
Detection of Stealthy Malware Activities with Traffic
Causality and Scalable Triggering Relation Discovery

Hao Zhang, Danfeng (Daphne) Yao, and Naren Ramakrishnan
Department of Computer Science, Virginia Tech

Blacksburg, VA, USA
{haozhang, danfeng, naren}@cs.vt.edu

ABSTRACT
Studies show that a significant portion of networked com-
puters are infected with stealthy malware. Infection allows
remote attackers to control, utilize, or spy on victim ma-
chines. Conventional signature-scan or counting-based tech-
niques are limited, as they are unable to stop new zero-day
exploits. We describe a traffic analysis method that can
effectively detect malware activities on a host. Our new
approach efficiently discovers the underlying triggering re-
lations of a massive amount of network events. We use
these triggering relations to reason the occurrences of net-
work events and to pinpoint stealthy malware activities. We
define a new problem of triggering relation discovery of net-
work events. Our solution is based on domain-knowledge
guided advanced learning algorithms. Our extensive exper-
imental evaluation involving 6+ GB traffic of various types
shows promising results on the accuracy of our triggering
relation discovery.

Keywords
Network Security, Stealthy Malware, Anomaly Detection

1. INTRODUCTION
Stealthy malicious software poses serious threats to the

security of networked computers and data. A recent study
showed that a significant portion (> 25%) of computers
worldwide are infected with malware conducting clandes-
tine activities [33]. Malware may spy on the victim user
(e.g., stealing passwords such as in the newly discovered
Pony botnet [34], tracking the user’s activities, data exfil-
tration), abuse the computer for conducting bot activities
(e.g., command-and-control, launching attacks from it).

Determining whether or not networked hosts are infected
with stealthy malware is technically challenging. Virtu-
ally all malware activities require sending outbound network
traffic from the infected machine. However, because of the
low traffic volume of stealthy malware, frequency-based sta-
tistical anomaly detection is not effective. HTTP and DNS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’14, June 4–6, 2014, Kyoto, Japan.
Copyright 2014 ACM 978-1-4503-2800-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2590296.2590309.

have been widely observed as the protocols for malware and
botnet communications, as they are rarely blocked by fire-
walls.

The initial infection vector of most malware is usually
through exploiting vulnerabilities of common networked
software, e.g., heap overflow vulnerability in web browser or
its plug-ins [13]. Once the infection is successful (e.g., zero-
day exploits), network requests from advanced malware may
not exhibit distinct communication patterns. Because of this
lack of signatures, pattern-based scanning is ineffective.

Compared to independently inspecting individual network
requests, a more effective network security approach is to
discover characteristic behavioral patterns in network event
attributes, e.g., [14, 18, 24]. For example, BINDER [14] de-
tects anomalous network activities on personal computers
through analyzing the correlation in traffic events by the
temporal and process information. BotMiner [18] showed
the effectiveness of correlation analysis across multiple hosts
of a network in detecting similarly infected bots. King et al.
constructed directed graphs from logs to show network con-
nections for dissecting attack sequences [24]. However, none
of these above solutions is designed for detecting general
stealthy malware activities. Thus, they cannot be directly
applied to solve the problem.

Stealthy malware can cause data exfiltration, spy on vic-
tim machines, and botnet command and control traffic on
a host. We refer stealthy malware activities as the network
traffic sending out from a host without user’s intention.

We develop a new traffic analysis tool that detects network
activities of stealthy malware through reasoning the causal-
ity among network events. Higher-level information such as
the underlying relations or semantics of events is useful for
human experts’ cognition, reasoning, and decision making
in cyber security [17]. Thus, analyzing relations among net-
work events may provide important insights for identifying
network anomalies.

There have not been systematic studies on network-
request-level causal analysis for malware detection. Existing
dependency analysis work (e.g., [9,31,43]) is on network ser-
vice level and is not designed for malware detection. For ex-
ample, Orion [9] and NSDMiner [31] addressed the problem
of network application/service dependency for network sta-
bility and automatic manageability. Rippler [43] is proposed
to actively perturb or delay traffic to understand the depen-
dencies between service and devices. We aim to achieve
the request-level causality structure in network traffic. This
finer granularity (request vs. flow) requires different relation
semantics and more scalable analysis methods. The existing

binary classification solutions designed for JavaScript analy-
sis [29] and malware detection [11] cannot be directly applied
to our triggering relation discovery problem.

Triggering relations of events provide contextual interpre-
tations for the behaviors of systems and networks, illustrat-
ing why sequences of events occur and how they relate to
each other. Because of the transitivity, the problem of dis-
covering triggering relations among a set of events may be
transformed into discovering the triggering relations of pairs
of events, which is defined as the pairwise triggering relation.

In this work, we introduce the problem of triggering rela-
tion discovery in network traffic and describe its application
in solving challenging network security problems, such as
stealthy malware detection. We present a scalable learning-
based technique to compute the triggering relations among
network events. We use the discovered triggering relations
to reason about the legitimacy of observed network ac-
tivities. Our analysis method successfully detects several
types of anomalies including spyware activities, and botnet
command-and-control traffic, as well as compromised web
servers and web server misconfiguration. The accuracy and
scalability of our triggering relation discovery method are
evaluated with 6+ GB real-world network traffic, includ-
ing HTTP, DNS, and TCP traffic. Experimental results
show that our method efficiently predicts pairwise trigger-
ing relations with high accuracy in all metrics. With our
tool, we discover and report the detected malicious HTTP
and DNS activities due to various tracking malware and
malware-hosting servers.

Our analysis using machine learning is scalable, capable
of rapidly processing a large amount of traffic. We extract
around 10 pairwise features from each type of network re-
quests, based on timestamp, process ID, destination IP, do-
main name, etc.1 Using machine learning algorithms elimi-
nates the need for manually deriving classification rules and
thus simplifies the detection. In addition, it achieves very
high classification accuracy.

Our work demonstrates that triggering relations among
cyberspace events at all levels can provide structural evi-
dences for system and network assurance. The causality pro-
vides the logical interpretation to the vast amount of other-
wise structureless and contextless network events. Compar-
ing to link prediction problem in social networks [5, 16, 28],
our work on triggering relation discovery has two major dif-
ferences: i) Conceptually, link prediction problems focus on
finding the similarity among nodes, while our work is on dis-
covering triggering relations among network-related events.
These two problems have different setups and requirements.
ii) Our method includes the TRG construction operation
and root-trigger security analysis, which are unique and be-
yond the link prediction type of inference problem.

2. MODEL AND OVERVIEW
In this section, we define the problem of triggering relation

discovery and present the security applications.

2.1 TRG Definitions and Properties
Triggering relationship between event ei and event ej de-

scribes the temporal relation and causal relation between
them, specifically ei precedes ej and ei is one of the reasons
that directly or indirectly causes ej to occur. The specific

1Examples of features are shown in Table 9 in the Appendix.

semantics of triggering relation depend on the type of events
and environment. An event may be defined at any relevant
type or granularity, including user actions (e.g., keyboard
stroke, mouse click), machine behaviors (e.g., network re-
quest, function call, system call, file system access), and
higher-level operations and missions (e.g., database access,
obtaining Kerberos authorization, distributing video to se-
lect users).

Triggering relations of events may be represented in a di-
rected graph – referred to by us as triggering relation graph
(TRG), where each event is a node and a directed edge
(ei → ej) from ei and to ej represents the triggering re-
lation. We also refer the triggering relation (ei → ej) as
the parent-child relation, where ei is the parent trigger or
parent and ej is the child. One can construct the TRG by
incrementally inserting new events to the current graph.

