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Abstract Given a clustering algorithm, how can we adapt it to find npldti nonredundant,
high-quality clusterings? We focus on algorithms basedeamtor quantization and describe
a framework for automatic ‘alternatization’ of such algbns. Our framework works in
both simultaneous and sequential learning formulatiodscan mine an arbitrary number of
alternative clusterings. We demonstrate its applicabititvarious clustering algorithms—
k-means, spectral clustering, constrained clusteringcardustering—and effectiveness in
mining a variety of datasets.

Keywords Clustering: Alternative clustering

1 Introduction

Alternative clustering (e.g., Gondek and Hofmann (2003))hee idea of uncovering mul-
tiple clusterings of a dataset so as to suggest varying \aawgpand differing hypotheses.
It has been studied in various applications, e.g., to hdlpedunctional classifications of
genes (Sinkkonen and Kaski (2002)) and in multicriteriaiglen making (Malakooti and
Yang (2004); Miettinen and Salminen (1999)). Alternatiastering is also typically con-
sidered a precursor step to consensus clustering (Li €@07(); Monti et al. (2003)).

While it has been long accepted that clustering formulatiare generally undercon-
strained and hence afford multiple solutions, the idea pfieitly mining alternative clus-
terings has witnessed a recent surge of interest (Bae afeyB2006); Caruana et al. (2006);
Cui et al. (2007); Dang and Bailey (2010a,b); Davidson and2Q08); Gondek and Hof-
mann (2005, 2007); Gondek et al. (2005); Jain et al. (200B)eNal. (2010); Qi and David-
son (2009); Ross and Zemel (2006); Zhang et al. (2009)).

Both sequential and simultaneous learning formulatione eeen studied. In the se-
guential formulation, we are given a clustering or set ofttings, and the goal is to iden-
tify a new high-quality clustering that is as different asgible from the supplied cluster-
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ing(s). In the simultaneous learning formulation, alsownas disparate clustering (Jain
et al. (2008)), the goal is to simultaneously identify two (oore) different high-quality
clusterings.

Algorithms for mining alternative clusterings approach timderlying problem in differ-
ent ways. Davidson and Qi (2008) propose a constrained atiion formulation to trans-
form the underlying instance space where the results of té@qus clustering are used as
constraints. Jain et al. (2008) learn two disparate climgersimultaneously by minimizing
a k-means sum-of-squares error objective for the two cluggesplutions and at the same
time minimizing the correlation between these two clusigsi Cui et al. (2007) find many
alternative clusterings using a series of orthogonal ptimes. Data is repetitively orthogo-
nalized into a space not covered by existing clusteringsaanidstering algorithm is applied
on the new space. Dang and Bailey (2010a) propose an inflamrdieoretic approach to
ensure alternative clustering quality by minimizing thetoal information between the de-
sired clustering and a supplied clustering. Niu et al. (3@E3cribe an approach that is based
on learning multiple subspaces in conjunction with leagninultiple alternative clustering
solutions by optimizing a single objective function.

There are thus ‘alternate’ views of alternative clusteridgr goal here is not to present
yet another alternative clustering algorithm, but a foratioh where we can take an existing
algorithm and automatically ‘alternatize’ it. In other wigr given a clustering algorithm, we
show how we can automatically adapt it to find alternativestetings.

Our contributions are:

1. We demonstrate how vector quantization algorithms thtitrize for prototypes can be
embedded into a larger contingency table framework to ifiealternative clusterings.
We show how this alternatization approach worksieneans, spectral clustering (Shi
and Malik (2000)), co-clustering of bipartite graphs (dnil (2001)), and constraint-
based clustering formulations (Wang and Davidson (2010)).

2. We are able to find many alternative clusterings, rathean fbst two alternative cluster-
ings or one clustering alternative to a given clusteringc8ithere is an intrinsic lim-
itation to mining multiple alternative high-quality cless, our approach helps explore
the space of possible clusterings in a systematic manneshdie how this is a valuable
tool in exploratory data analysis.

3. Our approach works in both simultaneous and sequenéiatitey formulations. In our
experiments here, we demonstrate the use of our simultarfeauulation to first find
two alternative clusterings and then use the sequentialdn to incrementally find
more alternative clusterings.

This paper significantly builds upon a preliminary confeerersion by Hossain et al.
(2010). While the underlying optimization framework is teeme, we have generalized
both the problem formulation and the domains of applicabikirst, the work in Hossain
et al. (2010) is not focused on mining alternative clustggiand instead aims to mine clus-
ters with either maximum similarity or maximum dissimilgrivhen compared through a
supplied relation. In contrast, our work here is aimed atingione or more alternative clus-
terings. Second, the work in Hossain et al. (2010) is onlykfoneans algorithms whereas
the present paper shows how most algorithms based on vegtatization—i.e., those that
choose prototypes/codebook vectors to minimize distontvben the data are replaced by
the prototypes—can be alternatized using our approachs Aeell known, this covers a
broad range of clustering algorithms. Third, the work in stia et al. (2010) is focused on
a specific data type (attribute vectors over two domains ected by a relation) whereas the
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work here is broad and encompasses many data types, viauggtvectors in one or multi-
ple domains, one-mode similarity graphs, bipartite, andtipartite graphs. As a result we
argue that the presented alternatization framework can #obuilding block for creating
complex data mining algorithms.

2 Alternatization

To introduce the basic ideas behind our alternatizatioméssork, we consider a small
synthetic 2D example (Fig. 1) involving 200 points where welsto mine two clusters.
In vector quantization algorithms, each cluster is condérn® a prototype and because
we desire alternative clusterings, we wish to identify tveéssof prototypes—Protol and
Proto2—each of which has one vector for each cluster. Therene desired properties for
these clusterings: i) when compared across clusteringsltiséers must be highly distinct
from each other, ii) the individual clusters in each clusigmust be local in the respective
spaces (i.e., points within a cluster are similar where@#pacross clusters are dissimilar).

2.1 Modeling dissimilarity

We model overlap between clusterings by constructing aimgency table, as shown in
Fig. 1 (bottom). The table is»22, where the rows denote clusters from Fig. 1 (top left) and
the columns denote clusters from Fig. 1 (top right). Thesciltlicate the number of data
points that are common among the respective clusters. Ideal example of alternative
clustering, the contingency table would result in a unifgqen near uniform) distribution
over all contingency table entries because each clustar e clustering is uniformly
distributed over all the clusters of the second clusteritarh cluster of Clusterings 1 and
2 of Fig. 1 has 100 points. If we take all 100 points of a clustfe€lustering 1, we would
find out that 50 of these points belong to one cluster of Clusie2 and the other 50 points
belong to the other cluster of Clustering 2. As a result, esthof the contingency table of
Fig. 1(bottom) has 50. Rows of the contingency table capgheelistribution of the clusters

Clustering 1 Clustering 2

Fig. 1 Two alternative clusterings compared. The rows of2he 2 contingency table denote clusters from
top left and columns denote clusters from top right. Thescedflthe contingency table indicate the number
of data points that are common among the respective cluteescontingency table of this figure is an ideal
case and hence possesses a uniform distribution.
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of Clustering 1 in Clustering 2, and the columns capture fk&idution of the clusters of
Clustering 2. The deviation of this distribution from theifonm distribution serves as our
objective criterion.

Itis important to note, however, that we do not have directid over the contingency
table entries. These entries are computed from the clustiish in turn are defined by the
prototypes. The objective function can hence be formulated

Obj = F(h(v(Data Protol), v(Data Proto2)).

