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ABSTRACT
The analysis of large scale data logged from complex cyber-physical
systems, such as microgrids, often entails the discovery of invari-
ants capturing functional as well as operational relationships under-
lying such large systems. We describe a latent factor approach to in-
fer invariants underlying system variables and how we can leverage
these relationships to monitor a cyber-physical system. In partic-
ular we illustrate how this approach helps rapidly identify outliers
during system operation.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

Keywords
Regression, Latent Factors, System Invariants, Outlier Detection.

1. INTRODUCTION
In recent years, with the rapid growth in data logged from mod-

ern devices in a distributed system, the need for having stronger
knowledge discovery methods has attracted significant attention [28].
Concomitantly, the size and complexity of these systems have be-
come a burden for administrators in detecting failures and repair-
ing them [13, 25]. These challenges inspired us to characterize and
track anomalies in cyber-physical systems by correlating all moni-
tored data across the system.

According to [15], “detecting anomalies that occur only within
individual variables is often trivial, while detecting correlation anoma-
lies is much harder and is practically important in fault analysis of
complicated dynamic systems”. In a complex cyber-physical sys-
tem, such as a smart grid (Fig.1), while some of the relationships
between time series can be directly observed, other mutual depen-
dencies are significantly complex to extract computationally. A
typical cyber-physical system may include tens of time series with
hundreds of mutual dependencies, where a large number of them
are not directly observable. In the past, researchers have tried to
infer existing linear relations using regression models [17] or by
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Figure 1: A typical example of a smart grid.

harnessing the structure of causal networks [4]. However, due to
the complexity of modern systems, we must go beyond direct lin-
ear correlations in understanding them.

In this paper, we aim to use a more realistic approach to dis-
cover hidden patterns and indirect relationships among devices by
employing latent variables in regression models. Specifically, we
harness hidden factors derived by factor analysis and use them in
regression models. We perform various experiments on synthetic
and real datasets including wireless sensor networks and microgrid
datasets. Furthermore, we use graph representations for better vi-
sualization of relationships which aids in discovering system-wide
anomalies. Results show that the use of invariants derived with
latent factors helps us to monitor large scale complex systems and
discover outliers more precisely. We also propose a ranking method
to score system-wide anomalies.

Our key contributions are thus:

• Proposing latent factor analysis regression to reveal hidden
correlations among time series in a cyber-physical system.

• Summarizing the discovered invariants into an invariant graph
of the system.

• Detecting system outliers based on the change in the graph
of invariants and ranking time series for fault localization.

2. BACKGROUND
The high complexity of modern distributed cyber-physical sys-

tems urges us to enhance the self-management capabilities of these
systems. Cyber-physical systems such as microgrid systems have
a high degree of heterogeneity (in terms of shape, trend, and peri-
odicity) that requires us to have a general tool to profile a variety
of behaviors. Moreover, due to the nature of these systems, we
may observe abrupt regime changes, seasonal patterns, and pair-
wise relationships among time series [11]. Ding et al. proposed an



ensemble of different approaches to tackle these problems in [11].
As stated in [28], traditional computational techniques cannot be
used to model complex cyber-physical systems for data analytic
purposes in a straightforward manner. There have been multiple
research efforts to model complex dynamic systems such as infer-
ring/visualizing the input-output relationships or predicting state
switches/changes [28].

Guofei et al. [16] proposed a concept named flow intensity and
used the ARX (autoregressive exogenous) model to quantify the
relationship between each pair of flow intensities. If such a rela-
tionship holds all the time, they are considered as invariants of the
underlying system. This model has been successful in characteriz-
ing complex systems and in supporting different system manage-
ment tasks such as fault detection and localization. However, one
of the main disadvantages of this method, as cited in [13], is that
the complexity of algorithm in order to find all invariants is high.
In this model, they look at two flow intensities (timeseries) where
one of them is considered as input and the other one as output sig-
nal. Note that the differentiation of input and output time series are
unknown and such labeling can occur only after examining both
directions and evaluating which assignments lead to higher scores.
The ARX model posits the following relationship between two flow
intensities of y (output) and x (input):

y(t) + a1y(t− 1) + ...+ auy(t− u)

= b0x(t− l) + ...+ bvx(t− l − v) (1)

where u, v, and l are the order of the model and determine the num-
ber of previous steps that are affecting the current output. ai’s and
bj’s are coefficient parameters that reflect how strongly a previous
step is affecting the current output. Equation 1 can be solved using
a least squares method (LSM) and the fitness score will indicate
whether the model fits the observed data appropriately [16].

3. PROBLEM FORMULATION
Let us assume that we have observed a set of n time series,
D = {x1(t), . . . , xn(t)}, measured at various points in one or
more cyber-physical systems. For a time series xi(t), we represent
the vector of samples at time steps tk, . . ., tk+w as follows:

X k:k+wi = [xi(tk), xi(tk+1) . . . , xi(tk+w)]T . (2)

Furthermore, we use Xi to represent the time series xi(t) as a ran-
dom variable. In other words, xi(t) is a time series whose samples
are drawn from a random distribution represented by random vari-
able Xi.

