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ABSTRACT
Machine learning models are useful for vehicle performance opti-
mization and characterization. They can be used to forecast future
events or conditions, classify events as cautious or concerning, and
act as a prognostic tool. Currently, supporting these machine learn-
ing models requires analytical computations and analysis of raw
data collected from vehicles in the cloud. This incurs a large cost
associated with transferring large amounts of data to (and from)
the cloud to train and run models. Alternatively, models could be
executed on board the vehicle. The compromise is that there are
limited resources available on an automotive electronic control unit
(ECU) and the architecture is currently decentralized to perform
these computations. Therefore, any deployed models would need
a model execution environment that uses limited computing re-
sources. In this scenario it is important to also consider the trade-off
between resources and performance. In this paper, we develop a
unified framework enabling rapid deployment of flexible machine
learning models to handle a variety of use-cases in constrained
environments called the Rapid Automobile Data Analytics (RAD)
framework. This paper focuses primarily on creating models and
architectures for sequential and structured data. Multiple architec-
tures and models are investigated and evaluated, and an automated
pipeline for deployment of the models is developed.

1 INTRODUCTION
Automobiles in contemporary times are increasingly being equipped
with various sensors and computation to automate and fine-tune
safety, and security features like airbag deployment, anti-lock brakes,
traction control, and many others. Many of these features like blind-
spot detection serve the explicit purpose of alerting the driver to
various potential hazards around the vehicle. Such sensors are
geared towards making the driver aware of the current state of the
vehicle during a drive, thereby increasing driver safety. With the
increase in the magnitude and the heterogeneity of the data being
generated in the vehicle, it is important to leverage the insights of-
fered by this data about vehicle state, useful for many purposes like
optimizing vehicle processes like fuel consumption or providing
explicit driver alerts to ensure safety.

The above trends have led to machine learning making signif-
icant inroads in automobile analytics. In [12], for instance, the
authors use machine learning to study the effect of displaying a
particular expected state of a traffic light on driver behavior and use
the insights to offer safer recommendations of expected traffic light
state. In [21], the authors employ machine learning to recognize
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the driver based on their driving style, thereby enabling the vehicle
to adapt the driver assistance system to the driving style of the
specific driver to improve safety and driver comfort.

One particular area that machine learning can play a role in is in
addressing driver distraction. The National Highway Traffic Safety
Administration (NHTSA) reported that one in ten fatal crashes and
two in ten injury crashes were caused by driver distractions in the
United States during 2014. The NHTSA also reported that 2841 lives
were lost to distracted driving in 2018 alone.

In this work, we leveragemachine learning techniques to develop
a comprehensive framework, called the Rapid Automobile Data
Analytics (RAD) framework, for distracted driver detection using
only the Controller Area Network (CAN) data signals produced in
the vehicle. A salient feature of our framework is the ability of the
models therein to be amenable for deployment in a cloud-centric
and a distributed (on-device) context allowing for flexibility and
adaptability to various settings. We evaluate our learning models
using a set of real-world driver data and report results. We also
test model performance on distracted driver detection of learning
models deployed on an edge device and report results. In addition
to modeling performance characterization, we also report the on-
device memory, disk space and the prediction latency results for
models in our framework. Finally, we evaluate the memory and disk
footprint requirements, limitations of the current pipeline and other
lessons from deploying and running a distributed machine learning
framework for distracted driver detection using automobile CAN
data.

2 RELATEDWORK
In recent times machine learning has become ubiquitous and is in
extensive use in automobiles for various control and monitoring
purposes and to augment the driving experience. In [20], Manasseh
et al. propose a machine learning algorithm based on decision trees
with pruning for driving destination prediction. Such destination
prediction applications have various uses in increasing traffic safety
and mobility. Simmons et al. [24] adopt a probabilistic approach
and apply a Hidden Markov Model to the problem of route and
destination prediction achieving state-of-the-art results.

Driving style or driver profile identification is another problem
imperative to optimal vehicular control system adaptation, and
has also been addressed using machine learning. Hallac et al. [14]
utilize driving data collected by Audi AG and Audi Electronics
Venture vehicles, on real roads, to classify the different drivers
corresponding to each drive. They treat the problem as a time series
classification task and found that turning styles especially help
in discriminating between drivers. Wang et al. [26] use a random
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forest model to identify the driver using vehicle telemetrics data and
characterize the importance of different features in their helpfulness
in the driver identification task. A detailed survey of driver behavior
detection has been conducted by Chhabra et al. [9]. There have
also been efforts to create general purpose embeddings of vehicular
state for use in downstream learning tasks like the work of Hallac
et al. [13]. Jachimczyk et al. [17] propose a framework for driving
style estimation and estimate three facets of driving style: safety,
economy and comfort.