Here, the fixed variable is Data. Protol and Proto2 are oanaeables (these are the clus-
ter centroids for two datasetsy, /i, andv are functionsF is the objective function applied
over the contingency table that measures dissimilarity okesterings# is the function that
computes the values in the contingency tablactually depends on the cluster membership
probability functionv. Finally, v computes two sets of clusters given the prototypes Protol
and Proto2 (in other words, computes vectors’ cluster membership probabilities). The
goal is hence to optimize Obj for Protol and Proto2.

To find three or more alternative clusterings (simultanggughe above function can be
trivially generalized, e.qg.,

Obj = F(h(v(Data Protol), v(Datg Proto2)
+ F(h(v(Data Protol), v(Datg Proto3)
+ F(h(v(Data Proto2, v(Data Proto3).

In other words, all three clusterings must be pairwise tifié These notions can also be
easily adapted to the sequential mining case where we aga giyartition of the data and
need to identify a clustering alternative to the given piarti

Obj = F(h(Clustl, v(Datg Proto2)).

Here, Clustl is the supplied clustering and Proto2 denbtetotbe-found prototype vectors.

2.2 Modeling locality

Now we turn our attention to modeling locality of clustersid well known that, for a
clustering to satisfy (local) optimality of a sum-of-sqedserrors distortion measure, it must
satisfy two criteria:

1. Nearest neighbor criterion: A vector (data point) isgssd to the cluster corresponding
to the nearest prototype.

2. Centroid criterion: A prototype must be the (possibly gieéd) average of the vectors
assigned to its cluster.

Classical vector quantization algorithms suchkaseans satisfy each of the above criteria
alternatively and iteratively. Here, we instead build thesteria into the definition of the
cluster assignment functian(see next section for details) rather than as a separatetiobje
measure. In this manner, by optimizing the objective dotepresented above, we achieve
the twin goals of dissimilarity across clusterings and lisgavithin clusterings, essentially
by solving a bilevel optimization problem. Note that the ustour framework does not
need to provide any explicit parameter for the tradeoff leemvliocality and dissimilarity,
because there is not such tradeoff between the two levelsxplgined in Section 2.1, our
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objective functionF evaluates the contingency table. The contingency tableucepthe
dissimilarity and the contingency table computation (thection7 in Obj) is dependent
on locality (membership probability functior). The details are provided in the following
section.

3 Formalisms

Letw = {wa}';_, be a dataset where, € R'* are the real-valued vectors in dataget
g : W — R is a function that maps vectors from into a spacet = g (W) over which
vector quantization is conducted. We will occasionallysbunotation and viewy and X
as matrices where the vectors are the rows.

The functiong captures any transformations and pre-processing negdssahne algo-
rithm being alternatized. For the classiéameans algorithm, as we will seg,is simply
the identity function (i.e., no special pre-processingeiguired). For other vector quantiza-
tion algorithms, its definition is more complicated (see legt section for details). In the
remainder of this section, we assume that the transform#timughg has been performed
and that we work with vectors in the transformed spéce

Because we desire alternative sets of clusters, we ci¢fate X', an exact replica ak’.
Let C(,) andC, be the cluster indices, i.e., indicator random variablesresponding to
X andx’, respectively, taking values i1, ..., k}.

3.1 Assigning vectors ot andX” to clusters

Letm; x (m; x+) be the prototype vector for cluste(s) in X (X’). (These are precisely
the quantities we wish to estimate/optimize, but in thidise¢c assume they are given). Let
UZ(XS) (vj(xt)) be the cluster membership indicator variables, i.e., tlbatility that data
samplex; (x;) is assigned to clustér(j) in &' (x’). Thus,> % vf"“ = Zle v§x') =1.
The traditionahard assignment is given by

L) 17if||xs—mi,x||SHxs—mi/XH, i'=1,.. .k,
it 710, otherwise

(Likewise forv;x” .) Ideally, we would like a continuous function that trackese hard
assignments to a high degree of accuracy. A standard appi®ée use a Gaussian kernel
to smooth out the cluster assignment probabilities:

L) _ exp(—%|jxs — m; x|[*) )
(o) = ,
’ Y1 exp(—pllxs — my x|[?)

where

D = max|[xs —xg]?, 1<s,s <n.
s,8

An analogous equation holds foj"'). The astute reader would notice that this is really
the Gaussian kernel approximation withD being the width of the kernel. Notice thatis
completely determined by the data ks a user-settable parameter, and precisely what we
can tune.
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3.2 Preparing contingency tables

Preparing thé x k contingency table (to capture the relationships betweétesrin clus-
ters acrosst andX’) is now straightforward. We simply iterate over the imglmne-to-one
relationships betweer and x’: We suitably increment the appropriate entry in the contin-
gency table in a one-to-one relationship fashion:

n

wig = 3 o), ®)

m=1

We also define
k k
wi.zzwm w.jzzwm
j=1 i=1

wherew; andw_; are the row-wise and column-wise counts of the cells of thrgisgency
table, respectively.
We will find it useful to define the probability distributiom;(5), 7 = 1,...,k of the

row-wise random variables amj (<), j = 1, .. ., k of the column-wise random variables as
follows

aifj) = o, 3)
8;6) = = (4)

-J

The row-wise distributions represent the conditionalribgtions of the clusters i’ given
the clusters inY’; the column-wise distributions are also interpreted ag@lsly.

3.3 Evaluating contingency tables

Now that we have a contingency table, we must evaluate it éoifsié reflects disparate-
ness of the two clusterings. Ideally, we expect that theisgahcy table would be uniform
in a perfect alternative clustering. Therefore for our obje criterion, we compare the
row-wise and column-wise distributions from the contingetable entries to the uniform
distribution. We use KL-divergences (Kullback and Leib|&851)) to define the objective
function (lower values are better)

g GO L L)) R

i=1

Note that the row-wise distributions take values over tHaroas and the column-wise
distributions take values over the rows of the contingeatyet, in which case ifF is mini-
mized would result in two alternative clusterings in the weator setst andx”’ represented
respectively by the rows and columns of the contingencyetdfihally observe that the KL-
divergence of any distribution with respect to the unifonstribution is proportional to the
negativeentropy(— H) of the distribution. Thus we are essentially aiming to maxe the
entropy of the cluster conditional distributions betwegraa of replica of the same vector-
set. Appendix A describes a regularization of Equation ¢sYfegenerate situations.
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Table 1 Four different cluster handlers.

k-means:
1. X=W. ReturnX.
Spectral clustering (Shi and Malik (2000)):

1. Compute the affinity matrix for the all-pairs similarity grapli= of vectors in¥) using a
Gaussian similarity function.

2. Compute the diagonal degree matkdx whose(%, 7)th element is the sum of all elements of ttie
row of A.

3. Compute the unnormalized Laplacian= D — A.

4. Compute the firsk generalized eigenvectots, ..., u; of the generalized eigenproblem
Lu = ADu. Package the eigenvectois, ..., uy as columns into @ x k£ matrix and return the
row vectors of this matrix a&’.

Constrained clustering (Wang and Davidson (2010)):

1. Construct the affinity matrixt and degree matri¥o of the similarity graphz as above.
2. Construct the constraint matrd) such that
— Q(i,7) = 1if vectorsi andj in W have a must-link constraint,
- Q(4,j) = —1if vectorsi andyj in W have a must-not-link constraint,
— Q(i,7) = 0 otherwise.
3. Compute vo[G) = 31| >0 Ay, L=1—D~Y/2AD=1/2, andQ = D~/2QD~1/2
where/ is the identity matrix.
4. Solve the generalized eigenvalue system

- ~ B
Lu= X — 1
“ (Q vol(G) “
and preserve the top-eigenvectors.y, ..., ux corresponding to positive eigenvalues as columns in
X € Rnxk,
5. ReturnX.

