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Abstract Given a clustering algorithm, how can we adapt it to find multiple, nonredundant,
high-quality clusterings? We focus on algorithms based on vector quantization and describe
a framework for automatic ‘alternatization’ of such algorithms. Our framework works in
both simultaneous and sequential learning formulations and can mine an arbitrary number of
alternative clusterings. We demonstrate its applicability to various clustering algorithms—
k-means, spectral clustering, constrained clustering, andco-clustering—and effectiveness in
mining a variety of datasets.
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1 Introduction

Alternative clustering (e.g., Gondek and Hofmann (2007)) is the idea of uncovering mul-
tiple clusterings of a dataset so as to suggest varying viewpoints and differing hypotheses.
It has been studied in various applications, e.g., to help refine functional classifications of
genes (Sinkkonen and Kaski (2002)) and in multicriteria decision making (Malakooti and
Yang (2004); Miettinen and Salminen (1999)). Alternative clustering is also typically con-
sidered a precursor step to consensus clustering (Li et al. (2007); Monti et al. (2003)).

While it has been long accepted that clustering formulations are generally undercon-
strained and hence afford multiple solutions, the idea of explicitly mining alternative clus-
terings has witnessed a recent surge of interest (Bae and Bailey (2006); Caruana et al. (2006);
Cui et al. (2007); Dang and Bailey (2010a,b); Davidson and Qi(2008); Gondek and Hof-
mann (2005, 2007); Gondek et al. (2005); Jain et al. (2008); Niu et al. (2010); Qi and David-
son (2009); Ross and Zemel (2006); Zhang et al. (2009)).

Both sequential and simultaneous learning formulations have been studied. In the se-
quential formulation, we are given a clustering or set of clusterings, and the goal is to iden-
tify a new high-quality clustering that is as different as possible from the supplied cluster-

M. S. Hossain1, N. Ramakrishnan1, L. T. Watson1,2

1Dept. of Computer Science,2Dept. of Mathematics, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061

I. Davidson
Dept. of Computer Science, University of California, Davis, CA 95616



2 M. Shahriar Hossain, Naren Ramakrishnan, Ian Davidson, Layne T. Watson

ing(s). In the simultaneous learning formulation, also known as disparate clustering (Jain
et al. (2008)), the goal is to simultaneously identify two (or more) different high-quality
clusterings.

Algorithms for mining alternative clusterings approach the underlying problem in differ-
ent ways. Davidson and Qi (2008) propose a constrained optimization formulation to trans-
form the underlying instance space where the results of the previous clustering are used as
constraints. Jain et al. (2008) learn two disparate clusterings simultaneously by minimizing
a k-means sum-of-squares error objective for the two clustering solutions and at the same
time minimizing the correlation between these two clusterings. Cui et al. (2007) find many
alternative clusterings using a series of orthogonal projections. Data is repetitively orthogo-
nalized into a space not covered by existing clusterings anda clustering algorithm is applied
on the new space. Dang and Bailey (2010a) propose an information-theoretic approach to
ensure alternative clustering quality by minimizing the mutual information between the de-
sired clustering and a supplied clustering. Niu et al. (2010) describe an approach that is based
on learning multiple subspaces in conjunction with learning multiple alternative clustering
solutions by optimizing a single objective function.

There are thus ‘alternate’ views of alternative clustering. Our goal here is not to present
yet another alternative clustering algorithm, but a formulation where we can take an existing
algorithm and automatically ‘alternatize’ it. In other words, given a clustering algorithm, we
show how we can automatically adapt it to find alternative clusterings.

Our contributions are:

1. We demonstrate how vector quantization algorithms that optimize for prototypes can be
embedded into a larger contingency table framework to identify alternative clusterings.
We show how this alternatization approach works fork-means, spectral clustering (Shi
and Malik (2000)), co-clustering of bipartite graphs (Dhillon (2001)), and constraint-
based clustering formulations (Wang and Davidson (2010)).

2. We are able to find many alternative clusterings, rather than just two alternative cluster-
ings or one clustering alternative to a given clustering. Since there is an intrinsic lim-
itation to mining multiple alternative high-quality clusters, our approach helps explore
the space of possible clusterings in a systematic manner. Weshow how this is a valuable
tool in exploratory data analysis.

3. Our approach works in both simultaneous and sequential learning formulations. In our
experiments here, we demonstrate the use of our simultaneous formulation to first find
two alternative clusterings and then use the sequential paradigm to incrementally find
more alternative clusterings.

This paper significantly builds upon a preliminary conference version by Hossain et al.
(2010). While the underlying optimization framework is thesame, we have generalized
both the problem formulation and the domains of applicability. First, the work in Hossain
et al. (2010) is not focused on mining alternative clusterings and instead aims to mine clus-
ters with either maximum similarity or maximum dissimilarity when compared through a
supplied relation. In contrast, our work here is aimed at mining one or more alternative clus-
terings. Second, the work in Hossain et al. (2010) is only fork-means algorithms whereas
the present paper shows how most algorithms based on vector quantization—i.e., those that
choose prototypes/codebook vectors to minimize distortion when the data are replaced by
the prototypes—can be alternatized using our approach. As is well known, this covers a
broad range of clustering algorithms. Third, the work in Hossain et al. (2010) is focused on
a specific data type (attribute vectors over two domains connected by a relation) whereas the
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work here is broad and encompasses many data types, viz. attribute vectors in one or multi-
ple domains, one-mode similarity graphs, bipartite, and multipartite graphs. As a result we
argue that the presented alternatization framework can form a building block for creating
complex data mining algorithms.

2 Alternatization

To introduce the basic ideas behind our alternatization framework, we consider a small
synthetic 2D example (Fig. 1) involving 200 points where we seek to mine two clusters.
In vector quantization algorithms, each cluster is condensed to a prototype and because
we desire alternative clusterings, we wish to identify two sets of prototypes—Proto1 and
Proto2—each of which has one vector for each cluster. There are two desired properties for
these clusterings: i) when compared across clusterings theclusters must be highly distinct
from each other, ii) the individual clusters in each clustering must be local in the respective
spaces (i.e., points within a cluster are similar whereas points across clusters are dissimilar).

2.1 Modeling dissimilarity

We model overlap between clusterings by constructing a contingency table, as shown in
Fig. 1 (bottom). The table is 2×2, where the rows denote clusters from Fig. 1 (top left) and
the columns denote clusters from Fig. 1 (top right). The cells indicate the number of data
points that are common among the respective clusters. In an ideal example of alternative
clustering, the contingency table would result in a uniform(or near uniform) distribution
over all contingency table entries because each cluster from one clustering is uniformly
distributed over all the clusters of the second clustering.Each cluster of Clusterings 1 and
2 of Fig. 1 has 100 points. If we take all 100 points of a clusterof Clustering 1, we would
find out that 50 of these points belong to one cluster of Clustering 2 and the other 50 points
belong to the other cluster of Clustering 2. As a result, eachcell of the contingency table of
Fig. 1(bottom) has 50. Rows of the contingency table capturethe distribution of the clusters
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Fig. 1 Two alternative clusterings compared. The rows of the2 × 2 contingency table denote clusters from
top left and columns denote clusters from top right. The cells of the contingency table indicate the number
of data points that are common among the respective clusters. The contingency table of this figure is an ideal
case and hence possesses a uniform distribution.
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of Clustering 1 in Clustering 2, and the columns capture the distribution of the clusters of
Clustering 2. The deviation of this distribution from the uniform distribution serves as our
objective criterion.