Host A Host BUser events

Network events

(a) (b)

B1

A2

A3

A4

B2

A5

B3

D1

D2

H1 D3 H5

H6 H9

H10H7D4

H8 H11

H2

H3

H4

U1 U2 U3 U4 U5

A6

A1

Figure 1: Schematic drawings of triggering relation
graphs for outbound traffic from a host (a) and traf-
fic between two hosts (b). In (a), the user events
(e.g., U3) such as entering a URL into the browser
address bar are root triggers, which are followed by
DNS queries (e.g., D3) for translating the requested
domain names. Then, one or multiple HTTP re-
quests (e.g., H5) are sent to the servers, and addi-
tional HTTP requests (e.g., H6) may be triggered to
fetch embedded objects. In (b), triggering relations
in a TCP type of sessions are shown.

We illustrate two TRG examples in Figure 1. For specific
types of network traffic, such a TRG may manifest unique
topology and properties. For example, for outbound HTTP
and DNS traffic from a host, the TRG forms a forest of trees,
rooted by user inputs. The user input events are root trig-
gers. Because of the temporal property of events, triggering
relation graphs are free of cycles. This acyclic property dif-
fers the TRGs from social network graphs in link prediction
problems. In a valid TRG, a node has at most one parent,
thus, at most one root trigger. As confirmed by our experi-
ments, a network triggering relation graph is usually sparse,
i.e., the number of neighbors of a node compared to the total
numbers of nodes is small. This sparsity is similar to what
is observed in social network graphs [21].

The problem of triggering relation discovery is that given
a set of events, to construct the complete triggering relation
graph corresponding to the events. On the graph mode, the
discovery problem is given a set of event nodes, to determine
the existence of edges between pairs of the nodes and the
directions of the edges. The pairwise triggering relation dis-
covery is a simpler problem, which is to determine whether
a triggering relation exists in two events. Given the pairwise
triggering relations, we construct the complete the trigger-

ing relation graph(s). We illustrate the TRG construction
operation in Figure 2. A TRG provides a structural repre-
sentation of triggering relations of observed events.

a

b

d

TRG
construction c

e f g h i

j k

a
c

b

f

a b c

b

b

d

e

c

g

h

f j
c

i
k

f

Figure 2: The triggering relation graph (TRG) on
the right can be constructed from the pairwise trig-
gering relations on the left.

Our definition of event-level causal relation relates to, but
differs from the service dependency definition in existing ser-
vice dependency research, such as network service depen-
dency [31] and active delay injection [43]. Service depen-
dency refers to that one service relies on another to func-
tion, e.g., web service depends on DNS name resolution.
Our event-level causal relation refers to that one event trig-
gers or causes the other event, e.g., the transmission of one
network packet triggers the transmission of the other packet.

The TRG is defined differently from the parental depen-
dency graph (PDG) in WebProphet [27] in terms of graph se-
mantics and security applications. The PDG in WebProphet
predicts the performance impact of webpage objects. There-
fore it contains the timing information only, without captur-
ing the causality among requests or objects. We rely on the
semantic information (such as domain name, request string,
etc.) of each request to build TRG, thus enabling the TRG
to detect anomalous network events.

2.2 Security Applications of TRG
In our security model, network requests on TRG without

valid root triggers are referred to as vagabond requests. They
are anomalous events without legitimate causal relations,
and likely due to stealthy malware activities.

The definition of root triggers may vary. For user-
intention based triggering model, root triggers are user-input
actions. The analysis pinpoints network activities that are
not intended by users. Blocking these outbound malware
network activities effectively isolates the malware, including
• websites collecting and reporting sensitive user data,

affecting user privacy,
• spyware exfiltrating sensitive information through out-

bound network traffic from the monitored host,
• bots’ command-and-control traffic, and attack activ-

ities (e.g., spam or DoS traffic) originated from the
monitored host.

We describe a scenario for using our tool to detect stealthy
outbound malware activities on a host. DNS tunneling has
been abused by botnets for command and control communi-
cations [40]. These abnormal outbound DNS queries are au-
tomatically generated by malware on the host, typically with
botnet-related payload. These surreptitious DNS activities
are difficult to detect, because of their format resemblance
to regular DNS queries. Our analysis tool reasons about the
legitimacy of observed DNS traffic on a possibly infected
host. Legitimate DNS queries are usually issued by an ap-
plication (e.g., browser) upon receiving certain user inputs
(e.g., entering a URL into the address bar). The application

then issues additional DNS or other requests (e.g., HTTP,
FTP). Botnet DNS queries lack of any matching user trig-
gers. Our tool detects these vagabond events and reports
them.

Data integrity We consider application-level malicious
events, so the kernel-level system data (e.g., keyboard and
mouse events) are assumed to be trustworthy. To prevent
the forgery of user events, advanced keystroke and system
integrity solutions such as [3,19,36,41] can be incorporated
in our work to further improve system-data assurance.

3. TRIGGERING RELATION DISCOVERY
The methods described in this section infer the triggering

relation among network requests and construct triggering re-
lation graphs. The automatic analysis pinpoints the occur-
rences of anomalous network requests from the voluminous
traffic data, through reasoning triggering relations.

Given two network requests P and Q with P occurring
before Q, one needs to decide whether P triggers Q, i.e.,
P → Q. A straightforward approach for triggering relation
discovery is the rule-based classification. One can define
one or more rules summarizing the attribute properties of
two parent-child requests, e.g., as shown in Example 3.1
below. Attribute names used in the example are described
in Table 1.

Example 3.1. If P .time ≤ Q.time ∧ P.PID = Q.PID ∧
P .host = Q.referrer, then P is the parent trigger of Q, i. e.,
P → Q.

However, the rule-based approach has several drawbacks
that hinder its scalability and accuracy. It requires man-
ual rule specification, which is time consuming. The rigid
rule structures are not flexible enough to recognize complex
traffic scenarios, resulting in low classification accuracy and
false alarms.

Our approach utilizes probabilistic machine learning algo-
rithms and achieves high scalability and detection accuracy.
We introduce a scalable feature extraction method referred
to as Pairing. This operation converts individual network
events into event pairs with comparable pairwise attributes.
We show how binary classification algorithms can be used
for triggering relation discovery.

3.1 Overview of Our Approach
The main operations in our analysis are Data Collec-

tion, Pairing, Data Labeling, Training, Classifica-
tion, TRG Construction, and Report. The Data La-
beling, Training and Classification operations are stan-
dard for machine learning based methods. The new opera-
tions are Pairing and TRG Construction.
• Data Collection is to record and store the events to

be analyzed. Each event e has one or more attributes
(A1, . . . , Am) describing its properties.
• Pairing is a new operation that we design for ex-

tracting pairwise comparison results (i.e., features) of
events’ attributes. Its inputs are two events e =
(A1, . . . , Am) and e′ = (A′1, . . . , A

′
m). The output is

the event pair (e, e′) with m pairwise attribute values
(B1, . . . , Bm), where a pairwise attribute Bi(i ∈ [1,m])
represents the comparison result of attributes Ai and
A′i. That is, Bi = fi(Ai, A

′
i), where fi() is a compar-

ison function for the type of the i-th attribute in the

ID Time PID DestAddr Request (Q) Host Referrer (R) Q Type R Type ParentID

...
4 22.723 2724 64.30.224.103:80 / www.cnet.com N/A website NULL 0
5 22.733 2724 198.82.164.40:80 .../combined.js i.i.com.com www.cnet.com/ javascript website 4
6 22.973 2724 198.82.164.40:80 .../matrix.css i.i.com.com www.cnet.com/ css website 4
...
14 25.307 2724 198.82.164.40:80 .../bgBody.gif i.i.com.com .../matrix.css multimedia css 6
...

Table 1: Original network events observed. Time, Q Type, R Type, and ParentID stands for timestamp, request
type, referrer type, and the ID of its parent event. The source IP of network events in this example is the
same, while the source ports may differ (not shown).