In any type of cyber-physical system, there are various corre-
lations and inter-dependencies among time series. In large cyber-
physical systems, having sufficient level of knowledge about these
inter-dependencies is crucial to preform accurate system manage-
ment tasks. In the following definition, we formally define what we
mean by dependency between two time series.

DEFINITION 1. (Approximate Dependency): At time step tm,
time series xj(t) ∈ D approximately depends on xi(t) ∈ D, if and
only if, there exists a function f : R → R that for appropriately
small ε > 0:

x̂j(tm) = f(X 1:m−1
j ,X 1:m

i ) (3)

and

|xj(tm)− x̂j(tm)| < ε. (4)

We depict this dependency by xj(t)→
ε
xi(t)

∣∣∣
tm

.

When the dependency between two time series does not change
over time, we say that these two time series are system-invariants.

DEFINITION 2. (System Invariants): Two time series, xj(t) ∈
D and xi(t) ∈ D, are system-invariant up to time T within range
of ε if and only if at least one of the following rules satisfied:

∃f : R→ R and ∀0 ≤ t ≤ T : xj(t)→
ε
xi(t)

∣∣∣
0≤t≤T

or

∃f : R→ R and ∀0 ≤ t ≤ T : xi(t)→
ε
xj(t)

∣∣∣
0≤t≤T

.

We show invariant time series by xi(t)
ε
� xj(t).

Based on the nature of the system, dependencies between time se-
ries can be linear or nonlinear and this is modeled by the function
f . In complex cyber-physical systems, when we have a large num-
ber of time series, it is appropriate to represent the invariants in the
form of a graph.

DEFINITION 3. (Invariant Graph): Graph G = (V,E), with
the set of vertices V = {v1, . . . , vn} and the set of edges E =
{e1, . . . , em}, is called an invariant graph of a system with ob-
served time series D = {x1(t), . . . , xn(t)}, where e = (vi, vj) ∈
E if and only if xi(t)

ε
� xj(t).

From Definition 3 it is obvious that the vertex vi is equivalent
to the time series xi(t). It should be noted that system invariants
and invariant graph represent features of a system under its nor-
mal condition. However, in the presence of anomalies, when the
behavior of system deviates from its normal condition, these de-
pendencies may disappear. In other words, while two times series,
xi(t) and xj(t), may be invariant under normal conditions, the in-
variant feature may not hold when an anomaly condition appears in
the system.

DEFINITION 4. (Broken Invariants): We say that system in-
variant xi(t)

ε
� xj(t) is broken at time T = tm, if and only if,

time series xi(t) and xj(t) satisfy the following conditions:

∃f : R→ R and ∀0 ≤ t < T = tm :(
xj(t)→

ε
xi(t)

∣∣∣
t<T
∧

∣∣xj(tm)− f(X 1:m−1
j ,X 1:m

i )
∣∣ ≥ ε)

or(
xi(t)→

ε
xj(t)

∣∣∣
t<T
∧

∣∣xi(tm)− f(X 1:m−1
i ,X 1:m

j )
∣∣ ≥ ε) .

In some cases, the existence of unseen factors has an impact on
the observed values of the system which cause them to have a spe-
cific behavior. However, uncovering those hidden factors behind
all the underlying electro-mechanical devices is a challenging task.
Characterizing these factors can help us to reveal the hidden rela-
tionships between potential time series whether they have indirect
or complex relationships. Figure 2 (a) shows an example of re-
lationships among a set of time series, (x1, x2, · · · , xn). In real-
ity, the relationships can be direct (solid lines) or indirect (dashed
lines). Previous works tried to reveal the direct relationships among
time series (which is shown in Figure 2 (b)). However, despite
the simplicity of these linear methods, sometimes they result in a
sparse graph of invariants where tracking all time series is impos-
sible. Moreover, these methods are not able to capture the under-
lying hidden relationships and results in poor detection of system
outliers. In this paper, we aim to uncover those hidden relationships
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Figure 2: Different models of relationships: (a) Relationships
in reality, (b) Relationships in the ARX model and (c) Relation-
ships in ARX with a latent model.

with the help of hidden factors as latent variables. Hidden factors,
(f1, f2, · · · , fn), are considered as a higher level in hierarchy of
the system and have an impact on the whole observed variables.
An example of relationships in a system with hidden factors is il-
lustrated in Figure 2 (c).

DEFINITION 5. (Latent Variable): In a cyber-physical system
with the set of observed time series D = {x1(t), . . . , xn(t)}, an
unobserved time series h(t) is a latent variable when two or more
observed time series are functions of h(t). In other words,

∃D′ ⊂ D where ∀x(t) ∈ D′, ∃gx : R→ R :

∀tm ≥ 0, x(tm) = gx(H1:m)
(5)

where similar to Eq. 2,H1:m is defined as follows:

H1:m = [h(t1), h(t2) . . . , h(tm)]T .

It should be noted that each cyber-physical system may have more
than one latent variable. Also, existence of a latent variable does
not mean that all the observed time series should be directly related
to that variable.