It is important to note, however, that we do not have direct control over the contingency
table entries. These entries are computed from the clusters, which in turn are defined by the
prototypes. The objective function can hence be formulatedas

Obj = F(~(v(Data,Proto1), v(Data,Proto2))).

Here, the fixed variable is Data. Proto1 and Proto2 are our free variables (these are the clus-
ter centroids for two datasets).F , ~, andv are functions.F is the objective function applied
over the contingency table that measures dissimilarity over clusterings.~ is the function that
computes the values in the contingency table.~ actually depends on the cluster membership
probability functionv. Finally, v computes two sets of clusters given the prototypes Proto1
and Proto2 (in other words,v computes vectors’ cluster membership probabilities). The
goal is hence to optimize Obj for Proto1 and Proto2.

To find three or more alternative clusterings (simultaneously), the above function can be
trivially generalized, e.g.,

Obj = F(~(v(Data,Proto1), v(Data,Proto2))

+ F(~(v(Data,Proto1), v(Data,Proto3))

+ F(~(v(Data,Proto2), v(Data,Proto3)).

In other words, all three clusterings must be pairwise different. These notions can also be
easily adapted to the sequential mining case where we are given a partition of the data and
need to identify a clustering alternative to the given partition:

Obj = F(~(Clust1, v(Data,Proto2))).

Here, Clust1 is the supplied clustering and Proto2 denotes the to-be-found prototype vectors.

2.2 Modeling locality

Now we turn our attention to modeling locality of clusters. It is well known that, for a
clustering to satisfy (local) optimality of a sum-of-squared-errors distortion measure, it must
satisfy two criteria:

1. Nearest neighbor criterion: A vector (data point) is assigned to the cluster corresponding
to the nearest prototype.

2. Centroid criterion: A prototype must be the (possibly weighted) average of the vectors
assigned to its cluster.

Classical vector quantization algorithms such ask-means satisfy each of the above criteria
alternatively and iteratively. Here, we instead build these criteria into the definition of the
cluster assignment functionv (see next section for details) rather than as a separate objective
measure. In this manner, by optimizing the objective criterion presented above, we achieve
the twin goals of dissimilarity across clusterings and locality within clusterings, essentially
by solving a bilevel optimization problem. Note that the user of our framework does not
need to provide any explicit parameter for the tradeoff between locality and dissimilarity,
because there is not such tradeoff between the two levels. Asexplained in Section 2.1, our
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objective functionF evaluates the contingency table. The contingency table captures the
dissimilarity and the contingency table computation (the function~ in Obj) is dependent
on locality (membership probability functionv). The details are provided in the following
section.

3 Formalisms

Let W = {wA}nA=1 be a dataset wherews ∈ R
lw are the real-valued vectors in datasetW.

g : W → R
lx is a function that maps vectors fromW into a spaceX = g (W) over which

vector quantization is conducted. We will occasionally abuse notation and viewW andX
as matrices where the vectors are the rows.

The functiong captures any transformations and pre-processing necessary for the algo-
rithm being alternatized. For the classicalk-means algorithm, as we will see,g is simply
the identity function (i.e., no special pre-processing is required). For other vector quantiza-
tion algorithms, its definition is more complicated (see thenext section for details). In the
remainder of this section, we assume that the transformation throughg has been performed
and that we work with vectors in the transformed spaceX .

Because we desire alternative sets of clusters, we createX ′ = X , an exact replica ofX .
Let C(x) andC(x′) be the cluster indices, i.e., indicator random variables, corresponding to
X andX ′, respectively, taking values in{1, . . . , k}.

3.1 Assigning vectors ofX andX ′ to clusters

Let mi,X (mj,X ′) be the prototype vector for clusteri (j) in X (X ′). (These are precisely
the quantities we wish to estimate/optimize, but in this section, assume they are given). Let
v
(xs)
i

(

v
(xt)
j

)

be the cluster membership indicator variables, i.e., the probability that data

samplexs (xt) is assigned to clusteri (j) in X (X ′). Thus,
∑k

i=1 v
(xs)
i =

∑k
j=1 v

(xt)
j = 1.

The traditionalhard assignment is given by

v
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{
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∣

∣
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∣
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∣

∣

∣, i′ = 1, . . . k,
0, otherwise.

(Likewise forv(xt)
j .) Ideally, we would like a continuous function that tracks these hard

assignments to a high degree of accuracy. A standard approach is to use a Gaussian kernel
to smooth out the cluster assignment probabilities:

v
(xs)
i =

exp(− ρ
D ||xs −mi,X ||2)

∑k
i′=1 exp(−

ρ
D ||xs −mi′,X ||2)

, (1)

where

D = max
s,s′

||xs − xs′ ||
2, 1 ≤ s, s′ ≤ n.

An analogous equation holds forv(xt)
j . The astute reader would notice that this is really

the Gaussian kernel approximation withρ/D being the width of the kernel. Notice thatD is
completely determined by the data butρ is a user-settable parameter, and precisely what we
can tune.
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3.2 Preparing contingency tables

Preparing thek × k contingency table (to capture the relationships between entries in clus-
ters acrossX andX ′) is now straightforward. We simply iterate over the implicit one-to-one
relationships betweenX andX ′: We suitably increment the appropriate entry in the contin-
gency table in a one-to-one relationship fashion:

wij =
n
∑

m=1

v
(xm)
i v

(xm)
j , (2)

We also define

wi. =
k
∑

j=1

wij , w.j =
k
∑

i=1

wij ,

wherewi. andw.j are the row-wise and column-wise counts of the cells of the contingency
table, respectively.

We will find it useful to define the probability distributionαi(j), i = 1, . . . , k of the
row-wise random variables andβj(i), j = 1, . . . , k of the column-wise random variables as
follows

αi(j) =
wij

wi.
, (3)

βj(i) =
wij

w.j
. (4)

The row-wise distributions represent the conditional distributions of the clusters inX ′ given
the clusters inX ; the column-wise distributions are also interpreted analogously.

3.3 Evaluating contingency tables

Now that we have a contingency table, we must evaluate it to see if it reflects disparate-
ness of the two clusterings. Ideally, we expect that the contingency table would be uniform
in a perfect alternative clustering. Therefore for our objective criterion, we compare the
row-wise and column-wise distributions from the contingency table entries to the uniform
distribution. We use KL-divergences (Kullback and Leibler(1951)) to define the objective
function (lower values are better)

F =
k
∑

i=1

DKL

(

αi

∥

∥ U

(

1

k

))

+
k
∑

j=1

DKL

(

βj
∥

∥ U

(

1

k

))

. (5)

Note that the row-wise distributions take values over the columns and the column-wise
distributions take values over the rows of the contingency table, in which case ifF is mini-
mized would result in two alternative clusterings in the twovector setsX andX ′ represented
respectively by the rows and columns of the contingency table. Finally observe that the KL-
divergence of any distribution with respect to the uniform distribution is proportional to the
negativeentropy(−H) of the distribution. Thus we are essentially aiming to maximize the
entropy of the cluster conditional distributions between apair of replica of the same vector-
set. Appendix A describes a regularization of Equation (5) for degenerate situations.
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Table 1 Four different cluster handlers.

k-means:

1. X=W . ReturnX .

Spectral clustering (Shi and Malik (2000)):

1. Compute the affinity matrixA for the all-pairs similarity graphG of vectors inW using a
Gaussian similarity function.

2. Compute the diagonal degree matrixD, whose(i, i)th element is the sum of all elements of theith
row ofA.

3. Compute the unnormalized LaplacianL = D − A.
4. Compute the firstk generalized eigenvectorsu1, ..., uk of the generalized eigenproblem

Lu = λDu. Package the eigenvectorsu1, ..., uk as columns into an× k matrix and return the
row vectors of this matrix asX .

