
Scalable Traffic Dependence Analysis for
Detecting Android Malware Activities∗

Hao Zhang, Danfeng (Daphne) Yao, and Naren Ramakrishnan
Department of Computer Science, Virginia Tech

Blacksburg, VA, USA
{haozhang, danfeng, naren}@cs.vt.edu

Keywords
Anomaly detection, Mobile security, Network security

The openness of Android application development mech-
anism poses security challenges to smartphone users. Mali-
cious apps (malware) may be created by repackaging popular
apps. At runtime, they directly fetch and run code on-the-
fly without the user’s knowledge [6]. Thereafter, malicious
apps may spy on the victim users, stealthily collect and exfil-
trate user’s information. Therefore, they threaten the data
confidentiality and system integrity on Android devices.

Existing static analysis solutions inspect the source code,
binaries or call sequences for anomalies. For example, SCS-
Droid [7] identifies the malicious apps by extracting the sub-
sequences of system calls. However, dynamic code loading,
Java reflection-based method invocation, data encryption,
and self-verification of signatures are commonly seen in the
malware code [4]. These types of code obfuscation make
static analysis based detection challenging. Dynamic anal-
ysis, as a complementary to the static analysis, detects the
runtime behaviors of the malicious apps (e.g., verifying the
sensitive information flows through the apps [3]).

In this work, we aim at identifying malicious apps by ana-
lyzing their dynamic behaviors, specifically the network traf-
fic. Our goal is to profile the normalcy of the mobile traffic
patterns of benign apps, and thus to detect the malicious
network requests that are sent without user’s awareness.

We propose a triggering relation model to formalize the
causal relations of app-generated network requests in An-
droid. The problem of dependency discovery on network
data was first introduced in [12]. The dependency of net-
work requests is defined as the triggering relationship (TR).
The triggering relation of two network requests ri and rj
exists if rj cannot be issued unless ri is sent out first. This
temporal and causal relationship can be represented in a di-

*This work has been supported in part by NSF grant CAREER
CNS-0953638, ARO YIP W911NF-14-1-0535, and L-3 communi-
cations.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).
AISec’15, October 16, 2015, Denver, Colorado, USA.
ACM 978-1-4503-3826-4/15/10.
DOI: http://dx.doi.org/10.1145/2808769.2808770.

rected graph that is referred to as triggering relation graph
(TRG). We refer the first request that triggers others as the
root-trigger request. It may be triggered by legitimate user
activities or generated by benign apps. The model depicts
the dependency of network events and explains how one trig-
gers the other. Furthermore, the graph allows one to under-
stand the causality among traffic and find anomalous events
(i.e., requests). The dependencies and semantic information
of requests are useful for human experts’ cognition, reason-
ing, and decision-making in cyber security [2, 11].

In our threat model, the behaviors of malware include the
unauthorized network activities, e.g., stealthy outbound re-
quests without user’s awareness, piggyback requests with
malicious code, and other types of out-of-order requests.
These behaviors existing in a wide range of malware families
cause sensitive information leaking and system abusing. The
repackaged apps and drive-by download attacks are the com-
mon initial infection vectors. After the malicious apps are
installed, the requests sent to remote hosts could leak user’s
information or conduct bot activities for profits. Their be-
haviors often include the stealthy network communication
to remote servers (e.g., command and control).

Our model focuses on the stealthy network activities via
HTTP, because HTTP is the protocol of choice for most
app developers to implement communication with remote
servers and is hardly blocked by anti-virus tools. Our pro-
posed technique can detect these types of activities without
knowing any signatures of the malware, and thus applicable
to detect the new (zero-day) malicious apps.

We describe a machine learning approach for discover-
ing the triggering relationship of Android network requests.
The learning-based solution enables the detection of general
stealthy malware activities on a large scale. Straightforward
solutions [9, 10] either reason the dependency using heuris-
tic algorithms or limit the causality analysis on one specific
application (e.g., browsers), which cannot achieve our goal
in Android.

The main operations in our analysis are data labeling, pair-
ing, TR analysis and detection. To label the triggering rela-
tions, we present a method based on the timing perturba-
tion, which delays one request and see if others would be af-
fected. The rationale behind this method is that the delay of
an individual request will be propagated to the requests that
are triggered by it. Therefore, the delay injection method
is ideal for generating rules on a small-scale dataset, and
is sufficient for labeling and training purposes. In contrast,
our proposed learning-based approach can be used for the
analysis and testing of a large-scale dataset.



An important technical enabler of our solution is the abil-
ity to discover the triggering relation of pairs of requests.
We refer to it as the pairwise triggering relation discovery.
The pairwise comparison method has been proposed to solve
the general relation discovery problem [5, 12]. In this work,
we advance it in the Android context by improving the pair-
ing efficiency and descriptive power of tree structures. The
pairing operation is performed on any two requests for whose
time difference is less than a threshold τ . It leverages com-
parison functions and generates a set of pairwise features,
e.g., the difference of two timestamps, the similarity index
of two URLs, etc. Our pairing mechanism does not require
any priori domain knowledge or assumptions to filter the po-
tential requests within τ . In the TR analysis operation, we
train classifiers to predict triggering relations on pairs. The
predicted results are in the form of (ri, rj) → lij , where ri
and rj are paired requests, and lij describe the relationship
of ri and rj , e.g., the parent-child or sibling relation.