Many efforts have also focused on anomaly and event detection
in the context of automobiles. Cheng et al. [8] developed a learning
framework using recurrent neural networks for anomalous trip
detection from taxicab trip trajectory data. Makke et al. [19] de-
velop a hybrid prognostic approach based on physics enabled data
aggregation and cloud-based data driven prognostics. They apply
the framework to the task of estimating brake pad wear and cabin
air filter prognostics. Coellingh et al. [10] propose a pedestrian
detection and collision warning system. Schlechtriemen et al. [22]
propose a state-of-the-art generative model for lane change intent
detection. Taylor et al. [25] propose an LSTM architecture for de-
tecting CAN bus attacks by modeling attack detection as part of a
CAN bus instruction forecasting problem.

There have also been research efforts in the Internet of Things
(IoT) and connected vehicle space, Han et al. [15] propose a one-way
ANOVA test based statistical model to detect whether a connected
vehicle is in an abnormal state. TinyML is yet another related area
of machine learning concerned with bringing ML inference to ultra-
low power devices. Banbury et al. [2] highlight some of the major
lines of research in this yet nascent field related to IoT. One of
the main considerations in TinyML and other IoT settings is the
development models with light memory and disk footprints, Kumar
et al. [18] develop a novel tree based lightweight learning algorithm
called Bonsai for efficient prediction on resource constrained IoT
devices. Another way to ensure lightweight models is to focus on
deploying shallow (student) neural network models while ensuring
that they have expressive power close to a deeper (teacher) network
jointly trained on a particular learning task such that the student
network learns to “mimic” the decisions made by the teacher. This
technique called mimic learning or knowledge distillation has been
used extensively by Ba et al. [1] and Hinton et al. [16] to develop
shallower models with a faster prediction time and lower footprint
but with very similar (or in some cases the same) model accuracy
as corresponding deep models jointly trained for a learning task.
In [27], Yadawadkar et al. develop a learning methodology for char-
acterizing the importance of various naturalistic driving features
in detecting distracted, drowsy, and attentive driving behaviors.

In line with the recent efforts to develop automated machine
learning pipelines in the context of automobiles, we propose a
framework for rapid deployment of machine learningmodels for on-
board analytics and demonstrate its effectiveness on the application
of distracted driver detection in automobiles.

3 RAPID AUTOMOBILE DATA ANALYTICS
3.1 Background
We define three different levels of vehicle network architecture as
follows:

• Device Computing: Any processing that occurs at the data
generating process, defined in an automotive context as an
Electronic Control Unit (ECU) device.

• Edge Computing: Traditionally, the device is physically and
logically separated from the edge. The edge refers to com-
puting resources located in the LAN of the data generating
process. In our case it is a modem connected to and receiving
CAN data through an OBD-II connection.

• Cloud Computing: A suite of compute infrastructure physi-
cally separate from the vehicle context.

3.2 Architecture
We initially defined three different architecture styles similar to
those defined by Simmhan [23].

(1) Cloud Centric Architecture: Data must be sent to the cloud
in real-time or near real-time to train, run, and retrain the
model. Any delays in communication will result in delays in
analysis.

(2) Edge Centric Architecture: Data is sent to the cloud in batches
to train and retrain the model as necessary. The model is
deployed to the edge to analyze streaming data onboard the
vehicle. See Figure 1.

(3) Distributed Architecture: Data is sent to the cloud once to
train an initial model. The model is deployed to the edge to
analyze streaming data onboard the vehicle. The model can
be retrained onboard the vehicle. See Figure 2.

Figure 1: Edge Centric Architecture: Data is collected on-
board the vehicle and sent to the cloud as needed where
a fast-lightweight learning model is trained. The model is
then deployed to the vehicle to address the use cases it was
designed for. Additional data is sent to the cloud periodi-
cally, for model retraining. The retrained model is then de-
ployed to the vehicle.