Constrained clustering (Wang and Davidson (2010)):

1. Construct the affinity matrixA and degree matrixD of the similarity graphG as above.
2. Construct the constraint matrixQ such that

– Q(i, j) = 1 if vectorsi andj inW have a must-link constraint,
– Q(i, j) = −1 if vectorsi andj inW have a must-not-link constraint,
– Q(i, j) = 0 otherwise.

3. Compute vol(G) =
∑n

i=1

∑n
j=1 Aij , L = I −D−1/2AD−1/2, andQ = D−1/2QD−1/2

whereI is the identity matrix.
4. Solve the generalized eigenvalue system

Lu = λ

(

Q−
β

vol(G)
I

)

u

and preserve the top-k eigenvectorsu1, ..., uk corresponding to positive eigenvalues as columns in
X ∈ R

n×k.
5. ReturnX .

Co-clustering (Dhillon (2001)):

1. Construct the affinity matrixA and degree matrixD of the similarity graphG as above. Form
T = D−1/2WD−1/2.

2. Compute the singular value decomposition ofT and forml = ⌈log2k⌉ singular vectors
u2, ..., ul+1 from left unitary matrix and similarlyl singular vectorsv2, ..., vl+1 from the right

unitary matrix, and constructX =

[

D
−1/2
1 U

D
−1/2
2 V

]

whereD1 andD2 are diagonal matrices such

thatD1 (i, i) =
∑

jWij , D2 (j, j) =
∑

iWij , U = [u2, ..., ul+1], andV = [v2, ..., vl+1].
3. ReturnX .

4 Cluster Handlers

The functiong(W) handles the necessary computations to constructX based on specific
details of the clustering algorithm. Table 1 shows howg (ws) computesxs for k-means
clustering, spectral clustering, constrained clustering, and co-clustering.

Thek-means handler is trivial as it is simply the identity function. In this case, it is easy
to verify that Eqn. 1 denotes soft membership probabilitiescorresponding to softk-means
algorithms. The remaining three algorithms, which are variants or generalizations of spectral
clustering, all perform specific transformations before invokingk-means on the transformed
space. Consequently, the handlers in Table 1 perform transformations ofW to X in line
with the semantics of the respective algorithms. The spectral clustering handler solves the
underlying generalized eigenproblem and prepares the resulting generalized eigenvectors
for k-means clustering. The constrained clustering handler encapsulates must-link (ML) and
must-not-link (MNL) constraints into the matrixQ and solves the corresponding general-
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ized eigenvalue problem. Finally, the co-clustering framework applies to weighted bipartite
graphs and finds partitions for both modes of the graph with one-to-one correspondences
between the elements of these partitions. See Dhillon (2001); Shi and Malik (2000); Wang
and Davidson (2010) for details of these algorithms.

5 Algorithms

Now we are ready to formally present our data mining algorithms as optimization over the
space of prototypes.

5.1 Simultaneous alternative clustering

Our goal is to minimizeF , a nonlinear function ofmi,X andmi,X ′ . For this purpose, we
adopt an augmented Lagrangian formulation with a quasi-Newton trust region algorithm. We
require a flexible formulation with equality constraints (i.e., that mean prototypes lie on the
unit sphere) and bound constraints (i.e., that the prototypes are bounded by the max and min
(componentwise) of the data, otherwise the optimization problem has no solution). These
sphere constraints make sense for spectral and graph based clustering, but not fork-means,
and vice versa for the bound constraints. Mathematically, the sphere constraints make the
bound constraints redundant, but keeping the bound constraints improves computational
efficiency. The LANCELOT software package (Conn et al. (1992)) provides just such an
implementation.

For simultaneous alternative clustering, we “pack” all themean prototype vectors for
clusters from bothX andX ′ (there areη = k + k of them) into a single vectorν of length
t. The problem to solve is then

min
ν

F(ν) subject tohi(ν) = 0, i = 1, . . . , η,

Lj ≤ νj ≤ Uj , j = 1, . . . , t.

whereν is at-dimensional vector andF , hi are real-valued functions continuously differen-
tiable in a neighborhood of the box[L,U ]. Here thehi ensure that the mean prototypes lie
on the unit sphere (i.e., they are of the form

∣

∣

∣

∣

m1,X

∣

∣

∣

∣− 1,
∣

∣

∣

∣

m2,X

∣

∣

∣

∣− 1, · · · ,
∣

∣

∣

∣

m1,X ′

∣

∣

∣

∣− 1,
∣

∣

∣

∣

m2,X ′

∣

∣

∣

∣− 1, · · · ). The bound constraints are all set to[−1,1] assuming the data has been
normalized. The augmented LagrangianΦ is defined by

Φ(ν, λ, ϕ) = F(ν) +

η
∑

i=1

(

λihi(ν) + ϕhi(ν)
2), (6)

where theλi are Lagrange multipliers andϕ > 0 is a penalty parameter. The augmented
Lagrangian method (implemented in LANCELOT) to solve the constrained optimization
problem above is given inOptPrototypes.
In Step 1 ofOptPrototypes, we initialize the prototypes using ak-means algorithm (i.e.,
one which separately finds clusters in each dataset without coordination), pack them into
the vectorν, and use this vector as the starting point for optimization.For each iteration of
the augmented Lagrangian method, we require access toF and∇F which we obtain by
invoking AlgorithmProblemSetup.
This routine goes step-by-step through the framework developed in earlier sections to link
the prototypes to the objective function. There are no parameters in these stages except for
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Algorithm 1 OptPrototypes
1. Choose initial valuesν(0), λ(0), setj := 0, and fixϕ > 0.
2. For fixedλ(j), updateν(j) to ν(j+1) by using one step of a quasi-Newton trust region algorithm for
minimizing Φ

(

ν, λ(j), ϕ
)

subject to the constraints onν. Call ProblemSetupwith ν as needed to obtain
F and∇F .
3. Updateλ by λ(j+1)i

= λ(j)i
+ 2ϕhi

(

ν(j)
)

for i = 1, . . ., η.
4. If

(

ν(j), λ(j)

)

has converged, stop; else, setj := j + 1 and go to (2).
5. Returnν.

Algorithm 2 ProblemSetup
1. Unpackν into values for mean prototype vectors.

2. Use Eq. (1) (and its analog) to computev
(xs)
i andv(xt)

j .
3. Use Eq. (2) to obtain contingency table countswij .
4. Use Eqs. (3) and (4) to define random variablesαi andβj .
5. Use Eqn. (5) to computeF and∇F (see (Tadepalli (2009)).)
6. ReturnF ,∇F .

ρ that controls the accuracy of the Kreisselmeier Steinhauser (KS) approximations, used in
Tadepalli (2009) to approximate min and max functions for clustering.ρ is chosen so that
the KS approximation error is commensurate with the optimization convergence tolerance.
Gradients (needed by the trust region algorithm) are mathematically straightforward but
tedious, so are not explicitly given here.