4. INVARIANT DISCOVERY
In this section, we describe a framework for invariant graph dis-

covery and anomaly detection. For this purpose, we first extract la-
tent variables using factor analysis and incorporate hidden factors
into the regression model. Then we construct the invariant graph
using a search algorithm. Finally, we use the constructed graph as
a normal invariant graph and deploy it for the purpose of anomaly
detection in the system. By discovering the broken invariants and
ranking them, one may be able to find fault(s) and localize them.

4.1 Factor Analysis
Let us assume that we have a set of n random variables (input

variables), denoted by X1, ..., Xn. Also, assume that there are k
hidden (latent) factors in the system, denotes by H1, ..., Hk. Fur-
thermore, assume that the observed variables are modeled as linear
combinations of latent variables. Then we derive latent variables
using the factor analysis method. Factor analysis is a well-studied
field and is used to determine the main latent sources behind the
observed data variation [9]. Although factor analysis is similar to
principal component analysis (PCA), it is used more in predictive
models due to its generalizability (e.g., factor loadings can remain
consistent for different subsets of variables) [29]. Some might think
of the factor model as generative models where the data is produced
based on factors.

In factor analysis, for one sample of data extracted from random
variable distributions, we have:

Xi − µi = λi1H1 + ...+ λikHk + ζi (6)

where µi is the expected value of Xi, Hj’s are unobserved random
variables and λij’s are unknown constants (i ∈ 1, · · · , n and j ∈
1, · · · , k where k < n). Also, ζi’s are independently distributed
error terms with zero mean and finite variance (V ar(ζi) = ψi). In
other words, by Eq. 6, each of the Xi’s random variables is related
to k hidden random variables, known as latent factors.

In matrix notation, we have:

X− µ = ΛH + Z (7)

where X = (X1, · · · , Xn)T is a data sample vector, µ is the ex-
pected values of data samples, Λ is an n × k matrix named as
loading matrix, H = (H1, · · · , Hk)T is a vector of latent factors,
and Z = (ζ1, · · · , ζn)′ is the vector of error.

It is assumed that H and Z are independent, and E(Z) = 0,
E(H) = 0, Cov(Z) = Diag(ψ1, ..., ψn) = ψ, and E(HHT) =
Φ. Furthermore, it is assumed that the data has a multivariate nor-
mal distribution, X = N (µ,Σ). Based on these assumptions, we
will have:

Σ = ΛΦΛT + ψ. (8)

Since X has a multivariate normal distribution, the actual distri-
bution function of elements of sample covariance matrix, S, can be
expressed as a Wishart distribution withm−1 degrees of freedom,
mS ∼ Wn(Σ,m− 1), where m is the number of samples.

The log-likelihood of the Wishart distribution can be expressed
as follows:

log L = −m− 1

2

(
log|Σ|+ tr(SΣ−1)

)
(9)

where the terms independent of Σ are dropped.
It is obvious that maximization of L is equivalent to minimizing

the following function:

Q = log |Σ|+ tr(SΣ−1). (10)

One can find the latent variables by taking the partial derivatives
of Eq. 10 with respect to the elements of loading matrix and errors
constrained by Eq. 8. For simplicity, it is convenient to assume that
Φ = I and ΛTΨ−1Λ is diagonal.

There are different types of criteria to determine the number of
factors such as criteria based on eigenvalues, discrepancy of ap-
proximation, or overall discrepancy [24]. Here, we use the Kaiser
criterion which drops those with eigenvalues of less than 1. Indeed,
the number of factors, must be lower than the number of observed
variables, k < n. More details can be found in [14, 19].

4.2 Latent Factor Auto Regression with Ex-
ogenous input (LFRX)

Having n time series, D = {x1(t), · · · , xn(t)}, related to a
cyber-physical system, similar to the ARX model [16], we can
rewrite Eq. 1 as:

x̂j(t) =

u∑
p=1

apxj(t− p) +

v∑
p=0

bpxi(t− l − p) (11)

where xi(t), xj(t) ∈ D.
As acknowledged widely [16, 13, 6, 5, 27], a drawback of ARX

is that relationship discovery is done based on the existence of di-
rect linear relationships between two observed time series. In other
words, at each time ARX considers a pair of time series without
considering the underlying relationships and hidden patterns. To
address this issue, we deploy latent factors in the ARX model to
recover the complex relationships. If we use latent factors in the



Algorithm 1: Invariant Search Algorithm
Input: xi, i ∈ {1, .., n}: set of time series, ∆: ARX

superiority threshold, τ : minimum acceptable score, ts
and te: start and end time of training dataset.