Non-cloud-based architectures have the distinct advantage of
being able to make decisions in the edge, thus saving on latency and
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Figure 2: Distributed Architecture: Similar to the edge cen-
tric model, data is collected onboard the vehicle but is only
sent to the cloud once where the fast-lightweight learning
model is trained. The model is then deployed to the vehicle
to address the use cases itwas designed for. In the distributed
architecture themodel can be retrained on board the vehicle
using data available on the vehicle.

other data transfer costs that may be incurred while transferring
data onto the cloud. Further, in the case of distributed architectures,
as more data is accumulated on the edge, the model running on the
edge, can be re-trained on the edge device itself, hence effectively
decoupling it from the cloud if the need arises.

The model re-train interval can be specified by the user for
all architectures. In each of the three architectures, the system
assumes an independent validation phase where the trained model
is evaluated for performance on the learning task using a hold-out
test set. In the case of the distributed architecture, an updated hold-
out test set is expected to be present on the edge device for effective
validation of a newly re-trained model.

The focus of this project was on developing edge centric and
distributed architectures as they are more efficient and require
significantly less data transfer costs.

3.3 Data
3.3.1 Data Source. Data was collected exclusively from the Strate-
gic Highway Research Program 2 (SHRP 2) Naturalistic Driving
Study (NDS) [4] database from the Virginia Tech Transportation
Institute (VTTI). As the largest naturalistic driving dataset available
worldwide, the SHRP2 NDS database offers detailed and accurate
pre-crash information not available from other crash databases.
This pre-crash information serves as strong and powerful evidence
identifying the progression of critical driving behaviors, in addition

to, traffic and vehicle dynamics. These were either captured by an
installed on-board Data Acquisition System (DAS) or manually pro-
cessed post-hoc by viewing video. The DAS includes forward radar;
four video cameras, including one forward-facing, color, wide-angle
view; accelerometers; vehicle network information; Geographic Po-
sitioning System; on-board computer vision lane tracking, plus
other computer vision algorithms; and data storage capability [4].

Data was initially collected on the vehicle and then downloaded
periodically by research staff to a central database (Figure 3). Multi-
ple researchers work constantly on data quality and control. Unique
"triggers," i.e., anomalies in the time-series data, were used to iden-
tify and extract all the crash and near-crash (C/NC) events from the
database. Additionally, a separate set of baseline events were ran-
domly selected for comparison. These events were then reviewed,
coded, and evaluated by data reductionists. The coded information
enables researchers to easily identify specific events of interest
(EOIs).

We initially started with the three event classes listed below
along with their definition using the coded event data in the SHRP2
NDS database.

(1) A drowsy event is an event from the C/NC or baseline
dataset where the driver exhibits obvious signs of being
asleep or tired, or is actually asleep while driving, degrading
performance of the driving task.

(2) A distracted event is an event from the C/NC dataset where
the driver is not maintaining acceptable attention on the
driving task due to engagement in one or more secondary
tasks. This is a subjective judgment call by the reductionist
indicating whether any secondary tasks the driver might be
involved in contributed to the C/NC.

(3) An attentive event is an event from the baseline dataset
where the driver is not engaged in any secondary task. A sec-
ondary task is defined as an observable driver engagement
not critical to the driving task such as non-driving related
glances away from the direction of vehicle movement.

EOIs under each class were pulled from the SHRP2 NDS database
for the purposes of this research effort. Unfortunately the data set
we received was an unbalanced set of 3,669 total events (570 drowsy
events, 915 distracted events, and 2,184 attentive events).

Once the EOIs were identified, time-series data of the correspond-
ing complete trips were retrieved from the SHRP2 NDS database
(Figure 3). Epochs were created by extracting 60 seconds of driving
data starting from 65 seconds before the event time to 5 seconds
before the event time. We assumed that the driver behavior did not
change throughout this 1-minute epoch. The event data consisted
of 44 variables. Among these 44 variables, 28 of them were raw data
directly collected by the DAS in the SHRP2 NDS vehicle, mainly
vehicle dynamics (Table 1). The rest of the variables were calculated
based off the raw variables (Table 2).