The predicted pairwise relations are used to construct the
full triggering relation graph. The TRG reveals the relation-
ship of network packets sent from all types of apps, and thus
it has two security applications: i) identifying the malicious
requests that are not triggered by a legitimate cause, and
ii) generating a whitelist of automatic updates and notifi-
cations. The TRG allows one to quickly identify the root-
triggers of observed network events. Thereafter in the de-
tection operation, our solution classifies the root-triggers to
identify malicious requests. We propose to integrate the
knowledge from our findings on the TRG and generate the
dependency-based features. Besides, we extract temporal,
lexical and host-based features that are introduced to de-
tect malicious domains and suspicious URLs [1,8]. Both TR
analysis and detection include training and testing, as the
standard operations for the machine learning approach.

To evaluate our solution, we collect 20+ GB network and
system logs for a continuous 72-day period from a Nexus 7
tablet. We define TR accuracy as the ratio of the number of
requests correctly identified its trigger to the total number of
requests. This metric evaluates the effectiveness of the clas-
sifiers used in the TR analysis. We vary the sizes of training
data and test the data of each new day. We use five differ-
ent training sets: 1-day, 5-day, 10-day, 15-day, and 20-day,
each of which means data from i day(s) prior to the test day.
Figure 1 shows that all TR accuracy results are above 99.0%
for training data that are larger than 5 days. C4.5 classifica-
tion algorithm outperforms the other two classifiers across
all training data sizes. The TR accuracy converges quickly
to its highest value, which shows our approach to discover-
ing triggering relations is scalable and only requires training
on the recent traffic data. In the detection operation, we
classify the root-triggers to identify the malicious requests.
Results show that by using the random forest classifier, the
false positive rate is 1.1% and we are able to detect 99.7%
malicious requests from all malicious apps. We identify all
10 malicious apps that behave like Trojan, spyware, or bots.
In comparison, only one is reported by our organization IDS.

Our contributions and experimental findings are summa-
rized as follows.
• We propose a triggering relation model to formalize the

dependency of network requests and traffic-generating
user inputs on the Android context. The model rea-
sons about the root-triggers of observed traffic, and
thus can detect stealthy malware activities.

1-day 5-day 10-day 15-day 20-day
Training size (days)

98.6%

98.8%

99.0%

99.2%

99.4%

99.6%

99.8%

TR
 A

cc
ur

ac
y

Random Forest
Logistic Regression
C4.5 Algorithm

Figure 1: The TR accuracy of three machine learn-
ing classifiers tested on Android network requests.

• We introduce a delay injection technique to discover
the triggering relations of Android network events. Our
learning-based approach enables the inference of traf-
fic dependencies and reasons about the root-cause of
network activities, which makes our solution beyond
the conventional binary classification ones.
• We conduct our experiments based on real-world net-

work and system data. Our results show that the trig-
gering relations of network traffic on Android can be
inferred at the accuracy of 99.6%. We confirm the de-
tection capability of our approach by pinpointing the
sparse anomalies out of voluminous traffic data.

The significance of our work is that it provides insights of
the Android network traffic dependency and demonstrates
the use of structural and semantic information in reasoning
about network behaviors and detecting stealthy anomalies.

References
[1] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. EXPOSURE:

Finding malicious domains using passive DNS analysis. In
NDSS’11.

[2] K. O. Elish, X. Shu, D. Yao, B. G. Ryder, and X. Jiang.
Profiling user-trigger dependence for Android malware
detection. Computers & Security, 49:255–273, 2015.

[3] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P.
Cox, J. Jung, P. McDaniel, and A. N. Sheth. TaintDroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. ACM TOCS, 32(2):5, 2014.

[4] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study
of Android application security. In USENIX’11, 2011.

[5] L. Getoor and C. P. Diehl. Link mining: a survey. SIGKDD
Explor. Newsl., 7(2):3–12, December 2005.

[6] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe
exposure analysis of mobile in-app advertisements. In
WiSec’12, pages 101–112, 2012.

[7] Y.-D. Lin, Y.-C. Lai, C.-H. Chen, and H.-C. Tsai. Identifying
Android malicious repackaged applications by thread-grained
system call sequences. computers & security, 39:340–350, 2013.

[8] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyond
blacklists: learning to detect malicious web sites from
suspicious URLs. In KDD’09, pages 1245–1254, 2009.

[9] C. Neasbitt, R. Perdisci, K. Li, and T. Nelms. ClickMiner:
Towards forensic reconstruction of user-browser interactions
from network traces. In CCS’14, pages 1244–1255.

[10] G. Xie, M. Iliofotou, T. Karagiannis, M. Faloutsos, and Y. Jin.
ReSurf: Reconstructing web-surfing activity from network
traffic. In IFIP Networking Conference, 2013, pages 1–9.

[11] H. Zhang, M. Sun, D. Yao, and C. North. Visualizing traffic
causality for analyzing network anomalies. In IWSPA’15, pages
37–42, 2015.

[12] H. Zhang, D. Yao, and N. Ramakrishnan. Detection of stealthy
malware activities with traffic causality and scalable triggering
relation discovery. In ASIACCS’14, pages 39–50.