Co-clustering (Dhillon (2001)):

1. Construct the affinity matrixt and degree matri¥o of the similarity graphz as above. Form
T =D"1Y2wD~1/2,
2. Compute the singular value decompositiorvoénd formi = [log, k] singular vectors
u2, ..., u;+1 from left unitary matrix and similarly singular vectorssz, ..., v;41 from the right
—1/2
unitary matrix, and construct’ = D£1/2 V} whereD; and D» are diagonal matrices such

thatDl (Z,Z) = Zj Wij, Do (j,]) = Zz Wij, U= [ug, ...,ul+1}, andV = [UQ, ...,vHﬂ.
3. Return’.

4 Cluster Handlers

The functiong(WW) handles the necessary computations to consttubased on specific
details of the clustering algorithm. Table 1 shows hg{w,) computesxs for k-means
clustering, spectral clustering, constrained clusterdmgl co-clustering.

Thek-means handler is trivial as it is simply the identity fulcti In this case, it is easy
to verify that Eqn. 1 denotes soft membership probabilitesesponding to soft-means
algorithms. The remaining three algorithms, which areargs or generalizations of spectral
clustering, all perform specific transformations befor@king k-means on the transformed
space. Consequently, the handlers in Table 1 perform tanations of\V to X in line
with the semantics of the respective algorithms. The sakclustering handler solves the
underlying generalized eigenproblem and prepares thdtiresgeneralized eigenvectors
for k-means clustering. The constrained clustering handleapdates must-link (ML) and
must-not-link (MNL) constraints into the matrig and solves the corresponding general-
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ized eigenvalue problem. Finally, the co-clustering fraumek applies to weighted bipartite
graphs and finds partitions for both modes of the graph wigttorone correspondences
between the elements of these partitions. See Dhillon (2@H and Malik (2000); Wang
and Davidson (2010) for details of these algorithms.

5 Algorithms

Now we are ready to formally present our data mining algorgtas optimization over the
space of prototypes.

5.1 Simultaneous alternative clustering

Our goal is to minimizeF, a nonlinear function ofn; » andm, .. For this purpose, we
adopt an augmented Lagrangian formulation with a quasitbietvust region algorithm. We
require a flexible formulation with equality constraint®(j that mean prototypes lie on the
unit sphere) and bound constraints (i.e., that the pro&styse bounded by the max and min
(componentwise) of the data, otherwise the optimizatiblgm has no solution). These
sphere constraints make sense for spectral and graph Hasestiog, but not fok-means,
and vice versa for the bound constraints. Mathematicdily,sphere constraints make the
bound constraints redundant, but keeping the bound camistrianproves computational
efficiency. The LANCELOT software package (Conn et al. ()992ovides just such an
implementation.

For simultaneous alternative clustering, we “pack” all thean prototype vectors for
clusters from both’ andx” (there are; = k + k of them) into a single vectar of length
t. The problem to solve is then

min F(v) subjecttoh;(v) =0,i=1,...,n,
Lj <vyj SUj7j=17...7t.
wherev is at-dimensional vector and, h; are real-valued functions continuously differen-
tiable in a neighborhood of the bdx, U]. Here theh; ensure that the mean prototypes lie
on the unit sphere (i.e., they are of the fom, || — 1, ||ma x|| =1, -+, ||my x/|| - 1,

ng,x/ —1,---). The bound constraints are all sef{tel, 1] assuming the data has been
normalized. The augmented Lagrangi&ais defined by

7
D(v, N p) = F(v) + Y (Nihi(v) + hi(v)?), (6)

1=1
where the); are Lagrange multipliers and > 0 is a penalty parameter. The augmented
Lagrangian method (implemented in LANCELOT) to solve th@steained optimization
problem above is given i@ptPrototypes
In Step 1 ofOptPrototypeswe initialize the prototypes using /ameans algorithm (i.e.,
one which separately finds clusters in each dataset wittmardmation), pack them into
the vectorv, and use this vector as the starting point for optimizatteor. each iteration of
the augmented Lagrangian method, we require acce#sand V.F which we obtain by
invoking Algorithm ProblemSetup
This routine goes step-by-step through the framework deesl in earlier sections to link
the prototypes to the objective function. There are no patars in these stages except for
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Algorithm 1 OptPrototypes
1. Choose initial values gy, A(q), setj := 0, and fixy > 0.
2. For fixedA(;y, updatey(;) to v(;,1) by using one step of a quasi-Newton trust region algorithm fo
minimizing 45(11, AG) 4,0) subject to the constraints an Call ProblemSetupvith » as needed to obtain
FandVF.
3. Updater by A1), = Ay, +20hi(vy)) fori=1,...,n.
4.1f (v(;), A(j)) has converged, stop; else, get= j + 1 and go to (2).
5. Returnv.

Algorithm 2 ProblemSetup

1. Unpackv into values for mean prototype vectors.
2. Use Eq. (1) (and its analog) to compwﬁé‘S) andvgxt).

3. Use Eq. (2) to obtain contingency table coumnts.

4. Use Egs. (3) and (4) to define random variakiggnd3;.

5. Use Eqgn. (5) to computé andV F (see (Tadepalli (2009)).)
6. ReturnF, V.F.

p that controls the accuracy of the Kreisselmeier Steinlra’é®) approximations, used in
Tadepalli (2009) to approximate min and max functions foistéring.p is chosen so that

the KS approximation error is commensurate with the op@tiin convergence tolerance.
Gradients (needed by the trust region algorithm) are madkieally straightforward but

tedious, so are not explicitly given here.

The per-iteration complexity of the various stages of ogoodthm can be given as
follows:

Step Time Complexity|
Assigning vectors to clusters| O(nkl;)
Preparing contingency tableg O(nk?)
Evaluating contingency tables O (k?)
Optimization O((n+ 1)t?)

Observe that this is a continuous, rather than discreténggation algorithm, and hence
the overall time complexity depends on the number of iteretj which is an unknown
function of the requested numerical accuracy. The aboveptsxity figures do not take
into account complexity of the handler functionéw ) and assume the simplesimeans
implementation. For each vector, we compare it to each mezotgpe, and an inner loop
over the dimensionality of the vectors giv@$nkl.;). The per-cell complexity for preparing
the contingency table will simply be a linear function of temgthn of the datasewv.
Evaluating the contingency tables requires us to calcHlhtdivergences that are dependent
on the sample space over which the distributions are cordpame the number of such
comparisons. Either a row-wise or a column-wise comparissO (k?) time complexity.
Finally, the time complexity of the optimization &((n + 1)¢?) per iteration, and the space
complexity is alsaO((n + 1)t?), mostly for storage of Hessian matrix approximations of
F andh;. Note thatt = 2kl andn = 2k. In practice, to avoid sensitivity to local minima,
we perform several random restarts of our approach, witterdifit initializations of the
prototypes.
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5.2 Sequential alternative clustering

The sequential alternative clustering in our frameworkcpeals exactly the same way as
the simultaneous approach described above except thaatkeng style of the mean proto-
types inv is now changed. Since one clustering is already given aspan in the sequential
alternative clustering, we prepare the mean prototype¥ based on those given assign-
ments. We pack only the mean prototypestdfin » wheret = k... As a result, the cluster
membership probabilities of remain the same over the iterations of the optimization, but
the mean prototypes of’ vary. At the end of the optimization, we obtain an alterretiv
clustering forx”.

5.3 Finding additional alternative clusterings

Finding more than two alternative clusterings is also gtrdiorward. As described earlier,
all known clusterings and their mean prototypes stay fixethduhe optimization and only
the desired clustering’s prototypes vary.