3.3.2 Data Pre-processing. All the sensors during data collection
were synchronized with respect to the trip clock, which is the first
variable listed in Table 1, and down-sampled to 1 Hz. The timing
of the data across variables was asynchronous leading to missing
variables at each collection time point. These missing values for
each variable were replaced with the last known corresponding
value. Since the rate of these sensor values was on the order of
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Figure 3: Data collection, extraction, and pre-processing

Table 1: List of raw variables

Variable Name Unit Hz Note

Timestamp ms Time since the beginning of the trip

Speed km/h 1 Vehicle speed

Gyro z deg/s 10 Lateral angular velocity

Accel y g 10 Lateral acceleration

Distance to left lane marker cm 30 Positive when on the left side of the marker and negative when on the right side

Distance to right lane marker cm 30 Positive when on the left side of the marker and negative when on the right side

Probability of left marker exist 30 Probability a painted marker exists on the left side of the vehicle’s lane

Probability of right marker exist 30 Probability a painted marker exists on the right side of the vehicle’s lane

Time of Day ms 1 UTC time of day

Day 1 From 1 to 31

Month 1 From 1 to 12

Year 1 Last two digits of year

Longitudinal Distance Target 1–8 m 15 Longitudinal distance to radar target 1–8

Lateral Distance Target 1–8 m 15 Lateral distance to radar target 1–8

10-30hz, the above approximation was considered accurate and
reasonable.

Initial assessments of data for the three events indicated that
it might be difficult to distinguish to a high degree of accuracy
between the drowsy and attentive events (See Figure 4). We notice
from the figure that the average drowsy drive is very similar to
the average attentive drive in a majority of the features considered.
Hence, in this study we limit ourselves to distinguishing between
distracted and attentive drives and address potential augmentations
in the future to incorporate drowsy driving detectors in section 5.2.
Additionally, of the various raw and calculated variables, we used
only a subset (8 in all) of variables which were the least sparse in
nature and encoded rich discriminative power between the two
classes. The variables used have been depicted in Figure 4.

3.4 Learning Models, Results & Discussion
In our framework, we provide support for four different types of
classification models:

(1) Multilayer Perceptron (MLP): A standard feed-forward neural
network trained by gradient descent. The model architecture
is dynamically set by the user. We used 4 hidden layers in
our model variant.

Figure 4: The average values throughout a drive for many
CAN feature variables. For several variables the values for
drowsy EOIs are fairly similar to attentive EOIs making the
classification problem fairly non-trivial. This figure also de-
picts all CAN variables used as features for classification.

(2) Random Forest (RF): An ensemble of decision trees introduced
by Breiman et al. [3] which is one of the state-of-the-art
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Table 2: List of calculated variables

Variable Name Unit Hz Note

Timestamp ms Time since the beginning of the trip

Variance of Speed km/h 10 Variance of speed of last 30 seconds

Variance of Lane Position 30 Variance of left lane distance of last 30 seconds

Variance of Throttle Position 80 Variance of throttle position of last 30 seconds

Low Speed 1 Indicates the speed is below 30kph: binary

Hard Brake 10 1- 30 seconds after heavy deceleration (0.4g): binary

Day of Week 0 is Sunday, 1 is Monday, etc.

Swerve 10 Indicates if within a 30-second window after a swerve: binary

Passing 15 Passing a vehicle in adjacent lanes: binary

Being Passed 15 Being passed in adjacent lanes: binary

Traffic Flow 15 Indicates if a vehicle is passed more than it is passing: binary

Traffic Level 15 Number of vehicles on radar

Tire Out of Lane 30 Indicates if the vehicle’s tire is outside the lane: binary

Lane Change 30 Indicates if within a 30-second window after a lane change: binary

Lane Bust 30 Indicates if within a 30-second window after a lane bust: binary

Time to Line Crossing sec 30 The time to cross a lane line under current status using lane distance and lateral speed: positive:
approaching left line and negative: approaching right line

Active Steering 10 The entire course of steering where peak value exceeds a threshold

models for classification. We used 100 decision trees in our
random forest classifier.

(3) Gradient Boosting (GB): Gradient boosting models are also
ensemble models which combine several “weak learners”
to form a single strong learner, as studied in Friedman et
al. [11]. We used 100 estimators in our gradient boosting
classifier presented in the performance evaluation.

(4) XGBoost (XGB): A more sophisticated variant of gradient
boosting architectures introduced in Chen et al. [7] with im-
provements like clever penalization of trees and proportional
shrinking of leaf nodes.

These models are fed the 60-second EOIs and are trained to clas-
sify the time series into a certain category (attentive or distracted).
As previously mentioned the data set was unbalanced by more than
an order of magnitude. Owing to the small amount of data, we felt it
was important to preserve as many EOIs as possible and attempt to
utilize the unbalanced set (2,184 attentive and 915 distracted). The
results for each of the models trained on the unbalanced data set
are shown in table 3. The XGBoost model performs the best (77%
micro average accuracy) and is also highly precise. We believe in-
cremental training with more quality labeled data will increase the
recall of the XGBoost model (and other models in our framework).