Output: G: Invariant Graph.
1 SARX = {};
2 SLFRX = {};
3 for i = 1 to n do
4 for j = 1 to n do
5 if i == j then
6 Continue;
7 end
8 foreach ts ≤ t ≤ te do
9 Learn an ARX model, θARXji , using Eq. 11;

10 Calculate x̂ARXj (t) using θARXji ;
11 Compute FARXji (t) with Eq. 15;
12 Learn an LFRX model, θLFRXji , using Eq. 12;
13 Calculate x̂LFRXj (t) using θLFRXji ;
14 Compute FLFRXji (t) with Eq. 15;
15 end
16 if

(∑te
t=ts
FARXji (t) ≥

∑te
t=ts
FLFRXji (t)−∆

)
and(

mint(FARXji (t)) ≥ τ
)

then
17 SARX = SARX ∪ {xi�xj};
18 end
19 if

(∑te
t=ts
FLFRXji (t) >

∑te
t=ts
FARXji (t) + ∆

)
and(

mint(FLFRXji (t)) ≥ τ
)

then
20 SLFRX = SLFRX ∪ {xi�xj};
21 end
22 end
23 end
24 Construct Graph, G = (V,E), using SARX and SLFRX ;
25 return G;

above regression model, we will have:

x̂j(t) =

u∑
p=1

apxj(t−p)+
v∑
p=0

bpxi(t−l−p)+
w∑
p=0

k∑
q=1

cpqhq(t−p)

(12)
where hp(t)’s are the latent factor time series that have been built
based on the latent factor random variables, as discussed in the pre-
vious subsection (Eq. 6). Also, ap’s, bp’s, and cpq’s are the regres-
sion weights that are determined in the learning phase. Note that in
Eq. 12, in addition to the regression weights, latent factors are also
unknown and should be estimated in the learning phase.

It should be noted that here we incorporate the previous values
of xj(t) as well as values of exogenous variable, xi(t), and hid-
den variables, hq(t)’s, to estimate new value of xj(t). In matrix
notation, Eq. 12 will change to:

x̂j(t) = ATX t−u:t−1
j + BTX t−l−v:t−li + Tr(CTH) (13)

where Au×1, B(v+1)×1, C(w+1)×k are matrices of coefficients.
Also, H(w+1)×k is a matrix that represents all the latent factors,
i.e. H =

[
Ht−w:t

1 · · ·Ht−w:t
k

]
. In our experiments, we assume

u = v = w and their values are estimated using cross-validation.
Also, due to the lack of delay in our datasets, we assume l is zero.
In order to solve Eq. 13, first we derive latent factors, H, using
factor analysis of Subsection 4.1 and then we incorporate them into
the regression model to estimate the weights.

4.3 Invariant Graph Construction
Based on Definition 2, in order to discover system invariants we

need to identify time series that have persistent approximate de-
pendencies. While time series may have nonlinear dependencies,
in this paper we consider linear relationships and use ARX and
LFRX for this purpose.

The search algorithm that extracts system invariants is shown in
Algorithm 1. In this algorithm, for each pair of time series, we
first assume that they have a direct linear relationship and we fit
them using an ARX model (Eq. 11). The ARX model for time se-
ries xi(t) and xj(t) is illustrated by θARXij . Then, we assume that
there might be an indirect relationship through latent variables and
hence, we use LFRX model to learn θLFRXij . As defined in Defini-
tion 1, to determine if xj(t) depends on xi(t), we need to compare
the estimation error with an acceptable threshold, ε. However since
in a specific cyber-physical system different time series have differ-
ent range of values, it is more appropriate to use normalized error
measurements. For this purpose, when we estimate xj(t) based on
xi(t), we can evaluate the relative absolute error (RAE) defined by
the following equation:

eRAEj,i (t) =
|x̂j(t)− xj(t)|∑te
t=ts
|xj(t)− xj(t)|

(14)

where xj(t) is the observed value, x̂j(t) is the estimated value
based on xi(t), and x̄j is the sample mean of observed values.

According to [17] for each pair of time series, xi(t) and xj(t),
we calculate a score to measure their dependencies. The following
normalized score may be used for the evaluations:

Fj,i(t) = 100(1− eRAEj,i (t)). (15)

A higher score indicates stronger dependency between the time se-
ries. It should be noted that RAE is a specific example of normal-
ized error measurement and one can easily extend the algorithm to
use other error measurement approaches including RMSE, specifi-
cally when time series have the same range of variations.

In Algorithm 1, lines 8 to 15 are dedicated to estimate individual
values of xj(t) based on xi(t) and calculate the scores for ARX and
LFRX models. In order to discover invariants and choose between
direct or indirect relationships, we consider the following criteria:

• For all the time steps, score should be greater than or equal
to a specific threshold. We name this threshold as minimum
acceptable score and denote it by τ . Then, we should have:

min
t

(Fji(t)) ≥ τ. (16)

• Since higher score depict stronger relationships, in choos-
ing between ARX and LFRX, the one with the better overall
score is chosen.

• Since linear invariants represent simpler relationships, higher
priority is given to ARX-based invariants using a guard bound,
∆, which we name as the ARX superiority threshold. In other
words, ARX-based invariants are selected when:

te∑
t=ts

FARXji (t) ≥
te∑
t=ts

FLFRXji (t)−∆. (17)

When calculated scores satisfy Eq. 16, we will say that xi(t)
and xj(t) are invariant and based on Eq. 17, the type of invariant
is chosen to be direct (ARX) or indirect (LFRX). The resulted in-
variants are added to the sets of ARX and LFRX invariants denoted
by SARX and SLFRX , respectively. In Algorithm 1, lines 16 to 21
are dedicated to this process.