The per-iteration complexity of the various stages of our algorithm can be given as
follows:

Step Time Complexity
Assigning vectors to clusters O(nklx)
Preparing contingency tables O(nk2)
Evaluating contingency tables O(k2)
Optimization O((η + 1)t2)

Observe that this is a continuous, rather than discrete, optimization algorithm, and hence
the overall time complexity depends on the number of iterations, which is an unknown
function of the requested numerical accuracy. The above complexity figures do not take
into account complexity of the handler functionsg (ws) and assume the simplestk-means
implementation. For each vector, we compare it to each mean prototype, and an inner loop
over the dimensionality of the vectors givesO(nklx). The per-cell complexity for preparing
the contingency table will simply be a linear function of thelengthn of the datasetW.
Evaluating the contingency tables requires us to calculateKL-divergences that are dependent
on the sample space over which the distributions are compared and the number of such
comparisons. Either a row-wise or a column-wise comparisonhasO(k2) time complexity.
Finally, the time complexity of the optimization isO((η+1)t2) per iteration, and the space
complexity is alsoO((η + 1)t2), mostly for storage of Hessian matrix approximations of
F andhi. Note thatt = 2klx andη = 2k. In practice, to avoid sensitivity to local minima,
we perform several random restarts of our approach, with different initializations of the
prototypes.
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5.2 Sequential alternative clustering

The sequential alternative clustering in our framework proceeds exactly the same way as
the simultaneous approach described above except that the packing style of the mean proto-
types inν is now changed. Since one clustering is already given as an input in the sequential
alternative clustering, we prepare the mean prototypes ofX based on those given assign-
ments. We pack only the mean prototypes ofX ′ in ν wheret = klx. As a result, the cluster
membership probabilities ofX remain the same over the iterations of the optimization, but
the mean prototypes ofX ′ vary. At the end of the optimization, we obtain an alternative
clustering forX ′.

5.3 Finding additional alternative clusterings

Finding more than two alternative clusterings is also straightforward. As described earlier,
all known clusterings and their mean prototypes stay fixed during the optimization and only
the desired clustering’s prototypes vary.

5.4 Applying expressive cluster-level constraints

Our framework is able to take cluster-level constraints in the form of an expected contin-
gency table. Since there are column distributions and row distributions for one contingency
table, naturally the expectation is provided from two viewpoints: expected column viewIX
and expected row view,IX ′ . Equation 5 is now modified to

F =
1

k

k
∑

i=1

DKL

(

αi

∥

∥ IX ′ (i, :)
)

+
1

k′

k′

∑

j=1

DKL

(

βj
∥

∥ IX (:, j)
)

. (7)

Note that the number of clusters in the two clusterings can bedifferent now (denoted
by k and k′ in Equation (7)). This allows the user to merge multiple clusters as well as
split some of them. (Appendix A describes a regularization of Equation (7) for degenerate
situations.) Expected row view and column view can be constructed in different ways. In
Section 6.9, we provide an illustrative example that shows how user provided simple binary
cluster-level constraints can be converted to expected probabilistic views to obtain a desired
clustering. Appendix B describes the algorithms to computeexpected row and column views
from a user provided constraint table.

5.5 Evaluation

We present here the evaluation metrics for capturing the locality of clusters in their re-
spective spaces as well as for capturing their ‘alternativeness’ with respect to previously
discovered clusterings. The clustering quality is measured using several indicators: vector
quantization error (VQE) (Davidson and Basu (2007)), Dunn index (DI) (Dunn (1974)), and
average silhouette coefficient (ASC) (Tan et al. (2005)). VQE measures the cohesion of a
clustering when the data are replaced by prototype vectors.Smaller VQE values are better.
DI measures the separation between clusters and larger values are better. ASC is a measure
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that takes both cohesion and separation into account (higher values are better). In our exper-
iments, we utilize either ASC, or use both VQE and DI togetherto evaluate clusterings.

The level to which two clusterings are alternatives of each other is measured using the
Jaccard index (JI) (lower values are better). Given two clusteringsC(i) andC(j), JI cap-
tures whether, for every pair of vectors in the dataset, the pair are clustered together in
both clusterings or separate in both clusterings, or together in one but separate in the other.
Specifically, for clusteringsC(i) andC(j) the Jaccard index (similarity coefficient) is

Jij =
a+ b
(

n
2

)

and the Jaccard dissimilarity coefficient (distance) is

Jd (i, j) = 1−
a+ b
(

n
2

) ,

wherea is the number of pairs together in bothC(i) andC(j), b is the number of pairs
separate in bothC(i) andC(j), andn is the number of vectors in the dataset.

To assess the quality of clustering alternatives as they arediscovered, we track the Jac-
card dissimilarityJd (i, j) between the newly discovered clusteringC(k) and any previous
onesC(i), i < k, by computing

min
i<j≤k

Jd (i, j) .

A plot of this min against discovered clusterings is referred to as the minimum dissimilarity
plot. The minimum dissimilarity for the first clusteringC(1) is set to be 1 and the minimum
dissimilarity for subsequent clusteringsC(k) will decrease monotonically. How fast it de-
creases before reaching 0.0 suggests the potential for finding alternatives. Once we reach
0.0, we conclude that there are no further alternatives possible.

6 Experimental Results

In this section we present evaluations of our framework using synthetic and real-world
datasets. The questions we seek to answer are:

1. Can the framework help reveal a dataset’s intrinsic potential for alternative clusterings?
At what point should we abandon the search for alternatives?(Section 6.1)

2. How does the runtime of the framework scale with increasing dimensions, increasing
number of clusters, and increasing number of data points? (Section 6.2)

3. How well does our framework perform when compared with existing alternative clus-
tering algorithms? (Sections 6.3 and 6.4)

4. How do the quality of clusterings computed by our framework compare with the clus-
terings computed by the original ‘unalternatized’ algorithm? (Sections 6.5, 6.6, 6.7, and
6.8)

5. How can we incorporate user provided cluster-level constraints to steer clustering results
using our framework? (Section 6.9)

All the experiments in this paper were conducted on a single machine with an Intel Core2
Quad CPU (Q9459@2.66GHz).
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6.1 How many alternatives?

We utilize a 2D synthetic dataset having six Gaussian distributions, each with 50 points,
arranged uniformly around a circle. Fig. 2 depicts the clusterings discovered by our frame-
work for a setting of three clusters. Observe that we mine three different clusterings before
we encounter a repetition. Fig. 3 (left) tracks the quality of clusterings as they are mined,
specifically their minimum dissimilarity

min
i<j≤m

Jd (i, j) , 1 ≤ m ≤ 4.

Clustering 1 is the reference and has a score of 1.0. We see a monotonic decrease in the
dissimilarity score for the first three clusterings. Clustering 4 has a dissimilarity of 0 and this
suggests that we should stop seeking further alternatives.Fig. 3 (right) depicts the average
silhouette coefficients (ASC) for each discovered clustering. Note that all the discovered
clusterings have positive ASCs indicating both cohesion and separation of the underlying
clusters.

The number of clusterings discovered before we run out of alternatives is a complex
function of the number of clusters and the nature of the dataset. Using the same dataset as
shown in Fig. 2, we variedk, the number of clusters sought. For each setting, we computed
alternative clusterings until we experienced no further possibilities. Fig. 4 demonstrates the
results. For example, there is only a single clustering withk = 1 (likewise withk = 6), but
three different clusterings withk = 2, 3, and4 (the reader can verify why this is so). The
number of clusterings is highest with 6 possible alternatives atk = 5.
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Fig. 2 Alternative clusterings (k=3) for a dataset of six Gaussian distributions arranged around a circle. We
identify three clusterings before we encounter a repetition.
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Fig. 5 Runtime characteristics.