The imbalanced nature of the data resulted in all the models’
poor ability to identify all distracted events (i.e., low recall). If the
model was unsure, it was more effective for the model to clas-
sify it as attentive because it had a higher chance of being right.
We tested an artificial balancing method, synthetic minority over-
sampling technique (SMOTE) [6], on the data. This improved the

Table 3: Comparative performance of the tested models on
the imbalanced dataset (2,184 attentive and 915 distracted).
We notice that the performance of the Random Forest (RF)
and the XGBoost (XGB) models are superior to the other
models, with the XGBmodel yielding a slightly higher over-
all accuracy than the RF ensemble model.

Model Class Precision Recall F1 Overall
Accuracy

GB Attentive 0.73 0.98 0.84 0.74Distracted 0.86 0.24 0.38

MLP Attentive 0.7 0.81 0.75 0.64Distracted 0.41 0.28 0.33

RF Attentive 0.76 0.94 0.84 0.76Distracted 0.75 0.36 0.49

XGB Attentive 0.75 1.0 0.85 0.77Distracted 1.0 0.28 0.44

recall of distracted events slightly (28% to 36%) but accuracy de-
creased slightly as well (77% to 74%). We also tested eachmodel with
a balanced training dataset (i.e., 915 attentive and 915 distracted
drives) with the hold-out evaluation set consisting of 53 attentive
and 25 distracted drives (this holdout set is used for all experiments
throughout the paper). Table 4 details results for the balanced data
case.

We notice a degradation inmodel performance across all themod-
els in terms of overall accuracy in the balanced data experiments
relative to the original imbalanced data experiments showcased in
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Table 4: Comparative Performance of the testedmodels on a
balanced dataset (training set consists of 915 Attentive, 915
Distracted drives). The XGBoost (XGB) model outperforms
other models in terms of overall accuracy.

Model Class Precision Recall F1 Overall
Accuracy

GB Attentive 0.74 0.66 0.7 0.62Distracted 0.42 0.52 0.46

MLP Attentive 0.76 0.66 0.71 0.63Distracted 0.44 0.56 0.49

RF Attentive 0.73 0.66 0.69 0.6Distracted 0.4 0.48 0.44

XGB Attentive 0.8 0.74 0.76 0.69Distracted 0.52 0.6 0.56

Table 3. However, we notice that the recall of the Distracted class
improves significantly when models are trained with the balanced
dataset. We believe that training the models with a larger Distracted
dataset will significantly improve the recall of the already highly
precise XGB and RF models.

Additionally, a distributed architecture was created for the clas-
sification model. This enabled retraining of the model on board the
vehicle. The distributed model retraining procedure is flexible as
the user is able to control the dynamics of re-training and model
update (i.e., the frequency of model re-training and model update
can be controlled by the user). Both the retraining andmodel testing
are run concurrently and asynchronously on the edge device. The
evaluation results of the retrained (distributed) XGBoost model are
depicted in table 5.

Table 5: Model performance comparison of XGBoost (XGB)
classifier vs. the distributed version of the XGBoost (XGB-
Dist.) classifier. We notice a performance degradation when
the XGB model is re-trained on new data (online) on the de-
vice. This degradation may be alleviated as more data is in-
corporated on the device to re-train the distributed model.

Model Class Precision Recall F1 Overall
Accuracy

XGB Attentive 0.75 1.0 0.85 0.77Distracted 1.0 0.28 0.44

XGB-Dist. Attentive 0.7 0.97 0.81 0.7Distracted 0.75 0.18 0.29

We notice a slight degradation in performance accuracy of the
model but this should be alleviated as the model is re-trained on a
greater volume of data on the edge device.

3.5 Vehicle Environment
3.5.1 Hardware. We used the NVIDIA Jetson TX2, an embedded
computing board based on Tegra, a system on a chip, which inte-
grates, among other things, an NVIDIA Pascal GPU and an ARM
architecture CPU with 8GB of memory and 59.7GB/s of memory
bandwidth. The Jetson TX2 Developer Kit was used to develop and
test a hardware/software combination that simulates a potential

vehicle environment. It supports NVIDIA JetPack, a software de-
velopment kit that includes libraries for deep learning, computer
vision, GPU computing, multimedia processing, among others.