5.4 Applying expressive cluster-level constraints

Our framework is able to take cluster-level constraintshim form of an expected contin-
gency table. Since there are column distributions and retvidutions for one contingency
table, naturally the expectation is provided from two vieimps: expected column view,
and expected row view,y,. Equation 5 is now modified to

k L
]—':%ZDKL(OQ H 1B (’L,)) +%ZDKL<53 H Ix (7])) (7)
i=1 7=1

Note that the number of clusters in the two clusterings cadifferent now (denoted
by k£ and k&’ in Equation (7)). This allows the user to merge multiple t#us as well as
split some of them. (Appendix A describes a regularizatibEquation (7) for degenerate
situations.) Expected row view and column view can be canttd in different ways. In
Section 6.9, we provide an illustrative example that showg hser provided simple binary
cluster-level constraints can be converted to expecteagbibistic views to obtain a desired
clustering. Appendix B describes the algorithms to compueected row and column views
from a user provided constraint table.

5.5 Evaluation

We present here the evaluation metrics for capturing thalitgcof clusters in their re-
spective spaces as well as for capturing their ‘alternaéigs’ with respect to previously
discovered clusterings. The clustering quality is meabuseng several indicators: vector
guantization error (VQE) (Davidson and Basu (2007)), Durtek (DI) (Dunn (1974)), and
average silhouette coefficient (ASC) (Tan et al. (2005)).EVi@easures the cohesion of a
clustering when the data are replaced by prototype vectonsller VQE values are better.
DI measures the separation between clusters and largersvata better. ASC is a measure
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that takes both cohesion and separation into account (higihges are better). In our exper-
iments, we utilize either ASC, or use both VQE and DI togetbesvaluate clusterings.

The level to which two clusterings are alternatives of edtteiois measured using the
Jaccard index (J1) (lower values are better). Given twotelirsgsC ;) and C;y, JI cap-
tures whether, for every pair of vectors in the dataset, tie gre clustered together in
both clusterings or separate in both clusterings, or tagethone but separate in the other.
Specifically, for clusteringg’(;y andC' ;) the Jaccard index (similarity coefficient) is

a+b
(3)

and the Jaccard dissimilarity coefficient (distance) is

a+b
()
wherea is the number of pairs together in botfy;) and C;), b is the number of pairs
separate in botl’;y andC/;, andn is the number of vectors in the dataset.
To assess the quality of clustering alternatives as thediaoevered, we track the Jac-

card dissimilarityJ; (i, j) between the newly discovered clusterifig,y and any previous
onesC';), i < k, by computing

Jd(l7j) =1-

,min, Ja (i.5)
A plot of this min against discovered clusterings is refén@as the minimum dissimilarity
plot. The minimum dissimilarity for the first clusterirg ) is set to be 1 and the minimum
dissimilarity for subsequent clustering$, will decrease monotonically. How fast it de-
creases before reaching 0.0 suggests the potential fongradternatives. Once we reach
0.0, we conclude that there are no further alternativesilpless

6 Experimental Results

In this section we present evaluations of our framework gisipnthetic and real-world
datasets. The questions we seek to answer are:

1. Can the framework help reveal a dataset’s intrinsic p@tefor alternative clusterings?
At what point should we abandon the search for alternati¢@e@tion 6.1)

2. How does the runtime of the framework scale with increasiimensions, increasing
number of clusters, and increasing number of data poinesétit® 6.2)

3. How well does our framework perform when compared witlstxg alternative clus-
tering algorithms? (Sections 6.3 and 6.4)

4. How do the quality of clusterings computed by our framdwaympare with the clus-
terings computed by the original ‘unalternatized’ aldamit? (Sections 6.5, 6.6, 6.7, and
6.8)

5. How can we incorporate user provided cluster-level gairgs to steer clustering results
using our framework? (Section 6.9)

All the experiments in this paper were conducted on a singlehime with an Intel Core2
Quad CPU (Q9459@2.66GHz).
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6.1 How many alternatives?

We utilize a 2D synthetic dataset having six Gaussian 8igfons, each with 50 points,
arranged uniformly around a circle. Fig. 2 depicts the erusgs discovered by our frame-
work for a setting of three clusters. Observe that we mineetidifferent clusterings before
we encounter a repetition. Fig. 3 (left) tracks the qualitylosterings as they are mined,
specifically their minimum dissimilarity

min J; (¢,5), 1<m<4.
i<j<m d(z J) =m=

Clustering 1 is the reference and has a score of 1.0. We sematonic decrease in the
dissimilarity score for the first three clusterings. Cluistg 4 has a dissimilarity of 0 and this
suggests that we should stop seeking further alternafiigs3 (right) depicts the average
silhouette coefficients (ASC) for each discovered clustgrNote that all the discovered
clusterings have positive ASCs indicating both cohesiath separation of the underlying
clusters.

The number of clusterings discovered before we run out efrditives is a complex
function of the number of clusters and the nature of the @atatsing the same dataset as
shown in Fig. 2, we varied, the number of clusters sought. For each setting, we cordpute
alternative clusterings until we experienced no furthessalities. Fig. 4 demonstrates the
results. For example, there is only a single clustering with 1 (likewise withk = 6), but
three different clusterings with = 2, 3, and4 (the reader can verify why this is so). The
number of clusterings is highest with 6 possible altermstiatc = 5.

3 Clustering 1 3 Clustering 2
2 4 2
1 1
>0 >0
-1 -1
-2 -2
-3 -3
3-2-101 23 -3-2-101 23
X X
Clustering 3 3 Clustering 4
: > 0
1
>0
-1
-2
-3

3210123 3-2-101 23
X X

Fig. 2 Alternative clusteringsk=3) for a dataset of six Gaussian distributions arrangedrat@ circle. We
identify three clusterings before we encounter a repaetitio
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Fig. 3 Minimum dissimilarities and average silhouette coeffitdenf the clusterings with=3.
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Fig. 4 Number of clusterings discovered with different numberslo$ters.
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Fig. 5 Runtime characteristics.

6.2 Runtime characteristics

Fig. 5 (left) depicts the runtime behavior of our alternatian framework with the basic

k-means algorithm. While the runtime monotonically incesasvith number of clusters,

number of data points, and number of dimensions, we seelihantreases are modest.
Also note that the runtime includes time for the clusteriagdier (which is specific to the

algorithm being alternatized) and the time for the optirticza
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6.3 Comparison with the alternative clustering algoritinQoand Davidson (2009)

We compare the quality of clusters computed by our alteratitin framework with the al-
ternative clustering framework of Qi and Davidson (2009)c8 the latter is a sequential
approach, for a fair comparison we set up our framework irqasetial fashion as well. We
first obtain ak-means clustering of the dataset, and then alternatizeltistering using Qi
and Davidson'’s framework as well as ours. We applied bothéssorks on four UCI repos-
itory datasets—Glass, lonosphere, Vehicle, and Iris—auttaristics of which are shown in
Table 2. We find alternative clusterings witkequal to the number of classes in each dataset.
The results in this subsection are averaged over 10 runstiofdew approach and that of Qi
and Davidson.

Fig. 6 (a) depicts the Jaccard (similarity) index betweendlustering obtained by-
means and the clusterings obtained by either our algorithtien framework of Qi and
Davidson. It shows that our framework provides lower Jatgaatex (and hence better alter-
natives) than the work of Qi and Davidson (2009) with all ¢ thatasets. Another measure
of alternativeness is our objective function itself (lowatues being better). Fig. 6 (b) shows
a comparison of the two approaches in terms of our objeativetion (F). It shows thatF is
much lower with our approach when compared with that of Qi Badidson (2009). Note

Table 2 Four UCI datasets.