6.2 Runtime characteristics

Fig. 5 (left) depicts the runtime behavior of our alternatization framework with the basic
k-means algorithm. While the runtime monotonically increases with number of clusters,
number of data points, and number of dimensions, we see that the increases are modest.
Also note that the runtime includes time for the clustering handler (which is specific to the
algorithm being alternatized) and the time for the optimization.
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6.3 Comparison with the alternative clustering algorithm of Qi and Davidson (2009)

We compare the quality of clusters computed by our alternatization framework with the al-
ternative clustering framework of Qi and Davidson (2009). Since the latter is a sequential
approach, for a fair comparison we set up our framework in a sequential fashion as well. We
first obtain ak-means clustering of the dataset, and then alternatize thisclustering using Qi
and Davidson’s framework as well as ours. We applied both frameworks on four UCI repos-
itory datasets—Glass, Ionosphere, Vehicle, and Iris—characteristics of which are shown in
Table 2. We find alternative clusterings withk equal to the number of classes in each dataset.
The results in this subsection are averaged over 10 runs of both our approach and that of Qi
and Davidson.

Fig. 6 (a) depicts the Jaccard (similarity) index between the clustering obtained byk-
means and the clusterings obtained by either our algorithm or the framework of Qi and
Davidson. It shows that our framework provides lower Jaccard index (and hence better alter-
natives) than the work of Qi and Davidson (2009) with all of the datasets. Another measure
of alternativeness is our objective function itself (lowervalues being better). Fig. 6 (b) shows
a comparison of the two approaches in terms of our objective function (F). It shows thatF is
much lower with our approach when compared with that of Qi andDavidson (2009). Note

Table 2 Four UCI datasets.

# Instances # features # classes
Glass 214 10 6

Ionosphere 351 34 2
Vehicle 946 18 4

Iris 150 4 3

Jaccard Index (smaller values are better)
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Fig. 6 We used four UCI datasets (Glass, Ionosphere, Vehicle and Iris) to compare the quality of clusterings
and alternatives between the approach of Qi and Davidson (2009) and our method. (a) Jaccard index. (b)
Objective function. (c) Vector quantization error. (d) Dunn index.
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that, for the approach of Qi and Davidson,F is calculated by comparing the result ofk-
means (Clustering 1) and the resultant assignments of the discovered clustering (Clustering
2), constructing the contingency table, and evaluating it.Hence, our alternative clustering
framework provides better alternatives in terms of both Jaccard index andF .

Considering the measure of cluster quality, Figures 6 (c) and (d) depict the comparison
of locality and separation of the clusters in the alternative clusterings discovered by the two
approaches using vector quantization error (VQE) and the Dunn index (DI). They depict
that, for the glass and ionosphere datasets, VQE and DI of ourapproach are almost the
same as those of Qi and Davidson. For the vehicle and iris datasets, the approach of Qi
and Davidson (2009) has better locality and DI. This shows that, while our framework finds
high-quality alternatives, for some datasets there can be acompromise in the quality of the
clusters.

6.4 Comparison with the state-of-the-art alternative clustering algorithms

We investigate alternative clustering using the Portait dataset as studied in Jain et al. (2008).
This dataset comprises 324 images of three people each in three different poses and 36
different illuminations. Preprocessing involves dimensionality reduction to a grid of64 ×

49 pixels. The goal of finding two alternative clusterings is toassess whether the natural
clustering of the images (by person and by pose) can be recovered. We utilize the same 300
features as used in (Jain et al. (2008)) and set up our framework for simultaneous alternative
clustering with alternatization ofk-means.

Table 3 shows the two contingency tables in the analysis of the Portrait dataset and Table
4 depicts the achieved accuracies using simplek-means, COALA (Bae and Bailey (2006)),
convolutional EM (Jain et al. (2008)), decorrelatedk-means (Jain et al. (2008)), and our
framework for alternative clustering (alternatization ofk-means). Our algorithm performs
better than all other tested algorithms according to both person and pose clusterings.

Fig. 7 shows how the accuracies of the person and the pose clusterings improve over
the iterations, as the objective function is being minimized. The quasi-Newton trust region
algorithm guarantees the monotonic improvement of the objective function without directly
enforcing error metrics over the feature space. Since the objective function captures the dis-
similarity between the two clusterings, indirectly, we notice that the accuracies with respect

Table 3 Contingency tables in analysis of the Portrait dataset. (a)After k-means with random initializations.
(b) after using our framework for alternative clustering.

(a) (b)
C′

1 C′
2 C′

3 C′
1 C′

2 C′
3

C1 0 0 72 C1 36 36 36
C2 63 64 0 C2 36 36 36
C3 3 8 114 C3 36 36 36

Table 4 Accuracy on the Portrait dataset.

Method Person Pose
k-means 0.65 0.55
COALA (Bae and Bailey (2006)) 0.63 0.72
Conv-EM (Jain et al. (2008)) 0.69 0.72
Dec-kmeans (Jain et al. (2008)) 0.84 0.78
Our framework (alternatization ofk-means) 0.93 0.79
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Portrait dataset, Iterations=42
Accuracyperson=93%, Accuracypose=79%

(Accuracy axis is at left and the axis for objective function is at right)
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Fig. 7 Monotonic improvement of objective function (finding alternative clusterings for the Portrait dataset).

to the two alternative clusterings improve with the increase in number of iterations (though,
not monotically).

6.5 Alternatizing a constrained clustering algorithm

We consider the MAGIC Gamma Telescope dataset (UCI ML Repository), which contains
19,020 instances, 11 attributes, and two class labels. The objective of this experiment is to
alternatize a constrained clustering algorithm (Wang and Davidson (2010)) and to assess
if the constraints are satisfied in the alternative clustering while maintaining the clusters’
quality. We experimented with different numbers of randomly generated constraints. Each
must-link (ML) constraint is generated by randomly selecting two datapoints from two dif-
ferent clusters from ak-means clustering outcome. On the other hand, each must-not-link
(MNL) constraint is generated by randomly selecting two datapoints from the same clus-
ter. For each case considered here, half of the constraints are ML constraints and the other
half are MNL constraints. Figure 8 (a) depicts the number of constraint violations for dif-
ferent constraint sets. It demonstrates that the constrained clustering algorithm of Wang and
Davidson and our alternatizatation perform comparably. Fig. 8 (b) shows that the locality of
the generated clusters in terms of VQE is slightly better (recall smaller values are better) in
the alternative clusterings generated by our framework. Fig. 8 (c) shows that the Dunn index
is better (higher) with a smaller number of input constraints in the framework of Wang and
Davidson. On the other hand, our framework has better (higher) Dunn index with a larger
number of input constraints. Finally, by studying the Jaccard (similarity) indices, Fig. 8 (d)
depicts that our framework really generates alternative clusterings with low similarity to the
original clustering. However, the similarities tend to become higher with larger number of
constraints, indicating a breakdown of alternativeness with higher number of constraints.

Fig. 8 (a, b, and c) plots indicate that the alternative constrained clustering obtained by
our framework is quite as good as the constrained clusteringresults provided by the algo-
rithm of Wang and Davidson (2010). Fig. 8 (d) depicts that thegenerated alternative cluster-
ings are different than the outcome of the original unalternatized version of the algorithm.
This indicates a successful alternatization of a constrained clustering algorithm.
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Fig. 8 Alternatizing the algorithm of Wang and Davidson (2010) to mine the MAGIC Gamma Telescope
dataset. Plots of(a), (b), and(c) are, respectively, numbers of constraint violations, the vector quantization
error (VQE), and the Dunn Index (DI) for the native algorithmand our alternatized version. The plot in
(d) shows the Jaccard index (JI) with various numbers of constraints. This shows that there are alternative
clusterings even when the given constraints are satisfied.