(ID1,ID2) TimeDiff PIDDiff AddrDiff RequestSim HostSim ReferrerSim Q1 R2 Relation

(4,5) 0.00 1 1111000001 1 0.5 0 website website 1
(4,6) 0.25 1 1111000001 1 0.5 0 website website 1
(4,14) 2.584 1 1111000001 0.1667 0.5 0 website css 0
(5,6) 0.24 1 1111111111 0.1356 1 1 javascript website 0
(5,14) 2.574 1 1111111111 0.5593 1 0.5 javascript css 0
(6,14) 2.334 1 1111111111 1 1 0.5 css css 1

Table 2: Examples of pairwise attributes as outputs of the Pairing operation. Q1 and R2 stand for the first
event’s request type and the second event’s referrer type, respectively.

events. The comparison function fi() (e.g., isEqual,
isGreaterThan, isWithinThreshold, isSubstring, etc.) is
chosen based on the type of attribute. The feature con-
struction can be extended to comparing different traffic
types. Pairing is performed on every two events that
may have the parent-child triggering relation. More-
over, we demonstrate an efficient pairing algorithm to
reduce the cost of pairing without compromising the
analysis accuracy in Section 3.3. The pairwise fea-
tures are used as inputs to the subsequent learning
algorithms.
• Data Labeling is the operation that produces the

correct triggering relations for the event pairs in a
(small) training dataset. A binary label (1 or 0) indi-
cates the existence or non-existence of any triggering
relation in an event pair, e.g., < (e, e′), 1 > represents
that event e triggers e′. Data labeling is based on
pairwise attributes (e.g., B1, . . . , Bm) and may require
manual efforts.
• Training is the operation that produces a machine

learning model with labeled training data.
• Classification is the operation to use the trained

machine learning model to predict triggering relations
on new event pairs P = {(ei, ej)}. E.g., the out-
puts of binary prediction results are in the form of
{< (ei, ej), lij >}, where the binary classification re-
sult lij ∈ {0, 1} represents whether event ei triggers ej
in P.
• TRG Construction is the operation to construct the

complete triggering relation graph based on pairwise
classification results. If event ei triggers ej in the event
pairs P, then ei is the parent of ej in the TRG.
• Report is the operation to apply security definitions

to the triggering relation graph and report anomalous
events. A user-intention based security definition for
TRG analysis is presented in Section 3.5.

We describe details of our new Pairing operation in the
next two sections. This feature extraction operation is
unique in that the features enable the use of binary clas-
sification for pairwise directional relation discovery.

3.2 Pairing Operation
The Pairing operation extracts features of event pairs.

Pairwise attributes (B1, . . . , Bm) are computed by compar-
ing the attribute values (A1, . . . , Am) and (A′1, . . . , A

′
m) of

two individual events e and e′. A comparison function
fi(Ai, A

′
i) for i ∈ [1,m] is selected based on the type of

attributes Ai and A′i. An event attribute is of the numeric,
nominal, string/text, or composite type. After the pairwise
feature extraction, binary classification algorithms is used
for classification. The classification requires labeled pairs
for training, where triggering relations among events (i.e.,
labels) are known. For test data, triggering relations are
unknown and need to be predicted.

Without loss of generality, we illustrate a basic pairing
procedure with outbound HTTP network events as an exam-
ple. The approach can be generalized to other event types.
In Table 1 we show examples of some HTTP events. The
triggering relations, if known, are shown in the last column
(under ParentID). The features in Table 1 are derived from
the header of HTTP requests. As the header contains op-
erating parameters of an application layer transaction, the
casual/semantic relation can be measured by the features
of the requests. These features are previously used to un-
derstand the behavioral model of web traffic [10], while our
work further leverages them to build the trigger relations
of network traffic for security purpose. The pairwise at-
tributes are formed by aligning the same event features and
comparing the relevant ones (e.g., the request type and the
referrer type). Six event pairs are generated and their new
pairwise attributes are shown in Table 2. For example, the
HostSim, ReferrerSim and RequestSim give the similarity of
two events in Host, Referrer and Request attributes, respec-
tively, according to certain similarity measures. Each pair
has a binary representation of the existence of a triggering
relation (under Relation in Table 2). The pairing details are
illustrated as follows.
• Numeric attributes (e.g., timestamps) are compared by

computing their difference, e.g., the interval TimeDiff
between the timestamps of two network events. That
is, Bi = Ai −A′i.

• A nominal attribute (e.g., file type, protocol type) cat-
egorizes the property of an event. Comparing nominal
attributes usually involves string comparison, e.g., sub-
string or equality tests.
• For the string type of attributes, we compute the sim-

ilarity of the attribute values as the pairing attribute
value. That is, Bi = fs(Ai, A

′
i), where function fs

is a similarity measure, e.g., normalized edit distance.
Take HTTP request as an example, we compute pair
attributes HostSim and ReferrerSim by measuring the
string similarities between two host fields and two re-
ferrer fields, respectively.
• A composite attribute is converted to primitive types,

e.g., a destination address containing four octets for
the IP address and an integer for the port. The com-
parison of two composite attribute values is made by
comparing the sub-attribute values separately.

Given a list of n network events, the total number of event-
pair candidates is bounded by O(n2). To reduce the compu-
tational cost, one may pair up the events that occur within
a certain time frame τ , assuming that events occurring far
apart are unlikely to have triggering relations. We design a
more sophisticated pairing heuristic in the next section.

3.3 Efficient Pairing Algorithm
Our pairing algorithm pre-screens attributes to quickly

eliminate unqualified pair candidates. The pseudocode of
our algorithm is shown below. It takes a list of chronologi-
cally sorted network requests as the input and outputs a set
of pairs of events.

Algorithm 1 Efficient Pairing Algorithm (EPA)

Input: a list of chronological sorted events, L = {ei}
Output: a set of event pairs, P = {(ei, ej)}, 1 ≤ i < j
1: define a set P to store the compared pairs {(ei, ej)}
2: define a dictionary D = (d, {e}), where d is the domain

of event and {e} is a set of events whose domain is d.
3: for each event ej ∈ L do
4: d← the domain of ej ’s Host
5: if ej ’s Referrer is not NULL then
6: dom← the domain of ej ’s Referrer
7: else
8: dom← d
9: end if

10: if dom in D’s keyset then
11: for each event ei in D[dom] do
12: if pass the Screening(ei, ej) then
13: P← P ∪ Pairing(ei, ej)
14: end if
15: end for
16: calculate the expire time and update D[d]
17: add ej in D[d]
18: else
19: add new entry (d, {ej}) in D
20: end if
21: end for
22: return P

Algorithm 1 uses a dictionary D = {(key, value)} to store
the current network events. These events may be the parent
triggers of future events. The key of the dictionary is the
domain attribute of an event. The value is a set of requests,
whose domain attribute is same as the key. Events with

unmatched key values are filtered out (in Screening function
of Algorithm 1), and not stored or paired, reducing both
storage and computation overheads. As a result, a much
longer time can be used to retire a domain, providing a more
comprehensive coverage on pairs.

3.4 Feature Selection and Classification
Feature selection is to find an optimal set of representative

features can greatly improve the effectiveness of machine
learning classifiers. In our experiments, we use two different
feature selection algorithms, namely Information Gain and
Gain Ratio. Once a set of features is chosen, we train and
classify the data using three common supervised machine-
learning classifiers – Naive Bayes, a Bayesian network [20],
and a support vector machine (SVM) [12].

Cost Sensitive Classifiers Because of the sparsity of trig-
gering relations, we define customized cost matrices [15] to
penalize missed relations during the training. The cost ma-
trix can be defined to weigh the false positive (FP) and false
negative (FN) differently. A false negative refers to the fail-
ure to discover a triggering relation. A false positive means
finding triggering relation in a non-related pair.