Algorithm 2: Alerting Algorithm
Input: xi(t), i ∈ {1, .., n}: set of time series,

G = (V,E):Invariant Graph, te: start time of
monitoring, α: alerting threshold.

1 foreach t > te do
2 foreach ei,j ∈ E do
3 Use Definition 4 to check if ei,j is broken;
4 if ei,j is broken then
5 cntij ← cntij + 1;
6 else
7 cntij ← 0;
8 end
9 if cntij > α then

10 Invoke an alert;
11 cntij ← 0;
12 end
13 end
14 end

After finding system invariants, the final step (line 24 in Algo-
rithm 1) is to construct the invariant graph, G = (V,E). This is a
straightforward task which is performed based on Definition 3. The
total number of iterations of this algorithm isO(tn2) where t is the
length of time series. At each iteration (lines 9 to 14), models are
learned with a time complexity which is a function of t2 and var-
ious constants (w, v, u, · · · ). This results in an overall complexity
of O(Cn2t3).

4.4 Outlier Detection using Broken Invariants
After constructing the invariant graph (in Subsection 4.3), we can

use this graph for detecting abnormalities in the system. For this
purpose, using Definition 4, at each time step we check whether
each of the graph edges is broken or not. We then rank the time
series in order to localize the source of abnormality. In what fol-
lows we first describe the alerting algorithm, followed by a metric
for alerting threshold estimation and finally the ranking method for
fault localization.

Anomaly alerting algorithm: The alerting algorithm is illustrated
in Algorithm 2. In this algorithm, in order to prevent generations of
multiple alerts consecutively, we use an alert filtering mechanism
by imposing a counting strategy with alert threshold of α. When
the number of consecutive violations of a specific invariant goes
beyond α, the algorithm invokes an alert to the system administra-
tor, who may use this for further investigations. Time complexity
of this algorithm is O(|E|) at each time-step.

Anomaly detection threshold: According to model-based FDI
methods used in control theory and similar to [27], in order to
reduce false alarms the following approach is used for detection
of broken invariants. The difference between the predicted value,
x̂j(t), and the actual value, xj(t), is recorded and whenever this
difference deviates more than a predetermined threshold, ε0, an in-
variant will be broken:

|x̂j(t)− xj(t)| > ε0 (18)

The threshold ε0 can be estimated based on the observed values in
the training period. According to [27], ε0 is assumed to be 10%
larger than the tolerance of deviations from the actual values:

ε0 = 1.1 ∗ argr {Prob(|x̂j − xj | < r) = 0.995} (19)
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Figure 3: (a) Invariant graph of synthetic data (b) Correlation
matrix of synthetic time series.

where r is greater than 99.5% of the residuals observed in the train-
ing data.

Ranking time series for fault localization: In complex cyber-
physical systems with a large number of invariants, one single fault
in the system may lead to a large number of broken invariants.
Hence, for fault localization we need to rank the invariant graph
vertices according to the number of their broken edges. Similar
techniques have also been used in [12]. For this purpose, we use
the following score to rank the vertices after the occurrence of an
alarm. Assuming that an alarm is generated at time t, for each ver-
tex, vj , we calculate the following score:

ρj =
dnormalj − dj(t)

dnormalj

(20)

where dnormalj is the degree of vj in normal condition and dj(t)
is the degree of vj after alarm generation at time t. It is obvious
that higher value of ρj indicates vj has lost more edges which may
potentially be due to the occurrence of a fault at xj(t).

5. EXPERIMENTAL RESULTS
We perform our experiments on several datasets. We aim to show

how our method (ARX + LFRX) can discover the invariants, how it
can improve the accuracy of system, and how it can find the anoma-
lies happening throughout the network. First, we perform our anal-
ysis on a synthetic dataset to recover indirect invariants. Next, we
use two datasets from real cyber-physical systems: a wireless sen-
sor network and a microgrid system. In these datasets, there are
multiple factors and measurements with various temporal and spa-
tial dependencies.

5.1 Synthetic Data
Dataset Description: At the first step, we perform our experiment
on a synthetic dataset to verify our method for the discovery of
indirect hidden relationships. For this purpose, we generate eight
signals and compare the results of ARX with our method (integra-
tion of ARX and LFRX). In this experiment, we add a Gaussian
noise with zero mean and standard deviation of 0.1 to one of the
time series in order to test the invariant graph under abnormalities.
The ground truth graph and its corresponding correlation matrix are
shown in Fig. 3 (a) and (b), respectively. As Fig. 3 (a) shows, V6

and V7 are correlated to each other. V8 is isolated and all the re-
maining nodes are correlated to each other. However, the hidden
relationship between signals is not observable in Fig. 3 (a). In fact,
V3, V4, V5 are generated using V1 and V2. The relationship between
signals is given in the following equations:

V1(t) = 0.9V1(t−1)−0.02V1(t−2)−0.01V1(t−3)+0.09+η

V2(t) = 2(V1(t− 1)−V 1(t− 2)) + 0.5(V2(t− 1) +V 2(t− 2))



V3(t) = V1(t−1)+V2(t)−V1(t), V4(t) = 3V1(t−1)+V2(t−1)

V5(t) = 3V1(t− 1)− V2(t− 1)

V6(t) = 1 + 0.01R(t, 100), V7(t) = 1− 0.01R(t, 100)

V8(t) = 2e10
−4t +R(t, 600)e−10−4t

where R(t, T ) is a rectangular function of t, oscillating between
−1 and 1 with period of T and η is a Gaussian noise with zero
mean and standard deviation of 0.01.

