistics community as a hierarchical prior
and described in detail in [Neal, 1997].

5 Experimental Results
In order to test our approach, we studied de Boor’s pocket
function (see Fig. 4):

α(X) = cos

(

n
∑

i=1

2i

(

1 +
xi

| xi |

)

)

− 2

δ(X) = ‖X− 0.5I‖

p(X) = α(X)(1 − δ2(X)(3 − 2δ(X))) + 1

where X is the n-dimensional point (x1, x2, · · · , xn) at which
the pocket function p is evaluated, I is the identity n-vector,
and ‖ · ‖ is the L2 norm. This function exploits the fact that
the volume of a high dimensional cube is concentrated in its
corners and p is designed so that it has a “dip” in each corner.
It embodies many aspects of datasets like those encountered
in the wireless simulation study, including multiple local ex-
trema, non-systematic variation in the location of the pockets,
and regional variation. The pocket function is also important
as a benchmark for high-dimensional data exploration, where
the goal is to identify the most interesting regions of the de-
sign space without necessarily conducting a (costly) global
optimization over the entire design space. Data mining pro-
grams are hence required to identify the most promising re-
gions using as few function evaluations as possible.
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Figure 5: Modeling a SAL program to mine pockets in gradient fields. (a) Variation in number of pockets mined by the SAL
program for various values of (r, θ). (b) Covariance contribution in x dimension for various values of (r, θ). (c) Covariance
contribution in y dimension for various values of (r, θ). In all charts, r varies by group and θ varies within group.

A SAL program to identify the number of pockets starts
with some samples of the pocket function. The lowest level of
modeling involves a kriging interpolation over a uniform grid
(we chose size 13n for testing). Then the approach of Sec. 2 is
applied to the gradient vector field of this scalar field: the sec-
ond level bundles points into curves, and the third aggregates
these into flows. Each convergent flow represents one pocket.
One could mine the covariance structures for each layer sep-
arately; we unfold these mappings here to obtain a single co-
variance structure summarizing all three layers. This is be-
cause the structure (esp. the contributions of each dimension)
is easiest to interpret in terms of the original spatial field.

We conducted a parameter sweep over (r, θ, d) as:

r ∈ {1,
√

2, 1.5,
√

3, 2}
θ ∈ {0.7, 0.8, 0.85, 0.9, 0.95}
d ∈ {0.01, 0.02, 0.03, 0.04, 0.05}

and used Neal’s Bayesian modeling software [Neal, 1997] to
construct Gaussian process classifiers for the flow classes.
Covariance contributions in the ρ terms (Eq. 7) from both
the dimensions was estimated using hybrid Monte Carlo (ag-
gressive schemes to evolve the system state by adding higher
order terms). This procedure uses a leapfrog scheme to sup-
press random walk behavior by selective iteration between
Gibbs sampling scans and latent value updates.

Our results indicated a strong positive correlation between
the x and y covariance contributions, bringing out the sym-
metry in the underlying SAL computations. The number of
pockets mined was constant across the values of d (other pa-
rameters fixed), and one of the goals of our study was to de-
termine if this negligible effect of d is captured in the covari-
ance structures. (The effect of d would actually be more pro-
nounced in other spatial fields but not so much in the pocket
function due to the inherent symmetry.) Parameters r and
θ produced the most variation in the covariance contributions
with θ = 0.95 causing an abrupt jump in the number of mined
pockets. This is due to the rather stringent limit imposed on
vector similarity arising from the nonlinearity of the cosine
metric. Fig. 5 summarizes the results for a 2D pocket func-
tion, where we have averaged the covariance contributions
across all ds, for given r and θ.

As the number of pockets increases (Fig. 5(a)), the co-
variance contributions increase (Fig. 5(b,c)) approximately

quadratically. In other words, as the underlying latent func-
tion varies rapidly along the given dimensions, we cannot
stray “too far” away from a given sample point when mak-
ing predictions at test points. The reciprocal of the covari-
ance scale term is often referred to the characteristic length
of a dimension. This gives an estimate of “how far” a given
dimension’s effect holds. When only four pockets are mined,
the characteristic length is about 1, meaning pockets occupy a
width of 1×1 (exactly one fourth of the total space). As more
pockets are mined, the characteristic length drops to about
0.4. It is also interesting to note that the abrupt jump in the
number of pockets for θ = 0.95 is reflected by a similar in-
crease in the covariance contributions for this value. Essen-
tially, vector and edge directions have to be so similar that few
long “runs” can be aggregated as streamlines. This brings out
the capability of the Gaussian process approach to capture the
essentials of a spatial aggregation algorithm.

6 Discussion

This paper has demonstrated a novel Gaussian process ap-
proach to modeling the qualitative behavior of SAL pro-
grams; in contrast to much of the literature where Gaus-
sian processes are used for pattern classification and regres-
sion [Rasmussen, 1996; Gibbs, 1997], our work takes existing
data mining algorithms and recasts them in terms of Gaussian
priors. To the best of our knowledge, this is the first study
to completely model a qualitative data mining algorithm in
terms of a process framework, summarizing the transforma-
tion from data to higher-level aggregates. This is an impor-
tant step in firmly establishing a probabilistic basis for spatial
aggregation computations. The modeling undertaken here,
while expensive, is justifiable for studies such as the wireless
system characterization described in the introduction.

There are several immediate gains from the work presented
here; due to space limitations we only mention them briefly.
First, the Gaussian process model can characterize experi-
mental design criteria such as entropy as a functional w.r.t. the
input space, allowing us to use the mined covariance struc-
ture to focus sampling at the most informative points (e.g.,
see [Bailey-Kellogg and Ramakrishnan, 2001]). It is impor-
tant to note, however, that the approach taken in [Bailey-
Kellogg and Ramakrishnan, 2001] only addresses the lowest



levels of a hierarchy and is unable to reason about higher-
level, more abstract processes of redescription and aggrega-
tion as is done here. Second, Gaussian process models al-
low us to study the effects of different SAL parameters for a
given class of datasets, e.g. the inference above of the neg-
ligible role of d in the mining process. Finally, it allows us
to take algorithms that function in differing ways (and using
different sets of parameters) and places them on a common
footing, namely the language of covariance structures. This
means that we can reason about the applicability of different
algorithms by studying the constraints they impose on spatial
locality and field similarity.

Gaussian processes have recently been linked to kernel-
based methods, as used in support vector machines [Cristian-
ini and Shawe-Taylor, 2000]; we intend to explore this con-
nection in future work. Kernel-based methods are attractive
in their promise to overcome the curse of dimensionality by
the use of nonlinear projections, a facet that is of critical im-
portance for mining data from large parameter sweeps. As the
need for data mining in computational science gains promi-
nence, process models will be crucial to achieve effective uti-
lization of data for mining purposes.
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