Shown in Table 3, our cost matrix for classifying trigger-
ing relations is labeled by two categories: with triggering
relation and without triggering relation. The values in the
matrix are the weights for penalizing classification mistakes.
We set positive values in the cells for FN and FP. The cost
sensitive classification takes a cost matrix as an input. The
trained model aims at minimizing the total penalty in imbal-
ance data sets. For simplicity, we show the values and omit
the labels of the cost matrix. For example,

[
0, 1
1, 0

]
is a cost

matrix that has no bias on FPs and FNs;
[

0, 1
10, 0

]
penalizes the

FNs 10 times more than FPs for a classifier. In Section 4, we
thoroughly evaluate how cost matrices improve our analysis
accuracy.

Classified As
W/O TR With TR

G
r
o
u
n
d

T
r
u
t
h W/O TR TN: No penalty.

FP: penalty for finding
triggering relations in
non-related pairs.

With TR
FN: penalty for fail-
ure to discover trig-
gering relations.

TP: No penalty.

Table 3: Semantics of values in a cost matrix. TR
stands for triggering relation.

3.5 TRG Construction and Root-Trigger Se-
curity

A list of pairwise triggering relations in network events
can be used to construct the complete triggering relation
graph (TRG). The resulting TRG then serves as a source
for locating anomalous network activities. The security
model, which defines legitimate and abnormal events, comes
in many forms when used for analyzing TRGs.

Under the root-trigger security model, one determines the
legitimacy of a network event e based on the legitimacy of
e’s root trigger, i.e., whether or not e has a legitimate root
trigger. According to this definition, anomalous events are
the events that do not have a valid root trigger. These events
may be due to malware activities or host/server misconfig-
uration.

A specific root-trigger security definition is based on user
intention [44], where a valid root trigger should be related
to a user activity (e.g., a function call to retrieve user in-
puts, mouse clicks, or keyboard inputs). Other definitions
for valid root triggers may be made according to the specific
applications. We refer to the events that do not have any
valid root triggers as the vagabond events.

In order to enforce the root-trigger security, the TRG
construction operation is used to calculate the discovered
root triggers of all the events. To find the root of each event
by traversal in TRG is equivalent to the transitive reduction
of a directed graph. We design the root finding procedure
(Algorithm 2) to return the root of an event, given all the
pairwise triggering relations.

Algorithm 2 Root Finding Algorithm (RFA)

Input: an event ek and P∗ = {(ei → ej)}.
Output: a set R, where each in R is a root of ek.
1: define a set R to store the results
2: define a queue Q and enqueue ek onto Q
3: while Q 6= ∅ do
4: event n← dequeue Q
5: set T← find n’s parent(s) based on P∗
6: for each event e ∈ T do
7: if e is of type root then
8: R← R ∪ {e}
9: else if e /∈ Q then

10: enqueue e onto Q
11: end if
12: end for
13: end while
14: return R

The inputs of Algorithm 2 are an event ek and a set P∗
containing all the pairwise triggering relations {(ei → ej)}.
The output is a set containing all the roots of ek. In order to
compute the transitive reduction of a directed graph, we use
a queue Q to perform breadth-first traversal of TRG. In each
iteration, we obtain the parent(s) T of a dequeued event n.
For each event e in the set T, the algorithm checks if it is a
root-type event. If yes, then e is added to the return set R.
Otherwise (i.e., e is an intermediate node on the path from
ek’s root to ek), the algorithm enqueues e onto Q for further
iteration. This analysis returns root triggers for the network
requests. Network requests without valid root triggers are
labeled as vagabond events. They are flagged and alerted to
the administrator for further inspection.

We demonstrate the use of our method for detecting three
types of common malware in Section 4, including
• spyware as a browser extension,
• data-exfiltrating malware as a stand-alone process,
• a DNS-based botnet command and control channel.

4. EVALUATION AND RESULTS
Our prototype implements all parts of the TRG discov-

ery system. The questions we seek to answer through our
experiments are: i) How accurate is the prediction for pair-
wise triggering relations? ii) How accurate is the prediction
for root triggers of events? iii) Can the method detect out-
bound network activities caused by stealthy malware? iv)
Can the method detect network connections to suspicious
servers? v) Can the methods analyze different traffic types?

4.1 Experimental Overview
We have conducted extensive tests on our proposed traffic-

causality-analysis solution and obtained positive results. In
this section, we describe the setup of our experimental eval-
uation. Then, our evaluation results are presented in the
next few sections.

4.1.1 Accuracy and Security Metrics
• The pairwise accuracy rate of classification is the per-

centage of pairwise triggering relations that are pre-
dicted correctly. The pairwise accuracy is with re-
spect to the ground truth obtained through rule-based
analysis and manual classification. An rule example is
shown in Example 3.1.
• The conventional precision and recall measures [6]

evaluate the classification accuracy of the positives
(i.e., the existence of triggering relations). In the equa-
tions below, TP , FP , and FN stand for true positives,
false positives, and false negatives, respectively.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
. (1)

• The root-trigger correctness rate is computed based on
the root of a node. It is the percentage of events whose
roots in the constructed the triggering relation graph
are correct with respect to the ground truth.

4.1.2 Datasets
Our evaluation is mainly focused on HTTP and DNS traf-

fic, because they are very commonly used communication
protocol both by legitimate users and attackers. Many bot-
nets use HTTP or DNS as their communication protocol,
because most firewalls allow them [40]. We collect and ana-
lyze outbound HTTP and DNS requests from hosts, aiming
to detect suspicious activities by stealthy malware installed
on the hosts. In addition, we also evaluate our algorithms
with a much larger TCP dataset collected from a sever.

A summary of the experimental data is shown in Table 4.
We define η ∈ [0, 1] as the reduction percentage in Equa-
tion 2), where EPA(n) is the number of event pairs after
using the efficient pairing algorithm (in Section 3.3), and n
is the total number of events.

η = 1− EPA(n)

n× (n− 1)/2
(2)

• Dataset I, HTTP. We collected the user events and
outbound HTTP traffic in a user study with 20 par-
ticipants. Each participant was asked actively surf the
web for 30 minutes on a computer equipped with our
data collection program.
• Dataset II, DNS and HTTP. We used tcpdump to con-

tinuously collect the outbound DNS queries and HTTP
requests on an active user’s workstation for 19 days.
We collected types A/AAAA DNS queries and the out-
bound HTTP requests that contain GET, HEAD, or POST

information in their headers.
• Dataset III, server TCP traffic. We collected TCP

packets on an active Linux server in a research lab.
The inbound and outbound TCP packet headers were
collected for 42 days using tcpdump.

4.1.3 Data Labels
Training data is labeled manually, with the use of sim-

ple rules such as in Example 3.1. The labeling process is

Data Type # of Events η # of Pairs # of Feature Size (MB)

I Host-based HTTP HTTP: 45,988; User: 899 94.7% 3,436,635 10 229.5
II Host-based DNS and HTTP DNS: 35,882; HTTP: 85,223 98.8% 953,916 9 55.1
III TCP Traffic of a Server TCP: 3,010,821 99.6% 119,372,631 9 6697.1

Table 4: An overview of datasets in the experiments. Number of events is the number of raw requests that
have been collected. η is the reduction percentage after using our Efficient Pairing Algorithm. For Dataset
I, the number of user events are also given in column 3.