6.6 Image segmentation

Image segmentation is a popular application of spectral clustering and in this section we
demonstrate the alternatization of Shi and Malik’s 2000 normalized cut algorithm.

Original Image Partitioning1 Partitioning2

Original image Clustering 1 Clustering 2

Fig. 9 (left) A 85×100 optical illusion.(middle)Segmentation (k = 2) discovered by Shi and Malik (2000).
(right) Segmentation after alternatization by our framework. Contrary to appearances, this segmentation is not
simply a flipping of colors from the previous segmentation. The Jaccard index between the two segmentations
is 0.51.
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Original Image Partitioning1 Image Partitioning2 Image

Original image Clustering 1 Clustering 2

Fig. 10 (left) A 100 × 72 distorted image of actors Liu Fengchao, Jackie Chan, and Wang Wenjie.(middle)
Clustering 1 (k = 5) found by Shi and Malik (2000).(right) Segmentation after alternatizing Clustering 1
using our framework. Note that this clustering brings the three people together better. Jaccard index between
the two clusterings is 0.78.
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Fig. 11 (left) A 40×50 image of Homer Jay Simpson.(middle)Segmentation (k = 3) found by the algorithm
of Shi and Malik (2000)(right) Segmentation after alternatizing clustering 1 by our framework. Jaccard index
between Clusterings 1 and 2 is 0.72.

The first image we consider is a85 × 100 optical illusion (see Fig. 9 (left)). Fig. 9
(middle) shows a segmentation of this image with the normalized cut algorithm withk = 2.
Fig. 9 (right) is the alternative segmentation discovered by our framework. Two clusters
are represented by white and black in both Clustering 1 and 2.The reader might get the
illusion from Fig.9 (right) that in the alternative segmentation the cluster labels are merely
flipped. However, a closer look reveals key differences. Theblack parts (or white parts) of
Clustering 1 are divided into both black and white in Clustering 2. As a result, the Jaccard
index between Figs. 9 (middle) and (right) is 0.51 (a very significant result for the case of
just two clusters).

Alternative clusterings can sometimes aid in discerning features of images that were
missed in previous clusterings. In Fig. 10, we attempt to discover a segmentation and an
alternative segmentation of a 100×72 distorted image of actors Liu Fengchao, Jackie Chan,
and WangWenjie. The first segmentation (Fig. 10 (middle)) isobtained by applying Shi and
Malik’s 2000 segmentation algorithm. An alternative segmentation shown in Fig. 10 (right)
is obtained by applying our framework (alternatization of Shi and Malik’s segmentation
algorithm). Each of these two segmentations has five segments (clusters) denoted by five
different colors. All the pixels in a segment (cluster) havethe same color. Fig. 10 (middle)
shows that the original segmentation algorithm (withk = 5) fails to separate the people
from the backgrounds. Note that Wang Wenjie (the rightmost actor) is conflated with the
background (at bottom side). Although the Jaccard similarity 0.78 between the two segmen-
tations of Fig. 10 (Clustering 1 and 2) is comparatively high, the alternative clustering (right)
found by our framework separates the people from the backgrounds better. This has appli-
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cations to features like the ‘magic wand’ of photo editing tools like PhotoShop where the
user can be presented with a range of alternative possibilities rather than a single selection.

Fig. 11 shows a final example of image segmentation with a40 × 50 image of the
fictional character Homer Jay Simpson. We attempt to find three segments in one clustering
and an alternative segmentation in another clustering. Just like the previous examples of
this subsection, three colors are used to show three clusters in both Clustering 1 and 2. In
Clustering 1, the shirt, neck, and the head of Simpson are in one cluster. In the alternative
clustering (Clustering 2), the lips are better visible. A consensus clustering of these two
clusterings can help discern all key characteristics of theimage.

6.7 Sequential alternative co-clustering

We consider a subset of DBLP, specifically 12 computer science conferences (ICDM, KDD,
SDM, SIGMOD, ICDE, VLDB, CIKM, SIGIR, WSDM, WWW, ICML, and NIPS) and the
500 authors who had top publication counts when aggregated across these conferences. Each
author is represented as a norm one 12-length vector of the publications in these conferences.

We first apply the framework of Dhillon (2001) to discover oneco-clustering and then
repeatedly alternatize it using our framework. Every subsequent co-clustering is alternative
to all previously discovered ones. Recall that the goal of co-clustering is to discover clusters
of authors and concomitant clusters of conferences.

We discovered five different co-clusterings with nonzero minimum Jaccard dissimilar-
ity. That is, Clustering 2 is an alternative of Clustering 1;Clustering 3 is an alternative of
Clusterings 1 and 2, and so forth. A partial description of the results is shown in Fig. 12. By
tracking a specific author, we can observe how he/she changesclusters and cluster labels in
subsequent clusterings. For instance, Corinna Cortes moves through the clusterings: ICML,
NIPS→ SIGIR, ICML → ICML, NIPS → ICML, NIPS, WSDM→ ICDM, KDD, SDM.
The zig-zag pattern of movements in Fig. 12 reveals the disparateness of consecutive clus-
terings. Such disparateness indicates that the author has diversity in her publications since
a lot of alternative conference groups are obtained. (The term ‘diversity’ might confuse the
reader since all the conferences in the current discussion are data mining venues. We assume
that each publication venue promotes unique or slightly overlapping areas of data mining.)
When we track Abraham Silberschatz in the subsequent alternative clusterings, we find that
in each of the clusterings the author is in a cluster that has VLDB and SIGMOD in common.
This indicates that the papers of Abraham Silberschatz are published in specific venues and
have less diversity.

Here we show how subsequent alternatization of co-clustering might be able to discover
insights on different interest groups. An entry in diverse feature clusters in subsequent clus-
terings indicates diversity and entries staying in similarfeature clusters refer to specificity.
Quantifications of such diversity and specificity remain as future work.

6.8 Simultaneous alternative co-clustering

In this subsection we alternatize the co-clustering algorithm but in the simultaneous mode.
We use a text mining example here as motivated by Dhillon (2001), constructing a text
dataset by randomly picking 200 documents from Cranfield and200 documents from Med-
line abstracts. We evaluated the contribution of a term by measuring the information gain
with respect to the class (Cranfield or Medline), and selected the top 400 terms. So the
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Fig. 12 Zig-zag pattern of authors and conferences as discovered through sequential alternative co-clustering.
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Fig. 13 Document confusion matrices of both the clusterings and distributions of terms and documents in the
clusters of the clusterings.

dataset has 400 documents (instances) and 400 terms (attributes). We mined this dataset
with k = 2 clusters.

Fig. 13 (a) shows the confusion matrices for Clustering 1 andClustering 2 (recall that
both are computed using our alternatization framework). The confusion matrix for Clus-
tering 1 indicates that Cluster 1 has 199 documents from the Medline collection whereas
Cluster 2 has 191 documents from the Cranfield collection. Numbers in the other cells of
the confusion matrix of Clustering 1 are small. On the other hand, Cluster 1 of Clustering 2
contains 249 documents with 123 of them from Medline and the other 126 from Cranfield.
77 documents are from Medline and 74 documents are from Cranfield in Cluster 2 of Clus-
tering 2. This shows that Clustering 2 has no diagonal pattern in its confusion matrix like
the confusion matrix of Clustering 1, hence suggesting disparateness (alternativeness).