# Instances| #features  # classes
Glass 214 10 6
lonosphere 351 34 2
\ehicle 946 18 4
Iris 150 4 3

Jaccard Index (smaller values are better) Obj. function (smaller values are better)
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o
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o
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o
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o
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(@)
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== k-means
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3
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== k-means
= Qi & Davidson
Emmm Our approach

Dunn Index (DI)
o
o

Glass

lonosphere

(d)

Vehicle Iris

Fig. 6 We used four UCI datasets (Glass, lonosphere, Vehicle &)ddrcompare the quality of clusterings
and alternatives between the approach of Qi and Davidsdd®§2dhd our method. (a) Jaccard index. (b)
Objective function. (c) Vector quantization error. (d) Duindex.
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that, for the approach of Qi and Davidsah,is calculated by comparing the result iof
means (Clustering 1) and the resultant assignments of stewdred clustering (Clustering
2), constructing the contingency table, and evaluatinglénce, our alternative clustering
framework provides better alternatives in terms of botttdetindex andr.

Considering the measure of cluster quality, Figures 6 (d)(dhdepict the comparison
of locality and separation of the clusters in the altermatiusterings discovered by the two
approaches using vector quantization error (VQE) and thenDndex (D). They depict
that, for the glass and ionosphere datasets, VQE and DI ofpproach are almost the
same as those of Qi and Davidson. For the vehicle and irisefstathe approach of Qi
and Davidson (2009) has better locality and DI. This shows tluhile our framework finds
high-quality alternatives, for some datasets there candmergromise in the quality of the
clusters.

6.4 Comparison with the state-of-the-art alternativeteltisg algorithms

We investigate alternative clustering using the Porta#slet as studied in Jain et al. (2008).
This dataset comprises 324 images of three people eachea tifferent poses and 36
different illuminations. Preprocessing involves dimemsility reduction to a grid 064 x

49 pixels. The goal of finding two alternative clusterings isagsess whether the natural
clustering of the images (by person and by pose) can be reszhwa/e utilize the same 300
features as used in (Jain et al. (2008)) and set up our frarkdatosimultaneous alternative
clustering with alternatization df-means.

Table 3 shows the two contingency tables in the analysissdPtirtrait dataset and Table
4 depicts the achieved accuracies using simpteeans, COALA (Bae and Bailey (2006)),
convolutional EM (Jain et al. (2008)), decorrelateaneans (Jain et al. (2008)), and our
framework for alternative clustering (alternatizationkefmeans). Our algorithm performs
better than all other tested algorithms according to bothgreand pose clusterings.

Fig. 7 shows how the accuracies of the person and the poserihgs improve over
the iterations, as the objective function is being minirdiZEhe quasi-Newton trust region
algorithm guarantees the monotonic improvement of theatiiefunction without directly
enforcing error metrics over the feature space. Since tfeetite function captures the dis-
similarity between the two clusterings, indirectly, weinetthat the accuracies with respect

Table 3 Contingency tables in analysis of the Portrait datasef\f@y k-means with random initializations.
(b) after using our framework for alternative clustering.

(@ (b)
T 1y [ G T [ O

(&

Ci 0 0 72 Ci1 | 36 326 36

Cy | 63 | 64 0 Co | 36| 36| 36

C3 3 8 114 Cs3 | 36 | 36| 36

Table 4 Accuracy on the Portrait dataset.

Method Person | Pose
k-means 0.65 0.55
COALA (Bae and Bailey (2006)) 0.63 0.72
Conv-EM (Jain et al. (2008)) 0.69 0.72
Dec-kmeans (Jain et al. (2008)) 0.84 0.18
Our framework (alternatization éf-means)| 0.93 0.79
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Portrait dataset, Iterations=42
Accuracyperson=93%; Accuracypgge=79%
(Accuracy axis is at left and the axis for objective function is at right)
100 1.4

ccccc 00000000000 [ 12
90 -
o Person L 1.0
—— Pose

80 1 L os

70 [ 06

r 0.4
60 -

Accuracy at the i-th iteration

—e— Objective function, F | g5

Objective function at the i-th iteration, F,

50 T T T g 0.0
0 5 10 15 20 25 30 35 40 45

Iteration, i

Fig. 7 Monotonic improvement of objective function (finding attative clusterings for the Portrait dataset).

to the two alternative clusterings improve with the inceemsnumber of iterations (though,
not monotically).

6.5 Alternatizing a constrained clustering algorithm

We consider the MAGIC Gamma Telescope dataset (UCI ML Répg3j which contains
19,020 instances, 11 attributes, and two class labels. Bjeetove of this experiment is to
alternatize a constrained clustering algorithm (Wang aadid@»on (2010)) and to assess
if the constraints are satisfied in the alternative clustervhile maintaining the clusters’
quality. We experimented with different numbers of randpiginerated constraints. Each
must-link (ML) constraint is generated by randomly selegtiwo datapoints from two dif-
ferent clusters from &-means clustering outcome. On the other hand, each mudiakot
(MNL) constraint is generated by randomly selecting twoagatnts from the same clus-
ter. For each case considered here, half of the constramfslla constraints and the other
half are MNL constraints. Figure 8 (a) depicts the numberaufstraint violations for dif-
ferent constraint sets. It demonstrates that the constiailustering algorithm of Wang and
Davidson and our alternatizatation perform comparably. &i(b) shows that the locality of
the generated clusters in terms of VQE is slightly betterdllesmaller values are better) in
the alternative clusterings generated by our framewoxk. &{c) shows that the Dunn index
is better (higher) with a smaller number of input constsintthe framework of Wang and
Davidson. On the other hand, our framework has better (hjghenn index with a larger
number of input constraints. Finally, by studying the Jaddaimilarity) indices, Fig. 8 (d)
depicts that our framework really generates alternatiustetings with low similarity to the
original clustering. However, the similarities tend to bew higher with larger number of
constraints, indicating a breakdown of alternativenesh higher number of constraints.

Fig. 8 (a, b, and c) plots indicate that the alternative gairstd clustering obtained by
our framework is quite as good as the constrained clusteesglts provided by the algo-
rithm of Wang and Davidson (2010). Fig. 8 (d) depicts thatgbaeerated alternative cluster-
ings are different than the outcome of the original unaliémed version of the algorithm.
This indicates a successful alternatization of a consthatustering algorithm.
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dataset. Plots ofa), (b), and(c) are, respectively, numbers of constraint violations, thetar quantization

error (VQE), and the Dunn Index (DI) for the native algorittand our alternatized version. The plot in
(d) shows the Jaccard index (JI) with various numbers of canssraThis shows that there are alternative

clusterings even when the given constraints are satisfied.

6.6 Image segmentation

Image segmentation is a popular application of spectrateting and in this section we

demonstrate the alternatization of Shi and Malik’s 2000wadized cut algorithm.

Original Image

Partitioning1

Partitioning2

Original image

Fig. 9 (left) A 85 x 100 optical illusion.(middle)Segmentationk = 2) discovered by Shi and Malik (2000).
(right) Segmentation after alternatization by our framework. @ogitto appearances, this segmentation is not
simply a flipping of colors from the previous segmentatione Daccard index between the two segmentations

is 0.51.

Clustering 1

Clustering 2
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Original Image Partitoning1 Image Partitioning2 Image

Original image Clustering 1 Clustering 2

Fig. 10 (left) A 100 x 72 distorted image of actors Liu Fengchao, Jackie Chan, andyWéenjie.(middle)
Clustering 1 ¢ = 5) found by Shi and Malik (2000)right) Segmentation after alternatizing Clustering 1
using our framework. Note that this clustering brings thre¢hpeople together better. Jaccard index between
the two clusterings is 0.78.