Data
of Pairs Cost Naive Bayes Bayesian Network SVM

in Test Sets Matrix Pairwise A. Prec. Recall Pairwise A. Prec. Recall Pairwise A. Prec. Recall

I 3,318,328
[

0, 1
10, 0

]
99.75% 0.954 0.996 99.75% 0.956 0.996 99.70% 0.958 0.997

II 693,903
[
0, 1
1, 0

]
99.82% 0.959 0.998 100.00% 1.000 1.000 100.00% 1.000 1.000

III 1,191,926,877
[
0, 1
3, 0

]
98.92% 0.995 0.986 99.72% 0.997 0.998 99.82% 0.998 0.999

Mean – – 99.50% 0.969 0.993 99.82% 0.984 0.998 99.84% 0.985 0.999

Table 5: Pairwise classification results of train-n-test for three datasets. The numbers are rounded before
reporting. Pairwise A. and Prec. stands for pairwise classification accuracy and precision, respectively.

time consuming, and requires nontrivial human efforts. The
labeling of DNS traffic requires the integral analysis of user-
HTTP dependency and DNS-HTTP dependency, details of
which are omitted. User events are labeled as root triggers,
which are generated by leveraging Tlogger [2]. As a browser
extension, Tlogger captures user inputs and tab events dur-
ing the web browsing. By combining the data recorded on
the kernel level, we generate the root-triggers used in TRG
Construction for Dataset I and II.

4.1.4 Classification Setup
Three common classification techniques are compared:

naive Bayes classifier, a Bayesian network, and a support
vector machine (SVM).2 Due to the sparsity of triggering
relations in network traffic, we define a cost matrix that pe-
nalizes classifying false negatives more than classifying the
false positives. Classification and TRG construction
operations are implemented in Java using the Weka library.
We perform both 10-fold cross validation and train-n-test
types of evaluation. The two evaluation methodologies yield
similar classification results. We report the train-n-test re-
sults, unless otherwise specified.

4.2 Causality Analysis of Dataset I
Based on our two feature selection algorithms, 10 features

out of a total of 12 are chosen for HTTP data. Selected
features include three similarity indexes (RequestSim, Refer-
rerSim, HostSim), two nominal values to identify the file type
(RequestType, ReferrerType), the nominal values to com-
pare between particular attributes (PIDDiff, AddrDiff, Type-
Match, IndexOfSameRequest), and time difference (TimeD-
iff).

4.2.1 Accuracy of Pairwise Triggering Relations
The results in Table 5 show very good prediction accuracy

for pairwise triggering relations. All classifiers give high pre-
cision and recall values, as well as the pairwise classification
accuracy. These results indicate the effectiveness of our bi-
nary classification approach.

We vary the cost matrix used during the training and com-
pute the pairwise accuracy results of the three classifiers for
Dataset I. The results are shown in Figure 3 (a). The pair-

2SVM has a polynomial kernel function with a degree of 2.

wise accuracy is consistently high for naive Bayes classifier
with all cost matrices. Bayesian Network and SVM respond
differently to the changes of penalty values in cost matrices.
In Table 5, we report the accuracy results under the cost
matrix of

[
0, 1
10, 0

]
. This matrix gives 10 units of penalty to a

false negative and 1 unit of penalty to a false positive for
the pairwise classification.

4.2.2 Correctness of Root Triggers
The purpose of this analysis is to identify reasons for

wrong predictions of triggering relations. Running the root
finding algorithm (in Section 3.5) on the pairwise trigger-
ing relations, we identify the root triggers of all events and
compare them to the ground truth values.

Figure 3 (b) shows the relationship between the cost ma-
trix values and the accuracy of root-trigger analysis. The
naive Bayes and Bayesian network yield nearly 100% accu-
racy of finding the root-triggers, both of which are not very
sensitive to the cost matrices. In contrast, the accuracy
of SVM increases significantly with increased false negative
penalty in the cost matrix. In Table 6, we summarize the
results of root trigger correctness for Dataset I. Our pre-
diction of events’ root triggers is accurate. It has a very
small error rate, as low as 0.06%. These errors in finding
root triggers generate false alerts. Wrong root triggers are
mostly because of missing attributes in the original data or
late-arriving requests. We further analyze false alerts later.

Naive Bayes Bayesian Network SVM

Cost Matrix
[

0, 1
10, 0

] [
0, 1
10, 0

] [
0, 1

100, 0

]
Correct (case a-c) 99.94% 99.94% 99.37%
Wrong (case d-f) 0.00% 0.00% 0.28%
Wrong (case g) 0.06% 0.06% 0.35%

Table 6: Correctness of root triggers in Dataset
I. Cases (a-g) refer to the various predicted root-
trigger outcomes in Figure 4 in the Appendix.

4.3 Abnormal Traffic in Datasets I

4.3.1 Malicious Browser Extension
We wrote a proof-of-concept malicious Firefox extension,

which is a piece of password-stealing spyware. The mal-

(d)

 80
 82
 84
 86
 88
 90
 92
 94
 96
 98

 100

 92

 93

 94

 95

 96

 97

 98

 99

 100

0 1
1 0

0 1
3 0

0 1
5 0

0 1
10 0

0 1
20 0

0 1
30 0

0 1
50 0

0 1
100 0

99.60
99.62
99.64
99.66
99.68
99.70
99.72
99.74
99.76
99.78
99.80

P
ai

rw
is

e
A

cc
u

ra
cy

 (
%

)

Naïve Bayes Bayesian Network SVM

0 1
1 0

0 1
3 0

0 1
5 0

0 1
10 0

0 1
20 0

0 1
30 0

0 1
50 0

0 1
100 0

(a)

(b)

(c)

Cost matrix

Cost matrixCost matrix

Cost matrix

0 1
1 0

0 1
2 0

0 1
3 0

0 1
5 0

0 5
1 0

0 3
1 0

0 2
1 0

97.00

97.50

98.00

98.50

99.00

99.50

100.00

P
ai

rw
is

e
A

cc
u

ra
cy

 (
%

)

Naïve Bayes Bayesian Network SVM

0 1
1 0

0 1
2 0

0 1
3 0

0 1
5 0

0 5
1 0

0 3
1 0

0 2
1 0

R
o

o
t-

tr
ig

ge
r

C
o

rr
ec

tn
es

s
(%

)

R
o

o
t-

tr
ig

ge
r

C
o

rr
ec

tn
es

s
(%

)

Figure 3: Accuracy and correctness results under various cost matrix conditions for Dataset I (pairwise clas-
sification accuracy in (a) and root-trigger correctness in (b)) and Dataset II (pairwise classification accuracy
in (c) and root-trigger correctness in (d)).

ware sends the username and password when a user clicks
on the Submit button in the browser. This spyware is simi-
lar to the existing spyware such as FormSpy and FFsniff. A
victim user clicks the Submit to log on to various email ser-
vices and Internet forums. The spyware requests, which
contain the username and password in the HTTP request

(/query?id=user_id&ps=password), are sent to its destination
host. With our causality analysis tool, all malicious HTTP
requests are detected by all three classifiers, without trig-
gering any FPs and FNs.

4.3.2 Data Exfiltrating Malware
We write another proof-of-concept data-exfiltrating mal-

ware. This malware runs as a stand-alone process, simi-
lar to Pony bot. It sends out the HTTP GET/POST requests

with system information to remote servers. The malware
is programmed to transmit its payload right after the oc-
currence of a user event on the host, attempting to hide
its communication among legitimate outbound traffic. The
malicious communication may be a single request or a se-
ries of HTTP requests. Our method successfully detects the
network activities of the malware in that the outbound ma-
licious requests do not have valid triggering relations, i.e.,
the requests lack of any user event as the root-trigger.