Fig. 13 (b) (left) shows that terms are almost uniformly distributed in the clusters of the
two clusterings. Fig. 13 (b) (right) shows how the terms of one clustering are distributed in
the clusters of the other clustering. This shows that there are overlaps of terms between the
clusters of the clusterings, indicating some degree of alternativeness in the term clusters.

Fig. 13 (c) catalogs the document distributions in both the clusterings and compares
them. It supports the confusion matrix of Fig. 13 (a) (right). To see why, observe that Clus-
tering 1 closely matches with the class labels (see left table of Fig. 13 (a)), whereas the table
of Fig. 13 (c) bears resemblance to the confusion matrix of Clustering 2 shown in Fig. 13
(a) (right).

Because this is a co-clustering example, we also consider term distributions across clus-
ters. Fig. 14 depicts the membership probabilities of termsin the two clusters across three
alternative clusterings. We see that these patterns are qualitatively different, again suggesting
the ability of our framework to recover alternative clusterings.
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Fig. 14 The effect of alternatization on the membership probabilities of terms in clusters across three alter-
native clusterings. The terms of all three plots are orderedaccording to the reference of Clustering 1 so these
plots can be compared by visual inspection.

6.9 An example of the use of cluster-level constraints with our framework

To illustrate the idea of cluster-level constraints for alternative clustering, we use a synthetic
dataset composed of 1000 two-dimensional points (see Figure 15(a)). The dataset is com-
posed of four petals and a stalk each containing 200 points. When the user appliesk-means
clustering, with a setting of four clusters (i.e.,k = 4), the flower is divided into four parts
as shown in Figure 15(b) where the petals are indeed in different clusters, but each of the
petals also takes up one-fourth of the points from the stalk of the flower. When a setting of
five clusters is used, the user obtains the clustering shown in Figure 15(c). It is evident that
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the five clusters generated byk-means are not able to cleanly differentiate the stalk from the
the petals.

A conventional clustering algorithm likek-means does not take user expectation as an
input to produce better clustering results. Even constrained clustering algorithms would re-
quire an inordinate number of inputs to clearly separate thestalk from the petals. In our
proposed alternative clustering framework (with Equation(7)), the user can provide an in-
put to the algorithm regarding the expected outcome as shownin Figure 16. The constraints
shown in the middle of the figure should be read both fromleft to rightand fromright to left.
We call these constraints scatter/gather constraints. Reading from left to right, we see that
the user expects the four clusters to be broken down (scattered) into five clusters. Reading
from right to left, we see that the stalk is expected to gatherpoints from all current clusters,
but there is a one-to-one correspondence between the desired petals to the original petals.
Figure 16 shows that when cluster-level constraints are added to thek-means clustering
(with k=4) results, well-separated petals and stalk are obtained unlike the result provided by
simplek-means withk=5 (as shown in Figure 15(c)).

The framework thus requires an existing clustering of the data and a user-expected dis-
tribution of the clusters in the new clustering (as shown in Figure 16). We enable the user
to supply a binary association matrix between two clusterings in the form of a constraint
table (e.g., Fig. 17(a)). The matrix is essentially an encoding of the bipartite graph shown in
Fig. 16. For this example, the matrix is of size 4×5 as shown in Fig. 17(a), where each row
indicates a petal of the given (k-means) clustering and a column indicates an expected clus-
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Fig. 15 Clustering the flower dataset. (a) The dataset has 1000 2D points arranged in the form of a flower.
(b) Result ofk-means clustering withk=4. (c)k-means clustering withk=5. Points from the stalk spill over
into the petals.
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Fig. 17 (a) A tabular representation of the scatter/gather constraints presented in the middle of Figure 16, (b)
an intermediate step, (c) Matrix for column-wise conditional distribution, (d) an intermediate step, (e) Matrix
for row-wise conditional distribution.

ter of the output of the framework. The tick marks denote the scatter and gather operations
desired. Note that each row of Fig. 17(a) has two tick marks and one of these tick marks is
in the fifth column, which is the column for the expected stalkof the flower.

A cell of the constraint table is meant to represent an expected (or an ideal case) proba-
bility that objects of a cluster in one clustering form part of a cluster in another clustering.
We convert the matrix into two probability distributions, one defined along columns and one
defined along rows. This results in two matrices, row viewIX ′ and column viewIX (see
Fig. 17(c) and (e)). Although there are many ways to construct such distributions from the
binary matrix, we perform simple row-wise and column-wise normalizations here. (Fig. 17
shows the steps involved. Appendix B describes the algorithms to compute expected row
and column views from the user-provided constraint table. More complex distributions can,
of course, be incorporated based on user input.) Thus, in ourexample, although not explic-
itly mentioned by the user, we infer that 25% of the points in the stalk cluster should come
from each of the petals of the first clustering. Conversely, these distributions capture the
requirement that each of the petals of the first clustering should give up 20% of their points
to form the stalk of the second clustering and that the other 80% of the points should go into
one cluster of the second clustering.

7 Related Work

As stated earlier, the idea of finding more clusterings than asingle one has been stud-
ied through various mechanisms and also in various guises, including subspace cluster-
ing (Agrawal et al. (1998); Cheng et al. (1999)), nonredundant clustering/views (Cui et al.
(2007); Gondek and Hofmann (2005); Niu et al. (2010)), associative clustering (Kaski et al.
(2005); Sinkkonen et al. (2004)), metaclustering (Caruanaet al. (2006); Zeng et al. (2002)),
and consensus clustering (Li et al. (2007); Monti et al. (2003); Strehl and Ghosh (2003)).
A key distinguishing feature of our work is the formulation of objective functions for al-
ternatization using a uniform contingency table framework. While contingency tables have
been employed elsewhere (Brohee and van Helden (2006); Sinkkonen et al. (2002)), they
have been used primarily as criteria to evaluate clusterings. The few works (Govaert and
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Nadif (2003); Greenacre (1988); Nadif and Govaert (2005)) that do use contingency tables
to formulate objective criteria use them in the context of a specific algorithm such as co-
clustering or block clustering, whereas we use them to alternatize a range of algorithms.
This work can also be viewed as a form of relational clustering (Hossain et al. (2010)) be-
cause we use (two) homogeneous copies of the data to model the‘alternativeness’ property
of two clusterings. However, the locality of clusterings intheir respective data spaces is also
incorporated into the objective function without any explicit trade-off between locality and
the ‘alternativeness’ property. We describe the literature related to our work below.