In order to consider various situations, with and without presence
of hidden relationships, we perform multiple experiments with dif-
ferent subset of the above signals.

Results and Discussion: Recovered graph for both methods in
normal and abnormal condition are shown in Figure 4. In this fig-
ure, each row denotes an experiment involving a subset of syn-
thetic time series, where white nodes represent the one with in-
jected noise. As it is shown, in all cases the ARX + LFRX method
has recovered the planted invariants and the recovered graph matches
the ground truth. In both methods, in the presence of an anomaly,
the invariants attached to the corrupted signal (white node) are bro-
ken. However, in some cases such as (a) and (b) where the ARX
method cannot recover the existing relationships, at the time of
anomaly, it was not able to detect it correctly. In figures (a) to
(d), time series V1 and V2 are not measured and hence, time se-
ries V3, V4, and V5 have indirect relationships. It is obvious from
Fig. 4 that the proposed method (ARX + LFRX) is able to discover
the corresponding invariants while ARX, with the same parameter
settings, has failed to discover them.

5.2 Sensor Motes
Dataset Description: The sensor motes dataset contains measure-
ments from wireless sensors at Intel Berkeley Research lab. There
are a total of 54 sensors located at a lab measuring temperature,
humidity, light, and voltage between February 28th and April 5th,
2004 [10]. Each sensor was able to record different variables every
31 seconds. Fig. 5 (a) shows the location of each node as well as
different part of the lab.

Results and Discussion: Fig. 5 (b) shows the clustering of sensors
in the loading matrix (i.e. Λ in Eq. 7) of light measurements. For
this purpose, we used a k-means algorithm with k = 6. It is in-
teresting to note that the sensors are clustered in a way that reflects
their spatial distributions.

We performed invariant graph analysis on each variable (light,
temperature, humidity, and voltage), separately. Overall results are
illustrated at Table 1. It is obvious from this table that the proposed
method results in lower average estimation error on test datasets,
compared to the ARX approach. Also, the number of discovered
invariants using the proposed method is higher than the one us-
ing ARX. This is due to the deployment of latent factors in LFRX
method which is beneficial in anomaly detection. In fact, for the
purpose of anomaly detection using invariant graphs, anomalies in
vertices with a small number of edges cannot be discovered eas-
ily. One might think that by increasing the value of ε (in Eq. 4)
at the time of invariant discovery, we can find larger number of
invariants. However, by increasing ε, the estimation accuracy de-
creases dramatically which results in having false invariants. Table
1 shows that the proposed method discovers more invariants with
higher accuracy.

Fig. 6 shows an invariant graph of temperature under the normal
condition and in the presence of abnormalities. In this figure, direct
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Figure 4: Invariant graphs discovered using ARX and the pro-
posed method (ARX + LFRX) under normal and abnormal
conditions. First column shows the ground truth. In the ab-
normal condition, an anomaly is injected into each graph at
one variable (white node). Rows (a) to (f) shows different com-
binations of time series in Fig. 3. Direct invariants are shown
in solid lines and indirect invariants are shown in dashed lines.

Table 1: Performance evaluation result of ARX and (ARX +
LFRX) for the Sensor Motes dataset.

Avg. Error Avg. Error Edges Edges
Metric ARX+LFRX ARX ARX+LFRX ARX

Total Latent
Voltage 0.0056 0.0070 441 284 170
Temperature 0.3658 0.4971 183 43 145
Humidity 0.6262 0.8632 1142 866 764
Light 81.8377 93.1723 539 269 463

and indirect invariants are illustrated by blue and red edges, respec-
tively. Fig. 6 (a) shows the invariant graph under the normal con-
dition with 183 edges where 140 of them are derived using LFRX.
As we expected, geographic placement of sensors has an effect on
the result. Fig. 6 (b) shows the invariant graph at the presence of
anomalies. In this figure, the top ten sensors based on the ranking
of Eq. 20 are highlighted with red circles. Larger circles repre-
sents higher rank of vertices. As this figure shows, variations of
environmental temperature in the lab result in distortions in nearby
sensors. As an example, sensors 12 to 17 are in the top ten ranking
list. Sensors 16 and 37 are both among the highly ranked ones that
are susceptible to be the source of anomaly. In Fig. 6(b), we can
observe that the LFRX edge between these two vertices is broken.
Fig. 7 depicts the corresponding time series of these two sensors.
We can easily observe that these two time series have almost simi-
lar behavior and are expected to be system invariant. As this figure
illustrates, the relationship between these sensors is broken at time
t = 1300. Abnormal conditions are shown in darker colors.
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Figure 5: (a) Geographical location of wireless sensors (taken
from [1]). (b) Clustering of sensors based on latent factors of
light measurement indicating a high degree of spatial correla-
tion.
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Figure 6: (a) Invariant graph of sensors based on temperature
at normal condition (with 183 edges). ARX-based and LFRX-
based invariants are shown with red and blue edges, respec-
tively. (b) Invariant graph with broken edges in the presence of
an anomaly (162 edges). Top ten sensors based on the ranking
of Eq. 20 are shown with red circles.