4.3.3 Detection of Malicious Traffic in Dataset I
As defined in Section 3.5, vagabond events are those that

do not have any valid user events as their root triggers.
There are total 1.2% vagabond HTTP requests in Dataset
I. Some of them are malicious traffic to known blacklisted
websites. Our analysis finds in Dataset I that among these
vagabond events, there are 169 suspicious requests sent to
36 distinct domains. Manual inspection reveals that these
requests are to tracking sites, malware-hosting or blacklisted
sites, and aggressive adware. They are partly due to users
visiting compromised web sites. For example, some requests

track the user’s cookies and send back to remote hosts with
known blacklisted sites (e.g., 2o7.net, imrworldwide.com, me-
diaplex.com). We analyze the geographic locations of the
malicious servers based on their IP addresses. All of them lo-
cate in the US, except one IP located in Netherlands. Some
of the vagabond requests are false alerts (described in Sec-
tion 4.3.4).

4.3.4 False Alerts
In our model, false alerts refer to the network requests

that are vagabond requests (i.e., requests without proper
triggers), but are legitimate (benign). False alerts in Dataset
I are due to four main reasons:
• Automatic and periodic system and application up-

dates that occur without user triggers. In Dataset I
there are 157 update requests that are sent to 13 well-
known legitimate domains. Whitelisting can be used
to eliminate these alerts.
• Missing or incomplete attributes in the original data

due to server configuration, e.g., redirection without
properly setting the referrer field. There are 244 mis-
configured requests that are sent to 38 different do-
mains, usually image/video hosting websites.
• Unconventional attribute values, e.g., requests to

googlesyndication.com (for Google Map) usually have
long referrers that our prototype does not expect.
• Requests sent out much later than their parent request

trigger, e.g., requests for favorites or bookmark icons.
Reducing false alerts can be achieved through more so-

phisticated inference methods under incomplete informa-
tion, which will be investigated in our future work.

4.4 Causality Analysis of Datasets II
For dataset II, the goal of the experiment is to find the

triggering relation in traffic with mixed types, such as DNS

and HTTP requests. Features used for classification are
given in Table 9 in the Appendix.

4.4.1 Pairwise Classification Accuracy
The pairwise classification results on dataset II are pre-

sented in Table 5. All three methods give high pairwise clas-
sification accuracy, confirming our method’s ability of dis-
covering triggering relations in mixed traffic types. Bayesian
network and SVM yield better results than naive Bayes
classifier, indicating that there are dependencies among at-
tributes.

The pairwise classification accuracy under various cost
matrices is shown in Figure 3 (c). Bayesian network and
SVM consistently give high classification accuracy. In con-
trast, the performance of naive Bayes classifier decreases, as
the cost matrix penalizes FNs more than FPs. We highlight
the pairwise classification accuracy results under the cost
matrix

[
0, 1
1, 0

]
in Table 5.

4.4.2 Correctness of Root Triggers
We analyze the root-trigger accuracy for Dataset II, and

show the results in Figure 3 (d). The root-trigger accuracy is
high when using all three classifiers, with Bayesian network
and SVM outperform the naive Bayes. We highlight the
root-trigger accuracy results under the cost matrix of

[
0, 1
1, 0

]
in Table 7.

Naive Bayes Bayesian Network SVM

Cost Matrix
[
0, 1
1, 0

] [
0, 1
1, 0

] [
0, 1
1, 0

]
Correct (case a-c) 98.44% 100.00% 100.00%
Wrong (case d-f) 1.37% 0.00% 0.00%
Wrong (case g) 0.19% 0.00% 0.00%

Table 7: Root-trigger results on Dataset II. Cases
(a-g) refer to the various predicted root-trigger out-
comes in Figure 4 in the Appendix.

4.5 DNS Bot Detection
Botnet command and control channel using DNS tun-

neling [1] is extremely stealthy and difficult to de-
tect [40]. We write a proof-of-concept bot that commu-
nicates with its bot master by tunneling command and
control messages in DNS traffic. The bot generates care-
fully crafted outbound DNS queries whose payload contains
encoded data e.g., NBSWY3DPFQQHO33SNRSA000.domain.com,

d1js21szq85hyn.cloudfront.net. These bot queries are mixed
with a 2-hour DNS-HTTP traffic dataset, which is then an-
alyzed by our causality tool. Our evaluation confirms that
our method successfully recognizes all the bot DNS queries
as anomalies. These DNS queries do not have the valid user-
event root triggers.

4.6 Causality Analysis of Datasets III
For Dataset III, the goal of the experiment is to find

the triggering relation between inbound and outbound TCP
packets by using our machine learning method. The accu-
racy results of pairwise triggering relation are in Table 5. All
three classifications yield high values for the pairwise classi-
fication accuracy, with Bayesian network and SVM outper-
forming naive Bayes classifier. The features used for classi-
fication are shown in Table 10 in the Appendix.

4.7 Precision and Recall
Our methods result in high precision and recall for all

data sets. In addition, the methods produce high pairwise
classification accuracy and root-trigger correctness. Of par-
ticular significance are Bayesian Network and SVM, which
yield the precision and recall of 1.0, a 100% pairwise clas-
sification accuracy, and a 100% root-trigger correctness for
Dataset II.

Precision values are slightly lower than recall values in
general, indicating more false positives than false negatives
in the classification results. (False positive means finding
triggering relations in non-related pairs. False negative is
the failure to discover triggering relations.) The reason for
slightly lower precision values is partly due to the customized
penalty weights in the cost matrix.

4.8 Performance
Runtime results are obtained on a machine with Intel Duo

Processor E8400, 3GB RAM and 250GB HDD. For each
data set, we report the runtime of pairing, training, classi-
fication, and find-root operations. The means reported in
Table 8 are averaged from five runs. Standard deviations
are negligible and not shown.

Data Pair
Train Classify Find

NB BN SVM NB BN SVM Root

I 1848 0.5 1.2 79.9 22.7 16.8 14.2 1.7
II 622 0.8 2.1 13.4 4.0 2.2 2.1 0.6
III 14686 2.6 7.9 546 431 411 446 –

Table 8: Averaged performance (in seconds) of Pair-
ing, Train, Classification, and Find-root operations.
NB and BN stand for Naive Bayes and Bayesian
Network classifiers, respectively. Pairing time in-
cludes feature extraction.

According to Table 8, the train, classification, and root-
finding operations are fast. The Pairing operation is the
most time-consuming task in our method. For example, it
can take as long as 4 hours to generate the pairs from 3
million TCP messages (42 days of a server’s TCP data). Our
experiments have determined that on a single day, at most
200MB of pairwise data can be generated from a server’s
TCP packet headers. As for the processing time, generating
the daily pairwise data takes only 6 minutes on average,
indicating that our method is efficient enough for practical
use.

4.9 Summary
We summarize our experimental findings below.
• Bayesian network gives the best analysis accuracy for

all datasets. The naive Bayes classifier gives the lowest
accuracy, indicating the existence of dependencies in
pairwise features. The accuracy can be improved by
strategically defining the cost matrix.
• Precision and recall metrics are more sensitive to the

quality of the classification results than the pairwise
accuracy metric. The fundamental reason for this dif-
ference is the sparsity of the triggering relations, which
results in different sizes of the denominators in these
metrics.
• Our causality analysis successfully reveals all the out-

bound traffic to 36 malicious domains, i.e., with zero
false negative rate. Our tool also detects the stealthy

network activities from our proof-of-concept browser
spyware, DNS bot, and stand-alone data-exfiltrating
malware.
• Limitations In our optimized prototype, Pairing oper-

ation (for extracting pairwise features) has high com-
putational overhead. This overhead is due to the
quadratic complexity in pairing. Heuristics for im-
proving the pairing efficiency may result in decreased
analysis accuracy. We will investigate this tradeoff in
our future work.
Our current feature extraction method does not han-
dle well HTTP requests involving incomplete or un-
conventional attributes. The failure of recognizing the
causality in these requests results in false alerts. Ad-
vanced inference techniques are required to improve
this recognition.