—— n
0 15 20 25 @ % 40

5 10 15 20 2 X # 40

TR

Original image Clustering 1 Clustering 2

Fig. 11 (left) A 40 x 50 image of Homer Jay Simpsofmiddle)Segmentationk = 3) found by the algorithm
of Shi and Malik (2000)right) Segmentation after alternatizing clustering 1 by our fraor&. Jaccard index
between Clusterings 1 and 2 is 0.72.

The first image we consider is& x 100 optical illusion (see Fig. 9 (left)). Fig. 9
(middle) shows a segmentation of this image with the nomedlicut algorithm withk = 2.
Fig. 9 (right) is the alternative segmentation discovergdbr framework. Two clusters
are represented by white and black in both Clustering 1 arith&.reader might get the
illusion from Fig.9 (right) that in the alternative segmatidn the cluster labels are merely
flipped. However, a closer look reveals key differences. flaek parts (or white parts) of
Clustering 1 are divided into both black and white in Clusig2. As a result, the Jaccard
index between Figs. 9 (middle) and (right) is 0.51 (a verysigant result for the case of
just two clusters).

Alternative clusterings can sometimes aid in discernirgguiees of images that were
missed in previous clusterings. In Fig. 10, we attempt tealisr a segmentation and an
alternative segmentation of a 1002 distorted image of actors Liu Fengchao, Jackie Chan,
and WangWenjie. The first segmentation (Fig. 10 (middlepbigined by applying Shi and
Malik’s 2000 segmentation algorithm. An alternative segtagon shown in Fig. 10 (right)
is obtained by applying our framework (alternatization &f &nd Malik's segmentation
algorithm). Each of these two segmentations has five segnfelisters) denoted by five
different colors. All the pixels in a segment (cluster) h#lve same color. Fig. 10 (middle)
shows that the original segmentation algorithm (with= 5) fails to separate the people
from the backgrounds. Note that Wang Wenijie (the rightmostraiis conflated with the
background (at bottom side). Although the Jaccard sinjl@xi78 between the two segmen-
tations of Fig. 10 (Clustering 1 and 2) is comparatively hidje alternative clustering (right)
found by our framework separates the people from the baokgi®better. This has appli-
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cations to features like the ‘magic wand’ of photo editingl$olike PhotoShop where the
user can be presented with a range of alternative posbitither than a single selection.
Fig. 11 shows a final example of image segmentation witt) a« 50 image of the

fictional character Homer Jay Simpson. We attempt to findeteeggments in one clustering
and an alternative segmentation in another clusterind. likasthe previous examples of
this subsection, three colors are used to show three custéoth Clustering 1 and 2. In
Clustering 1, the shirt, neck, and the head of Simpson araénctuster. In the alternative
clustering (Clustering 2), the lips are better visible. Asensus clustering of these two
clusterings can help discern all key characteristics ofrttege.

6.7 Sequential alternative co-clustering

We consider a subset of DBLP, specifically 12 computer seienaferences (ICDM, KDD,
SDM, SIGMOD, ICDE, VLDB, CIKM, SIGIR, WSDM, WWW, ICML, and NPS) and the
500 authors who had top publication counts when aggregatedsthese conferences. Each
author is represented as a norm one 12-length vector of thicptions in these conferences.

We first apply the framework of Dhillon (2001) to discover areeclustering and then
repeatedly alternatize it using our framework. Every sghseat co-clustering is alternative
to all previously discovered ones. Recall that the goal of cotetirg is to discover clusters
of authors and concomitant clusters of conferences.

We discovered five different co-clusterings with nonzeraimum Jaccard dissimilar-
ity. That is, Clustering 2 is an alternative of ClusteringClystering 3 is an alternative of
Clusterings 1 and 2, and so forth. A partial description efrsults is shown in Fig. 12. By
tracking a specific author, we can observe how he/she chahgsers and cluster labels in
subsequent clusterings. For instance, Corinna Cortessrbueugh the clusterings: ICML,
NIPS — SIGIR, ICML — ICML, NIPS — ICML, NIPS, WSDM — ICDM, KDD, SDM.
The zig-zag pattern of movements in Fig. 12 reveals the di¢paess of consecutive clus-
terings. Such disparateness indicates that the authoriVersity in her publications since
a lot of alternative conference groups are obtained. (Time tiversity’ might confuse the
reader since all the conferences in the current discusséotiedia mining venues. We assume
that each publication venue promotes unique or slightlylapping areas of data mining.)
When we track Abraham Silberschatz in the subsequent atteerclusterings, we find that
in each of the clusterings the author is in a cluster that Hd3B/and SIGMOD in common.
This indicates that the papers of Abraham Silberschatz#rkghed in specific venues and
have less diversity.

Here we show how subsequent alternatization of co-clumgemight be able to discover
insights on different interest groups. An entry in diversatfire clusters in subsequent clus-
terings indicates diversity and entries staying in simiéature clusters refer to specificity.
Quantifications of such diversity and specificity remainwasaie work.

6.8 Simultaneous alternative co-clustering

In this subsection we alternatize the co-clustering atforibut in the simultaneous mode.
We use a text mining example here as motivated by Dhillon 1206onstructing a text
dataset by randomly picking 200 documents from Cranfield20@ddocuments from Med-
line abstracts. We evaluated the contribution of a term bgsueng the information gain
with respect to the class (Cranfield or Medline), and setktbte top 400 terms. So the
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Fig. 12 Zig-zag pattern of authors and conferences as discoveredgh sequential alternative co-clustering.

ICDM, KDD, SDM

Xifeng Yan

Corinna Cortes
Tobias Scheffer

ICML, NIPS, WSDM

Michael I. Jordan
Shai Shalev-Shwartz
Rong Jin

—l Ding Zhou




How to “Alternatize” a Clustering Algorithm 21

Confusion matrix of clustering1  Confusion matrix of clustering 2

Medline Cranfield Medline Cranfield
Cluster 1 199 9 Cluster 1 123 126
Cluster 2 1 191 Cluster 2 77 74

(a) Confusion matrices of both the clusterings.
Clustering 1
Clustering 1 Clustering 2 Cluster 1 Cluster 2
Cluster 1 207 220 Cluster1| 134 86
Cluster 2 193 180 73 107
Term counts in each term cluster Term distributions in
of two clusterings opposite clusterings
(b) Term counts in clusterings and clusters.
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Cluster 1 Cluster 2
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Document distributions
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(c) Distribution of documents in the clusterings.

Fig. 13 Document confusion matrices of both the clusterings artilolisions of terms and documents in the
clusters of the clusterings.

dataset has 400 documents (instances) and 400 termsu@&s)ibWe mined this dataset
with k¥ = 2 clusters.

Fig. 13 (a) shows the confusion matrices for Clustering 1 @hcbtering 2 (recall that
both are computed using our alternatization framework). Thefuian matrix for Clus-
tering 1 indicates that Cluster 1 has 199 documents from thdlike collection whereas
Cluster 2 has 191 documents from the Cranfield collectiormbkrs in the other cells of
the confusion matrix of Clustering 1 are small. On the otlardh Cluster 1 of Clustering 2
contains 249 documents with 123 of them from Medline and theral26 from Cranfield.
77 documents are from Medline and 74 documents are from @fdrirfi Cluster 2 of Clus-
tering 2. This shows that Clustering 2 has no diagonal patteits confusion matrix like
the confusion matrix of Clustering 1, hence suggestingategness (alternativeness).

Fig. 13 (b) (left) shows that terms are almost uniformly wligtted in the clusters of the
two clusterings. Fig. 13 (b) (right) shows how the terms o ctustering are distributed in
the clusters of the other clustering. This shows that thexeeerlaps of terms between the
clusters of the clusterings, indicating some degree ofradté/eness in the term clusters.