5.3 Microgrid
Dataset Description: We performed our experiments on a micro-
grid system where several devices are operating in a distributed set-
ting (Fig. 8). In this setting, the control unit tries to minimize the
amount of energy based on various criteria and hence the micro-
grid shows a complex behavior in the logged measurements. This
dataset which is provided by NEC labs contains logged data from
multiple sources such as loads (primary, secondary), battery, PMU
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Figure 7: Temperature of sensors 16 (blue) and 37 (red). Out-
liers are shown in darker color.
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Figure 8: Schematic view of the NEC microgrid setup.
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Figure 9: Three different time series of NEC microgrid dataset
during one week.

(measurement unit outside of the microgrid), solar system (PV),
weather (inside and outside parameters), and air cooling unit. There
are total of 84 features measured from July 7th to August 7th, 2014.
Due to the different sampling rates of each device, time series are
re-sampled with a unique rate to be aligned to a specific window-
time. Figure 9 shows a sample plot of three time series from differ-
ent units during one week.

Results and Discussion: The invariant graph derived by our pro-
posed method is represented in Fig. 10 (a). In this figure, each node
represents one of the features and the set of features that belong to
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Figure 10: (a) Invariant graph of microgrid under normal condition (ARX + LFRX) (b) Outlier happens when an additional device
is switched off/on in the system. (c) Outlier happens when the secondary load is disconnected.

Table 2: Performance evaluation result of ARX and (ARX + LFRX).
Avg. Error Avg. Error Intra-Device Edges Intra-Device Edges Inter-Device Edges Inter-Device Edges

Device (No. of Signals) (ARX + LFRX) (ARX) (ARX + LFRX) (ARX) (ARX + LFRX) (ARX)
Total Latent Total Latent

PMU (28) 0.0028 0.1346 102 73 102 810 265 755
PV (9) 0.0119 0.1146 26 5 26 187 63 175
Battery (9) 3.7× 10−14 0.2764 21 12 21 239 81 226
Primary LD (9) 2.2× 10−4 0.1460 35 22 29 235 66 236
Secondary LD (9) 2.3× 10−6 0.0434 36 0 36 53 19 52
Weather (13) 0 0.1342 57 17 57 260 94 244
Air Cooling (7) 0.2852 0.2903 11 5 11 213 75 203

a specific device are illustrated using the same color. Also, the size
of each node is proportional to its degree. Furthermore, invariants
derived by ARX and LFRX methods are shown by red and blue
edges, respectively. The total number of invariants that ARX +
LFRX discovered is 2285 where 797 of them are indirect and 1488
of them are direct invariants.

The average estimation errors of traditional ARX and the pro-
posed method are compared in Table 2. As this table shows, the av-
erage error of the proposed method for each device is dramatically
lower than the error resulted by ARX approach. This means that
invariants are selected with higher accuracy using ARX + LFRX.
Also, Table 2 compares the proposed method with ARX in terms of
the number of invariants between devices (Inter-Device) and within
each device (Intra-Device). Inter-Device edges are visualized in
Fig. 11(a) where edge thickness represents the total number of in-
variants between devices. From this figure, we can observe the
high complexity of inter-dependencies between measurements of
devices. For example, energy produced by photovoltaics (PV) has
effect on battery, PMU, loads, and the temperature of environment.

After occurrence of an abnormal behavior, the topology of the
invariant graph changes (i.e., depending on the nature of anomaly,
some edges are removed from the graph). By comparing consecu-
tive graphs, one is able to detect outliers in the system. We detect
changes in the invariant graph in two different situations: when an
additional device is switched off/on and when secondary load is
turned off. Results are shown in Fig. 10 (b) and (c), respectively.
As we may observe from Fig. 10 (b), two edges connecting the sec-
ondary load to PMU and PV are broken. This is due to the change
in the energy consumption behavior of the system. On the other
hand, as Fig. 10 (c) depicts, a large number of invariants between
secondary load and other devices are broken. This is due to the
disconnection of the secondary load. It should be noted that mea-
surements of the secondary load were among the top five anoma-
lies returned by our outlier ranking method. Also, the number of

remaining invariants between devices are shown in Fig. 11 (b) and
(c).

Figure 12 shows some examples of anomalies in the microgrid
system. Each figure shows a pair of time series that under normal
condition are invariant. Abnormal conditions are shown in darker
colors. The gap between occurrence of anomalies and normal time
series depicts the time difference between them. As an example,
Fig. 12 (a) shows the detection of sudden change in the red curve
which is the State of Health (SOH) of the battery. This change is
detected using the broken link between SOH and Reactive power
in Channel C of the PMU. Detecting such anomalies is crucial for
microgrid operators.