5. RELATED WORK
The classification and discovery of application or service

dependencies for management and reliability purposes have
been recently reported [7,9,22,23,31,43]. These existing ser-
vice dependency analysis solutions differ from our triggering
relation discovery work in two aspects.
• The semantics of relations to be discovered are differ-

ent, as the dependency in those papers refers to the
reliance on services provided by others, not the trig-
gering relation.
• The granularity of analysis differs, requiring com-

pletely different techniques; our request-level trigger-
ing relations is more fine-grained than service- or
application-level dependencies.

Machine learning approaches have been widely adopted
in the security literature, since the work by Lee, Stolfo, and
Mok [26]. The solutions described in [13, 29] use machine
learning techniques to capture characteristics of Javascript
code and identify malicious Javascript code. Xie et al. [39]
proposed to use Bayesian network on justifying the impor-
tant types of uncertainty in real time security analysis. How-
ever, their work is not designed for analyzing request-level
network traffic. EXPOSURE [8] is designed to detect do-
mains involved in malicious activities by conducting large-
scale and passive DNS analysis at network level. Authors
extracted 15 features of DNS traffic and used J48 classifier
to find the malicious domains. EXPOSURE classifies the
DNS request on an individual basis, while we use the ma-
chine learning tools on the pairwise relations. Besides, our
method can be adopted to various types of network traffic.

Nguyen and Armitage surveyed on Internet traffic classi-
fication using machine learning methods in [32]. Williams
et al. [38] did an empirical study on summarizing the fea-
tures from payload-independent features. Their work clas-
sifies IP traffic flows. Besides computer traffic classification,
learning-based security research includes database intrusion
detection [35], identifying botnet traffic [30], and SMS/social
network spam detection [37, 42]. Compared to these afore-
mentioned learning-based security solutions, the uniqueness
of our triggering relation discovery model and technique is
the ability to automatically extract and recognize directional
relations and structures. Our problem is beyond the conven-
tional binary classification problem.

Our triggering relation discovery problem may bear super-
ficial similar to the link prediction problem in the context
of mining social network data [5, 16, 21, 28]. Liben-Nowel

and Kleinbergz [28] formalized the link prediction problem
and surveyed an array of methods on measuring the prox-
imity of nodes in a network. Follow-up works applied ad-
vanced machine learning methods to social network data.
These advanced methods include logistic regression, deci-
sion tree, and naive Bayesian [21] as well as supervised ran-
dom walks [5]. Besides the obvious semantic differences in
the two problems, our work differs from social network link
prediction.
• Links in social networks connect nodes that are consid-

ered equivalent by a given logical relationship. While,
in our model, links are triggered by a hierarchical re-
lationship between nodes. This conceptual difference
makes it possible for our model to create pairwise fea-
tures for finding the semantic relations, rather than an-
alyzing the similarity of the nodes, or the link strength
in a network.
• Our TRG construction operation and root-trigger se-

curity analysis are unique and beyond the link predic-
tion type of inference problem.

Malware analysis studies build similar dependency graphs
to generalize the malware behaviors [4, 25]. Kolbitsch et
al. [25] analyzed malware programs and extract the depen-
dency between the system calls. Besides the research do-
main, differences between their work and ours are significant.
We adopted the machine learning tools to draw the TRG,
while they used specification construction algorithm to gen-
erate the behavior graphs. In addition, we use the vagabonds
in the TRG to identify the malicious network requests, while
they use malicious behavior graphs to match the behavior of
unknown programs. Similarly, Babic et al. [4] continued that
line of research and built data-flow dependency graph based
on their inference algorithm. Therefore, the construction
mechanism and application of the dependency graphs in our
work differ from those in the aforementioned approaches.

6. CONCLUSIONS AND FUTURE WORK
We presented a new traffic-reasoning technique for detect-

ing the network activities of stealthy malware. The analysis
approach exploring request-level traffic structures and se-
mantic triggering relations is new. We demonstrated the
use of triggering relation discovery as a useful security anal-
ysis approach, and showed its effectiveness against browser
spyware, DNS bot, and data exfiltrating malware. Our eval-
uation showed high accuracy of the triggering relation pre-
diction. Our analysis identified several types of network
anomalies caused by traffic to malicious or misconfigured
servers. For future work, we plan to design more complex
security definitions and models for utilizing the triggering
relation graphs to detect stealthy malware activities. We
also plan to investigate the model retraining for practical
deployment.

7. ACKNOWLEDGMENTS
We are grateful to the anonymous reviews for their in-

sightful comments. This work has been supported in part
by NSF grant CAREER CNS-0953638.

8. REFERENCES
[1] DNScat. A tool to tunnel traffic through DNS servers.

http://tadek.pietraszek.org/projects/DNScat/.

[2] Tlogger. An Firefox extension.
http://dubroy.com/tlogger/.

[3] H. Almohri, D. Yao, and D. Kafura. Process authentication
for high system assurance. IEEE Transaction on
Dependable and Secure Computing (TDSC), 2014.

[4] D. Babić, D. Reynaud, and D. Song. Malware analysis with
tree automata inference. In Computer Aided Verification,
pages 116–131. Springer, 2011.

[5] L. Backstrom and J. Leskovec. Supervised random walks:
predicting and recommending links in social networks. In
Proceedings of the fourth ACM international conference on
Web search and data mining, pages 635–644. ACM, 2011.

[6] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information
retrieval, volume 463. ACM press New York, 1999.

[7] P. V. Bahl, R. Chandra, A. Greenberg, S. Kandula,
D. Maltz, and M. Zhang. Towards highly reliable enterprise
network services via inference of multi-level dependencies.
In Proceedings of ACM SIGCOMM, August 2007.

[8] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi.
EXPOSURE: Finding malicious domains using passive
DNS analysis. In Proceedings of the 18th Annual Network
and Distributed System Security Symposium (NDSS),
February 2011.

[9] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl. Automating
network application dependency discovery: Experiences,
limitations, and new solutions. In Proceedings of OSDI,
pages 117–130, 2008. USENIX Association.

[10] H.-K. Choi and J. O. Limb. A behavioral model of web
traffic. In Network Protocols, 1999.(ICNP’99) Proceedings.
Seventh International Conference on, pages 327–334.

[11] M. Christodorescu, S. Jha, and C. Kruegel. Mining
specifications of malicious behavior. In ISEC, pages 5–14,
2008.

[12] C. Cortes and V. Vapnik. Support-vector networks.
Machine learning, 20(3):273–297, 1995.

[13] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis
of drive-by-download attacks and malicious JavaScript
code. In Proceedings of 19th International World Wide
Web Conference, 2010.

[14] W. Cui, Y. H. Katz, and W. tian Tan. BINDER: An
Extrusion-based Break-In Detector for Personal
Computers. In Proceedings: USENIX Annual Technical
Conference, page 4, 2005.

[15] C. Elkan. The foundations of cost-sensitive learning. In
International joint conference on artificial intelligence,
volume 17, pages 973–978, 2001.

[16] L. Getoor and C. P. Diehl. Link mining: a survey. SIGKDD
Explor. Newsl., 7(2):3–12, Dec. 2005.

[17] T. M. Green, W. Ribarsky, and B. Fisher. Visual analytics
for complex concepts using a human cognition model. In
Visual Analytics Science and Technology, 2008. VAST’08.
IEEE Symposium on, pages 91–98. IEEE, 2008.

[18] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner:
Clustering analysis of network traffic for protocol- and
structure-independent botnet detection. In Proceedings of
the 17th USENIX Security Symposium, 2008.

[19] R. Gummadi, H. Balakrishnan, P. Maniatis, and
S. Ratnasamy. Not-a-Bot: Improving service availability in
the face of botnet attacks. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and
Implementation (NDSI), 2009.

[20] G. John and P. Langley. Estimating continuous
distributions in Bayesian classifiers. In Proceedings of the
Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 338–345. Morgan Kaufmann, 1995.