Fig. 13 (c) catalogs the document distributions in both thesterings and compares
them. It supports the confusion matrix of Fig. 13 (a) (right) see why, observe that Clus-
tering 1 closely matches with the class labels (see lefetabFig. 13 (a)), whereas the table
of Fig. 13 (c) bears resemblance to the confusion matrix abt@king 2 shown in Fig. 13
(a) (right).

Because this is a co-clustering example, we also considardistributions across clus-
ters. Fig. 14 depicts the membership probabilities of temthe two clusters across three
alternative clusterings. We see that these patterns alieagjnaly different, again suggesting
the ability of our framework to recover alternative clugigs.
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Fig. 14 The effect of alternatization on the membership probadslibf terms in clusters across three alter-
native clusterings. The terms of all three plots are ordaretrding to the reference of Clustering 1 so these
plots can be compared by visual inspection.

6.9 An example of the use of cluster-level constraints withfoamework

To illustrate the idea of cluster-level constraints foesaitative clustering, we use a synthetic
dataset composed of 1000 two-dimensional points (see &itffa)). The dataset is com-
posed of four petals and a stalk each containing 200 pointenithe user appligsmeans
clustering, with a setting of four clusters (i.&.= 4), the flower is divided into four parts
as shown in Figure 15(b) where the petals are indeed in diffeslusters, but each of the
petals also takes up one-fourth of the points from the stitkeflower. When a setting of
five clusters is used, the user obtains the clustering showigure 15(c). It is evident that
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the five clusters generated bymeans are not able to cleanly differentiate the stalk frioen t
the petals.

A conventional clustering algorithm like-means does not take user expectation as an
input to produce better clustering results. Even consthtiustering algorithms would re-
quire an inordinate number of inputs to clearly separatesthik from the petals. In our
proposed alternative clustering framework (with Equafid)), the user can provide an in-
put to the algorithm regarding the expected outcome as showigure 16. The constraints
shown in the middle of the figure should be read both fteftto rightand fromright to left
We call these constraints scatter/gather constraintsdiRgdérom left to right, we see that
the user expects the four clusters to be broken down (sedjterto five clusters. Reading
from right to left, we see that the stalk is expected to gaploémts from all current clusters,
but there is a one-to-one correspondence between the digstals to the original petals.
Figure 16 shows that when cluster-level constraints are@ddd thek-means clustering
(with k=4) results, well-separated petals and stalk are obtainkkkuthe result provided by
simplek-means withk=5 (as shown in Figure 15(c)).

The framework thus requires an existing clustering of the dad a user-expected dis-
tribution of the clusters in the new clustering (as showniguFe 16). We enable the user
to supply a binary association matrix between two clusggrim the form of a constraint
table (e.g., Fig. 17(a)). The matrix is essentially an eimgpdf the bipartite graph shown in
Fig. 16. For this example, the matrix is of size 8 as shown in Fig. 17(a), where each row
indicates a petal of the givek-means) clustering and a column indicates an expected clus-

35 Given data: 1000 points 35 k-means (k=4) 35 k-mea;;;k:S)
3.0 3.0 g%

25 25

> 2.0 > 20
15 15

1.0 1.0

. 0.5 0.5
15 2.0 25 3.0 35 4.0 45 15 20 25 3.0 3.5 40 45 15 2.0 25 3.0 35 4.0 45

X X X
(a) Original data (bk-means k=4) (c) k-means §=5)

Fig. 15 Clustering the flower dataset. (a) The dataset has 1000 2idspairanged in the form of a flower.
(b) Result ofk-means clustering witk=4. (c) k-means clustering witk=5. Points from the stalk spill over
into the petals.
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Fig. 16 Clustering the flower dataset with user provided input: ®8cafather constraints when imposed over
a clustering with four clusters yield five clusters with wedlparated petals and center with the stalk, unlike
Figure 15(c).
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Fig. 17 (a) A tabular representation of the scatter/gather canstrpresented in the middle of Figure 16, (b)
an intermediate step, (c) Matrix for column-wise condigibdistribution, (d) an intermediate step, (e) Matrix
for row-wise conditional distribution.

ter of the output of the framework. The tick marks denote tteter and gather operations
desired. Note that each row of Fig. 17(a) has two tick markkare of these tick marks is
in the fifth column, which is the column for the expected stalkhe flower.

A cell of the constraint table is meant to represent an exge@r an ideal case) proba-
bility that objects of a cluster in one clustering form paraccluster in another clustering.
We convert the matrix into two probability distributions)eodefined along columns and one
defined along rows. This results in two matrices, row viey and column viewl » (see
Fig. 17(c) and (e)). Although there are many ways to conssuch distributions from the
binary matrix, we perform simple row-wise and column-wisemalizations here. (Fig. 17
shows the steps involved. Appendix B describes the algostto compute expected row
and column views from the user-provided constraint tablereMtomplex distributions can,
of course, be incorporated based on user input.) Thus, iexample, although not explic-
itly mentioned by the user, we infer that 25% of the pointshia $talk cluster should come
from each of the petals of the first clustering. Conversédigsé distributions capture the
requirement that each of the petals of the first clusterimgishgive up 20% of their points
to form the stalk of the second clustering and that the otBeé 8f the points should go into
one cluster of the second clustering.

7 Related Work

As stated earlier, the idea of finding more clusterings thagingle one has been stud-
ied through various mechanisms and also in various guiseljding subspace cluster-
ing (Agrawal et al. (1998); Cheng et al. (1999)), nonredmaddustering/views (Cui et al.

(2007); Gondek and Hofmann (2005); Niu et al. (2010)), assive clustering (Kaski et al.

(2005); Sinkkonen et al. (2004)), metaclustering (Caregtra. (2006); Zeng et al. (2002)),
and consensus clustering (Li et al. (2007); Monti et al. @0&trehl and Ghosh (2003)).
A key distinguishing feature of our work is the formulatiohabjective functions for al-

ternatization using a uniform contingency table framewdkkile contingency tables have
been employed elsewhere (Brohee and van Helden (2006)k@iak et al. (2002)), they
have been used primarily as criteria to evaluate clusterige few works (Govaert and
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Nadif (2003); Greenacre (1988); Nadif and Govaert (20059} to use contingency tables
to formulate objective criteria use them in the context opacific algorithm such as co-
clustering or block clustering, whereas we use them toradtere a range of algorithms.
This work can also be viewed as a form of relational cluste(iiossain et al. (2010)) be-
cause we use (two) homogeneous copies of the data to modalttreativeness’ property
of two clusterings. However, the locality of clusteringgtieir respective data spaces is also
incorporated into the objective function without any egjtltrade-off between locality and
the ‘alternativeness’ property. We describe the liteeatetated to our work below.

MDI: The objective functions we have defined have connectiorteetprinciple of min-
imum discrimination information (MDI), introduced by Kbkck for the analysis of contin-
gency tables (Kullback and Gokhale (1978)) (the minimumgBran information (MBI) in
(Banerjee et al. (2005)) can be seen as a generalizatioisgdrihciple). The MDI principle
states that ify is the assumed or true distribution, the estimated digtabyw must be chosen
such thatDg 1, (p||¢) is minimized. In our objective functions the estimated ritistion p
is obtained from the contingency table counts. The trueibigton ¢ is assumed to be the
uniform or expected distribution. We minimze the KL-divenge from this true distribution
as required.

Co-clustering binary matrices, Associative clustering, ad Cross-associationstdentify-
ing clusterings over a relation (i.e., a binary matrix) is thpic of many efforts (Chakrabarti
et al. (2004); Dhillon et al. (2003)). The former uses infation-theoretic criteria to best
approximate a joint distribution of two binary variablesdahe latter uses the MDL (min-
imum description length) principle to obtain a parameteefalgorithm by automatically
determining the number of clusters. Our work is focused drjusb binary relations but also
attribute-valued vectors. The idea of comparing clusterasults using contingency tables
was first done in (Kaski et al. (2005)) although our work is fingt to attempt “alternatiza-
tion” of clustering algorithms using the same framework.