MDI: The objective functions we have defined have connections to the principle of min-
imum discrimination information (MDI), introduced by Kullback for the analysis of contin-
gency tables (Kullback and Gokhale (1978)) (the minimum Bregman information (MBI) in
(Banerjee et al. (2005)) can be seen as a generalization of this principle). The MDI principle
states that ifq is the assumed or true distribution, the estimated distribution p must be chosen
such thatDKL(p||q) is minimized. In our objective functions the estimated distribution p

is obtained from the contingency table counts. The true distribution q is assumed to be the
uniform or expected distribution. We minimze the KL-divergence from this true distribution
as required.
Co-clustering binary matrices, Associative clustering, and Cross-associations:Identify-
ing clusterings over a relation (i.e., a binary matrix) is the topic of many efforts (Chakrabarti
et al. (2004); Dhillon et al. (2003)). The former uses information-theoretic criteria to best
approximate a joint distribution of two binary variables and the latter uses the MDL (min-
imum description length) principle to obtain a parameter-free algorithm by automatically
determining the number of clusters. Our work is focused on not just binary relations but also
attribute-valued vectors. The idea of comparing clustering results using contingency tables
was first done in (Kaski et al. (2005)) although our work is thefirst to attempt “alternatiza-
tion” of clustering algorithms using the same framework.
Finding disparate clusterings:The idea of finding disparate clusterings has been studied
in (Jain et al. (2008)). Here twodissimilar clusterings are soughtsimultaneouslywhere the
definition of dissimilarity is in terms of orthogonality of the two sets of prototype vectors.
This is an indirect way to capture dissimilarity, whereas inour paper we use contingency
tables to more directly capture the dissimilarity. Furthermore, our work is able to find two
alternative clusterings in a more expressive way. For instance, our framework allows the
user to provide cluster-level constraints that are easy to set up. It is diffcult to specify such
criteria in terms of instance-level must-link and must-not-link constraints.
Clustering over relation graphs: Clustering over relation graphs is a framework by Baner-
jee et al. (2007) that uses the notion of Bregman divergencesto unify a variety of loss
functions and applies the Bregman information principle (from (Banerjee et al. (2005))) to
preserve various summary statistics defined over parts of the relational schema. The key
difference between this work and ours is that this frameworkis primarily targeted toward
dependent clustering (compression) whereasour work targets alternative clustering. We
demonstrataded applications of our framework as a dependent clustering tool in (Hossain
et al. (2010)). Several key differences beweetn the formawork by Banerjee et al. (2007) and
ours are as follows. First, Banerjee et al. aim tominimize the distortion as defined through
conditional expectations over the original random variables, whereas our work is meant to
both minimize and introduce distortion as needed, over many subsequent alternatives as
applicable. This leads to tradeoffs across alternatives which is unlike the tradeoffs experi-
enced in (Banerjee et al. (2007, 2005)) between compressionand accuracy of modeling (see
also MIB, discussed below). A second difference is that our work does not directly mini-
mize error metrics over the attribute-value space and uses contingency tables (relationships
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between clusters) to exclusively drive the optimization. This leads to the third difference,
namely that the distortions we seek to minimize are with respect to idealized contingency
tables rather than with respect to the original relational data. The net result of these varia-
tions is that relations (idealized as well as real) are givenprimary importance in influencing
the clusterings.
Multivariate information bottleneck: Our work is reminiscent of the multivariate infor-
mation bottleneck (MIB) (Friedman et al. (2001)), which is aframework for specifying
clusterings in terms of two conflicting criteria: locality or compression (of vectors into clus-
ters) and preservation of mutual information (of clusters with auxiliary variables that are
related to the original vectors). We share with MIB the formulation of a multicriteria objec-
tive function derived from a clustering schema but differ inthe specifics of both the intent
of the objective function and how the clustering is driven based on the objective function.
Furthermore, the MIB framework was originally defined for discrete settings whereas we
support soft membership probabilities for multiple alternative clusterings. Some other ex-
isting alternative clustering algorithms, e.g., minCEntropy (Vinh and Epps (2010)), CAMI
(Dang and Bailey (2010b)), and NACI (Dang and Bailey (2010a)) also use information the-
oretic measures to compare pairs of clusterings, but our approach explicitly takes advantage
of a simple cluster-level contingency table that allows a very flexible setting to encode the
user’s expectation.

8 Discussion

We have presented a general and expressive framework to alternatize a range of cluster-
ing algorithms based on vector quantization. Our results show that the framework is both
broadly applicable across algorithms and effective in systematically exploring the space of
possible clusterings. We are working on two main directionsof future work. First, because
alternative clustering is often driven by user input and domain considerations, we would like
to develop an interactive tool for guided exploration of complex datasets. Second, combined
with our earlier work (Hossain et al. (2010)), we plan to generalize alternative clustering in
the direction of modeling and compressing entire relational schemas of data.
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Sinkkonen, J., Kaski, S., and Nikkilä, J. (2002). Discriminative Clustering: Optimal Con-
tingency Tables by Learning Metrics. InECML ’02, pages 418–430.
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APPENDIX

A Regularization

Degenerate situations can arise in some cases where the datapoints can be assigned with equal probability
to every cluster, resulting in a trivial solution for ensuring that the contingency table resembles a uniform
distribution. To alleviate this issue we add two terms to Equation (5) giving
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Each of these two terms ensures that the probability distribution of each point being assigned to the clusters
is nonuniform. The negative signs of the two additional terms ensure this nonuniformity.p

(

V (xs)
)

refers to
the vector containing the cluster membership probabilities of thesth datapoint ofX (likewise,p

(

V (xt)
)

).
U is the uniform distribution overk or k′ clusters.

Equation (7) with regularization is:
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whereIX ′ (i, :) refers to theith row of the row view andIX (:, j) represents thejth column of the column
view of the expected contingency table generated from the user provided cluster-level constraint table.

B Computing row and column views

Algorithms 3 and 4 outline the pseudocodes to construct the expected column and row views of the probabilis-
tic contingency table. Figure 17 shows the steps involved. The intermediate matrix between the user-provided
cluster-level constraint table and the column viewIX of Figure 17 is formed by replacing the tick marks by
the receprocal of number of ticks in a row. This intermediatematrix is represented by a temporary variable
T in Algorithm 3. The column viewM = IX is produced from the intermediate matrix, by computing the
column-wise probability for each cell (and hence each of thecolumns sums up to 1.0 inIX ). Similarily for
the row viewIX ′ , we use columns instead of rows while computing the intermediate matrix to count the dis-
tribution of the ticks. As shown in Algorithm 4, a row ofM ′ = IX ′ is then computed from the distribution
of the row values of the intermediate matrix in the columns (thus rows sum up to 1.0).
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Algorithm 3 Conversion of user provided constraint table to column view, IX
Output: M = IX
B ← User provided constraint table. Assume thatB is a binary matrix containing 1 in a cell if there is a
tick in the corresponding checkbox, otherwise the cell has a0.
nr ← Number of rows inB
nc ← Number of columns inB
M ← Empty matrix of sizeB
T ← A Temporary matrix variable of sizeB
R← A Vector of lengthnc.
C ← A Vector of lengthnr .
for i = 1 to nr do

R(i) ← sum(B(i, :)) //B(i, :) refers to thei-th row ofB.
end for
for i = 1 to nr do

for j = 1 to nc do
T (i, j)← B(i, j)/R(i)

end for
end for
for j = 1 to nc do

C(j)← sum(T (:, j)) //T (:, j) refers to thej-th col. ofT .
end for
for j = 1 to nc do

for i = 1 to nr do
M(i, j)← T (i, j)/C(j)

end for
end for

Algorithm 4 Conversion of user provided constraint table to row view,IX ′

Output: M ′ = IX ′

B ← User provided constraint table. Assume thatB is a binary matrix containing 1 in a cell if there is a
tick in the corresponding checkbox, otherwise the cell has a0.
nr ← Number of rows inB
nc ← Number of columns inB
M ′ ← Empty matrix of sizeB
T ← A Temporary matrix variable of sizeB
R← A Vector of lengthnc.
C ← A Vector of lengthnr .
for j = 1 to nc do

C(j)← sum(B(:, j)) //B(:, j) refers to thej-th col. ofB.
end for
for i = 1 to nr do

for j = 1 to nc do
T (i, j)← B(i, j)/C(j)

end for
end for
for i = 1 to nr do

R(i) ← sum(T (i, :)) //T (i, :) refers to thei-th row ofT .
end for
for j = 1 to nc do

for i = 1 to nr do
M ′(i, j)← T (i, j)/R(i)

end for
end for