[21] I. Kahanda and J. Neville. Using transactional information
to predict link strength in online social networks. In
Proceedings of the Third International Conference on
Weblogs and Social Media (ICWSM), 2009.

[22] S. Kandula, R. Chandra, and D. Katabi. What’s going on?
Learning communication rules in edge networks. In
Proceedings of ACM SIGCOMM, August 2008.

[23] A. Keller, U. Blumenthal, and G. Kar. Classification and
computation of dependencies for distributed management.
In Proceedings of International Symposium on Computers
and Communications, pages 78–83, 2000.

[24] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen.
Enriching intrusion alerts through multi-host causality. In
Proceedings of Network and Distributed System Security
(NDSS), 2005.

[25] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y.
Zhou, and X. Wang. Effective and efficient malware
detection at the end host. In USENIX Security Symposium,
pages 351–366, 2009.

[26] W. Lee, S. J. Stolfo, and K. W. Mok. A data mining
framework for building intrusion detection models. In
Security and Privacy, 1999. Proceedings of the 1999 IEEE
Symposium on, pages 120–132. IEEE, 1999.

[27] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. G. Greenberg, and
Y.-M. Wang. WebProphet: Automating performance
prediction for web services. In NSDI, volume 10, 2010.

[28] D. Liben-Nowell and J. Kleinberg. The link-prediction
problem for social networks. Journal of the American
society for information science and technology,
58(7):1019–1031, 2007.

[29] P. Likarish, E. E. Jung, and I. Jo. Obfuscated malicious
JavaScript detection using classification techniques. In
Proceedings of 4th International Conference on Malicious
and Unwanted Software, 2009.

[30] C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer. Using
machine learning techniques to identify botnet traffic. In
2nd IEEE LCN Workshop on Network Security (WoNS)
2006, pages 967–974, 2006.

[31] A. Natarajan, P. Ning, Y. Liu, S. Jajodia, and S. E.
Hutchinson. NSDMiner: Automated discovery of network
service dependencies. In INFOCOM, pages 2507–2515,
2012.

[32] T. T. T. Nguyen and G. J. Armitage. A survey of
techniques for internet traffic classification using machine
learning. IEEE Communications Surveys and Tutorials,
10(1-4):56–76, 2008.

[33] Panda Security Report. 2013.
http://press.pandasecurity.com/press-room/reports/.

[34] Botnet Pony 1.9 Malware. http://laboratoriomalware.
blogspot.com/2013/01/botnet-pony-19-malware.html.

[35] A. Srivastava, S. Sural, and A. Majumdar. Database
intrusion detection using weighted sequence mining.
Journal of Computers, 1(4):8–17, 2006.

[36] D. Stefan, C. Wu, D. Yao, and G. Xu. Cryptographic
provenance verification for the integrity of keystrokes and
outbound network traffic. In Proceedings of the 8th
International Conference on Applied Cryptography and
Network Security (ACNS), June 2010.

[37] H. Tan, N. Goharian, and M. Sherr. $100,000 prize jackpot.
Call now!: Identifying the pertinent features of SMS spam.
In Proceedings of the 35th international ACM SIGIR
conference on Research and development in information
retrieval, pages 1175–1176. ACM, 2012.

[38] N. Williams, S. Zander, and G. Armitage. A preliminary
performance comparison of five machine learning algorithms
for practical IP traffic flow classification. SIGCOMM
Comput. Commun. Rev., 36(5):5–16, Oct. 2006.

[39] P. Xie, J. H. Li, X. Ou, P. Liu, and R. Levy. Using Bayesian
networks for cyber security analysis. In Dependable Systems
and Networks (DSN), 2010 IEEE/IFIP International
Conference on, pages 211–220. IEEE, 2010.

[40] K. Xu, P. Butler, S. Saha, and D. Yao. DNS for
massive-scale command and control. IEEE Trans.
Dependable Sec. Comput., 10(3):143–153, 2013.

[41] K. Xu, H. Xiong, C. Wu, D. Stefan, and D. Yao.
Data-provenance verification for secure hosts. IEEE Trans.
Dependable Sec. Comput., 9(2):173–183, 2012.

[42] C. Yang, R. C. Harkreader, and G. Gu. Die free or live
hard? Empirical evaluation and new design for fighting
evolving twitter spammers. In Recent Advances in
Intrusion Detection, pages 318–337. Springer, 2011.

[43] A. Zand, G. Vigna, R. Kemmerer, and C. Kruegel. Rippler:
Delay injection for service dependency detection. Technical
report, UCSB, 2013.

[44] H. Zhang, W. Banick, D. Yao, and N. Ramakrishnan. User
intention-based traffic dependence analysis for anomaly
detection. In Security and Privacy Workshops (SPW),
2012 IEEE Symposium on, pages 104–112. IEEE, 2012.

APPENDIX

A

B

A A

X

B

X Y

B

E A

B

X B

E

(a) (b) (c) (d) (e)

A

B

X

E

Y

(f) (g)

null

B

X... ...

Figure 4: The illustration of various cases where B’s
predicted root trigger is correct (a-c) or wrong (d-
g) on the triggering relation graph constructed from
pairwise triggering relations. Let the ground truth
of B’s root trigger be A. Case (a) is where B’s parent
is also B’s root. Cases (b) and (c) are where there
is one or more paths from the single root A to B,
respectively. Cases (d), (e), and (f) are where the
predicted root of B is or includes a node other than
A (e.g., E). Case (g) is where the predicted root of
B is null, i.e., no root trigger.

By the definition of triggering relation graph (TRG) in
Section 2, each node on a valid TRG should have at most
one parent and thus at most one root trigger. In reality, we
relax the definition in that this property may not hold in the
TRGs constructed from pairwise classification results, e.g.,

a node may have multiple paths leading to the same root,
or multiple paths leading to different roots. Therefore, our
TRG construction algorithm needs to find all the root trig-
gers of a network event, which makes the problem equivalent
to compute the transitive reduction of a direct graph.

We illustrate the various cases where an event’s predicted
root trigger is correct (a-c) or wrong (d-g) on the triggering
relation graph constructed from pairwise triggering relations
in Figure 4. Our root-trigger definition allows the existence
of multiple intermediate parents for a node, as long as the
root trigger is correct, e.g., Figure 4 (c).

Feature
Rank

Brief Definition
IG GR

HTTPRank 1 1 Rank of B in HTTP.
QueryHostSim 2 2 Sim(A.query,B.host).

QueryDomainSim 3 3 Sim(A.query,Dom(B.host)).
TimeDiff 4 4 Time difference (ms).

QueryRefSim 5 7 Sim(A.query,Dom(B.ref)).
MissingRef 6 5 If B.ref is null.
HTTPType 7 6 If B is IPv4 or IPv6.

DuplicatedDNS 8 8 # of same DNS after A.
PIDDiff 9 9 If both PIDs are equal.

Table 9: Feature ranking by InfoGain (IG) and
GainRatio (GR) Selection on dataset II. Denote
DNS and HTTP requests as A and B, and define
Dom(URL) to get the domain of a URL.

Feature
Rank

Brief Definition
IG GR

DiffAck2Seq1 1 2 Calculate B.ack − A.seq.
ExpectedAck 2 1 If B.ack = A.seq + A.len.

TimeDiff 3 7 Time difference (ms).
Flag1 4 3 Control bits in A.

Len1Zero 5 5 If A.len is 0.
Len1Large 6 4 If A.len ≥ MSS.

MatchAck1Seq2 7 8 If A.ack = B.seq.
Flag2 8 9 Control bits in B.

MissingAck1 9 6 If A.ack is null.

Table 10: Feature ranking by InfoGain (IG) and
GainRatio (GR) Selection on dataset III. Two TCP
packets are A and B, which B follows A.