Finding disparate clusterings: The idea of finding disparate clusterings has been studied
in (Jain et al. (2008)). Here twaissimilar clusterings are sougbtmultaneouslywhere the
definition of dissimilarity is in terms of orthogonality dfi¢ two sets of prototype vectors.
This is an indirect way to capture dissimilarity, wherea®um paper we use contingency
tables to more directly capture the dissimilarity. Furthere, our work is able to find two
alternative clusterings in a more expressive way. For megaour framework allows the
user to provide cluster-level constraints that are easgtays. It is diffcult to specify such
criteria in terms of instance-level must-link and must-tik constraints.

Clustering over relation graphs: Clustering over relation graphs is a framework by Baner-
jee et al. (2007) that uses the notion of Bregman divergetwesify a variety of loss
functions and applies the Bregman information principtertf (Banerjee et al. (2005))) to
preserve various summary statistics defined over partseofetational schema. The key
difference between this work and ours is that this framewsnrimarily targeted toward
dependent clustering (compression) whemaswork targets alternative clustering. We
demonstrataded applications of our framework as a depérmtiestering tool in (Hossain
et al. (2010)). Several key differences beweetn the formialvg Banerjee et al. (2007) and
ours are as follows. First, Banerjee et al. ainmtimimize the distortion as defined through
conditional expectations over the original random vagabivhereas our work is meant to
both minimize and introduce distortion as neededover many subsequent alternatives as
applicable. This leads to tradeoffs across alternativeistwis unlike the tradeoffs experi-
enced in (Banerjee et al. (2007, 2005)) between compreasidaccuracy of modeling (see
also MIB, discussed below). A second difference is that oarkwdoes not directly mini-
mize error metrics over the attribute-value space and usgingency tables (relationships
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between clusters) to exclusively drive the optimizatiohisTleads to the third difference,
namely that the distortions we seek to minimize are with eespo idealized contingency
tables rather than with respect to the original relatiorsaadThe net result of these varia-
tions is that relations (idealized as well as real) are gw&mary importance in influencing
the clusterings.

Multivariate information bottleneck: Our work is reminiscent of the multivariate infor-
mation bottleneck (MIB) (Friedman et al. (2001)), which idramework for specifying
clusterings in terms of two conflicting criteria: locality compression (of vectors into clus-
ters) and preservation of mutual information (of clusteihwauxiliary variables that are
related to the original vectors). We share with MIB the fotation of a multicriteria objec-
tive function derived from a clustering schema but diffethie specifics of both the intent
of the objective function and how the clustering is drivesdzhon the objective function.
Furthermore, the MIB framework was originally defined fosatiete settings whereas we
support soft membership probabilities for multiple alsgive clusterings. Some other ex-
isting alternative clustering algorithms, e.g., minCepir (Vinh and Epps (2010)), CAMI
(Dang and Bailey (2010b)), and NACI (Dang and Bailey (20)1@#0 use information the-
oretic measures to compare pairs of clusterings, but ouoaph explicitly takes advantage
of a simple cluster-level contingency table that allows gy ¥exible setting to encode the
user’s expectation.

8 Discussion

We have presented a general and expressive framework toatize a range of cluster-
ing algorithms based on vector quantization. Our resultsvstat the framework is both
broadly applicable across algorithms and effective inesysttically exploring the space of
possible clusterings. We are working on two main directiohfuture work. First, because
alternative clustering is often driven by user input and dionconsiderations, we would like
to develop an interactive tool for guided exploration of @bex datasets. Second, combined
with our earlier work (Hossain et al. (2010)), we plan to gefiee alternative clustering in
the direction of modeling and compressing entire relatisnhemas of data.
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APPENDIX

A Regularization

Degenerate situations can arise in some cases where thpailats can be assigned with equal probability
to every cluster, resulting in a trivial solution for enswithat the contingency table resembles a uniform
distribution. To alleviate this issue we add two terms to &uun (5) giving

r= 3o (w10 (})) + Sowe (10 (})

=1

a1 ()
(10 (2)

Each of these two terms ensures that the probability digidb of each point being assigned to the clusters
is nonuniform. The negative signs of the two additional ®ensure this nonuniformity. (V(xs)) refers to
the vector containing the cluster membership probatsliGéthe sth datapoint ofX (likewise, p (V(xt))).
U is the uniform distribution ovek or &’ clusters.

Equation (7) with regularization is:

1& 1 &
]::E ZDKL (i || Lar (iy2)) + % ZDKL (85 [ 1x (5))
j=1

)1 ()
) 10(2)

wherel (i, :) refers to theith row of the row view and x (:, j) represents thgth column of the column
view of the expected contingency table generated from teeprovided cluster-level constraint table.

B Computing row and column views

Algorithms 3 and 4 outline the pseudocodes to constructtheated column and row views of the probabilis-
tic contingency table. Figure 17 shows the steps involvée. ifitermediate matrix between the user-provided
cluster-level constraint table and the column vieyw of Figure 17 is formed by replacing the tick marks by
the receprocal of number of ticks in a row. This intermediatgtrix is represented by a temporary variable
T in Algorithm 3. The column view\ = I is produced from the intermediate matrix, by computing the
column-wise probability for each cell (and hence each ofctlamns sums up to 1.0 ifiy). Similarily for

the row view! y, we use columns instead of rows while computing the intefatednatrix to count the dis-
tribution of the ticks. As shown in Algorithm 4, a row @f/’ = I is then computed from the distribution
of the row values of the intermediate matrix in the columhsigtrows sum up to 1.0).
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Algorithm 3 Conversion of user provided constraint table to column yview
Output: M = Iy

B «+ User provided constraint table. Assume tliats a binary matrix containing 1 in a cell if there is a
tick in the corresponding checkbox, otherwise the cell has a
ny < Number of rows inB
n¢ < Number of columns irB
M <+ Empty matrix of sizeB
T < A Temporary matrix variable of siz8
R <+ A Vector of lengthn..
C + A Vector of lengthn,..
for : = 1ton, do

R(i) + sum(B(i,:)) //B(i,:) refers to the-th row of B.
end for
for : = 1ton, do

for 7 = 1ton. do

T(i,5) + B(i.5)/R(i)

end for
end for
for j = 1ton. do

C(j3) «+ sum(T(:,5)) /IT(:,7) refers to thej-th col. of T".
end for
for j = 1ton. do

for ¢ = 1ton, do

M(i,5) + T(i, §)/C(5)

end for

end for

Algorithm 4 Conversion of user provided constraint table to row viéy,
Output: M’ = I/

B <+ User provided constraint table. Assume tliats a binary matrix containing 1 in a cell if there is a
tick in the corresponding checkbox, otherwise the cell has a
ny < Number of rows inB
nc < Number of columns iB
M’ < Empty matrix of sizeB
T < A Temporary matrix variable of sizB
R + A Vector of lengthn..
C <+ A Vector of lengthn,..
for j = 1ton. do

C(j) < sum(B(:, 7)) //B(:,j) refers to thej-th col. of B.
end for
for ¢« = 1ton, do

for j = 1ton. do

T(i,5) + B(i,5)/C(j)

end for
end for
for ¢« = 1ton, do

R(%) < sum(T'(¢,:)) /IT(i,:) refers to the-th row of 7'.
end for
for j = 1ton. do

for i = 1ton, do

M (i, 5) + T(i, 5)/R(i)

end for

end for