It should be noted that since we do not know the labeling of
real dataset, we are unable to evaluate our method using precision
and recall metrics. Nevertheless, we calculated precision and recall
under different scenarios. As an example, when 10 nodes have ran-
dom injected noise, by looking at the top 10 ranked results, preci-
sion and recall were equal. This value is 0.51 for the ARX method,
whereas for ARX + LFRX, it is 0.68.

6. RELATED WORK
Smart Grid and Power System Analytics: Power grids com-
prise a large number of elements and processes that are highly dy-
namic and complex. Traditionally power system operational stud-
ies are primarily based on a quasi-steady-state assumption, with
static and explicit models that largely ignores dynamic characteris-
tics of loads and control devices. The classic weighted least square
(WLS) estimator, combined with methods such as largest normal-
ized residual test and hypothesis testing identification, is exten-
sively used for system diagnosis and outlier identification [2]. Re-
cent developments in smart grids have revealed to us insight into
stochastic operating behaviors and dynamics that we were never
able to observe before. In particular, the widespread deployment
of smart meters, renewable generation, smart load controls, en-
ergy storage, and plug-in hybrid vehicles will require fundamental
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Figure 11: (a) Invariant graph of inter-devices of microgrid (ARX + LFRX) (b) Outlier happens when additional device is switched
off/on in the system (c) Outlier happens when secondary load is disconnected.
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Figure 12: Invariant time series at normal and abnormal conditions: (a) Reactive power Channel C vs. State of Health of Battery
(b) Power factor vs. Voltage of channel A in PMU (c) Outside temperature vs. Power Factor of primary load (d) Battery Current vs.
Inverter output voltage (e) Peak voltage of secondary load vs. Power factor (f) Current magnitude of Channel A vs. Peak power of
primary load.

changes in the operational concepts and principal components of
the grid, in order to achieve real-time operation and control.

Fraud detection and particularly detection of energy theft is one
of most important concerns in the smart grid [18, 22]. Data ana-
lytic methods can play an important role in identifying abnormal
consumption trends and possible malicious activities in such sys-
tems. Daisuke et al. [22] used ARMA and LOF methods in an
adversarial environment to detect attacks in data collected using
advanced meter infrastructure (AMI). Rong et al. [18] compared
classification-based, state-based, and game theory-based methods
in energy-theft detection schemas.

One area that has witnessed significant developments is in the
use of phasor measurement units (PMUs). Chen et al. [7] use PCA
for online monitoring of PMU data for the purpose of early event
detection. Khan et al. [20] proposed a parallel fluctuation approach
using MapReduce techniques. At the lower level, Momtazpour et
al. [23] proposed an integrated data-driven framework to study the
behavior of battery systems in microgrids using clustering, regres-
sion, and spectral clustering of time series for the purposes of high
level characterization of usage behavior and online parameter esti-
mation.

Invariant Discovery and Structure Learning: Sharma et al. [27]
used ARX for invariant discovery in distributed systems and dis-
cussed the challenges in fault localization for data centers. Shan et
al. [26] have extracted overlay invariants based on pairwise invari-
ant networks for fault detection and capacity planning in distributed
systems. Due to the time complexity of invariant discovery of large
scale systems, Ge et al. [13] developed an effective pruning tech-
niques based on the identified upper bounds. In some applications,
the existence of anomalies in invariant graphs yields many broken
links which makes it difficult for a system expert to manually in-
spect each broken link. Hence, Ge et al. in [12] proposed two dif-
ferent methods of ranking metrics according to the anomaly levels
occurring in invariant networks.

In a closely related area, viz. causal modeling of time-series
data, Arnold et al. [4] used the concept of Granger causality to infer
the structure of the causal network given set of time series. These
authors compared performance of the exhaustive Granger method
and a Lasso-Granger method with benchmark methods including
the VAR and SIN methods. However, in [4], the main goal was to
construct causal graphs instead of addressing data with correlated
variables. Subsequently, Liu et al. [21] used a hidden Markov ran-
dom field regression framework to infer temporal causal structures.



Cheng et al. [8] use time order relationships to capture temporal
dependence structures underlying multivariate time series.

Anomaly Detection in Graphs: Akoglu et al. [3] provide an ex-
tensive survey of anomaly detection methods in graphs spanning
different settings: unsupervised, (semi-) supervised approaches,
static, dynamic, attributed, and plain graphs. In dependency graphs,
for the purpose of anomaly detection, Ide et al. [15] used sparse
structure learning to compute correlation anomaly scores of each
variable using neighborhood selection approaches.

7. CONCLUSION
Invariant discovery is an exciting research field which aims to

discover underlying relationships in cyber-physical systems. We
used latent factor regression analysis and combined it with the ARX
model (ARX + LFRX) to recover underlying direct and indirect re-
lationships. These invariants are helpful in decision making and
monitoring processes such as outlier detection. We tested our mod-
els on several datasets and results showed that with the help of la-
tent factors, the accuracy of discovered invariants was higher than
traditional methods. Investigating other topologies involving latent
variables (such as a mesh network) and heuristic search algorithms
to reduce the computational complexity are some of the directions
for future research.
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