Our current implementation of the simulated vehicle environ-
ment is designed to be as flexible as possible with regard to the
vendors of components. For instance, any of the competitors to the
Jetson boards with sufficient specifications could be used instead
of the Jetson.

3.5.2 Architecture Implementation Software. We chose to use AWS
Greengrass for deploying models to our Jetson devices. We explored
two different options, Greengrass and Microsoft’s Azure IoT Edge.
At the time, Greengrass was slightly more mature but its main
advantage is that it uses AWS’s Lamdba service to encapsulate code
to be run on devices. Lambda’s serverless architecture allows us
write model code without having to explicitly handle containers or
deployment. Azure IoT Edge, on the other hand, requires inputs for
containerization, provisioning, and deployment on a lower level.
Greengrass handles the containerization and deployment to device
automatically. These containers can be customized and configured
but by default it is automated away from the end user. Greengrass’s
features also include “connectors” to collect data from interfaces
on the device, “shadows” to track states of devices, and built-in
security and cloud logging solutions. Azure IoT Edge has several
analogous services but ultimately the ease of use of Greengrass and
better documentation led us to use Greengrass.

Our developed learning pipeline is flexible and can be used with
either of these services or their other competitors. AWS Greengrass
was chosen as a test for deploying models and their resources to
several devices, i.e., NVIDIA Jetsons, via “Greengrass groups.”

3.5.3 Setup. To create a simulated test vehicle environment we
provisioned two Jetson devices, one at Ford and one at Virginia
Tech. Then we configured AWS Greengrass to deploy the XGBoost
model defined above to each Jetson. On the devices, the model
ingested data from files that were generated by real-life driving to
simulate real inputs from a vehicle.

In addition to the operating system and software that comes
pre-installed on the developer kit for Jetson devices, we installed
Greengrass Core, which manages deploying models from the cloud
and communicating with them, using an AWS setup script. This
script installs Greengrass Core and creates an empty Greengrass
group in the cloud that is associated with the device by installing
the newly created group’s security resources onto the device and
configuring the device’s Greengrass Core. After this, we installed
Archiconda, a distribution of Python environment management
software called Anaconda for ARM architectures. All python pack-
ages required by our machine learning models were installed using
Archiconda. These include machine learning related packages like
numpy, pandas, scipy, statsmodels and xgboost. At this point, we
start the Greengrass daemon which waits for a deployment of the
Greengrass group to be initiated in the cloud.

On the cloud, setting up the Greengrass group involves several
steps.

(1) Create a zip file of the code for each model and upload them
to AWS Lambda.
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Figure 5: The Jetson/Greengrass ecosystem. Adding new models(*), off-the-shelf or custom, requires authoring a new configu-
ration for the cloud and (∧) installing any new dependencies on the Jetson as necessary. The cloud and the Jetson can exchange
data for training, retraining, and updates.

(2) Configure the Greengrass group to use each of those lamb-
das.

(3) Create a zip file of any configuration files and/or data that
the models need to run. Upload these resources to S3 and con-
figure them as machine learning resources in the Greengrass
group associated with the appropriate lambda.

(4) Set up subscriptions that specify which topic name each
lambda will use to communicate from the device to the group.
This way the lambdas can send results back to the cloud.

At this point, the group is configured and can be deployed. A
group can be deployed through the Greengrass console or through
the AWS API bulk deployments. When a group is deployed it will
install each model onto its associated Jetson device and run them
all. Each model can publish topics and the group will listen for
them based on the subscriptions set up earlier. In this way we set
up a Greengrass deployment that is analogous to a deployment
onto a real vehicle. We used this setup to test the effectiveness of
the proposed RAD framework for our task. Figure 5 depicts the
Jetson/Greengrass ecosystem.

4 FRAMEWORK RESULTS SUMMARY &
DISCUSSION

In addition to the accuracy of each of themodels we trained (detailed
in tables 3, 5), we also collected metrics for model deployment in
the simulated vehicle environment. These results are shown in the
Table 6.

The disk footprint measures the space on disk occupied only by
the model parameters. However memory footprint is the space oc-
cupied on RAM by the model parameters, the data being processed
by the model and the other dependencies required for the model
to run. Hence, it should be the case that the RAM is higher than
disk footprint as recorded above. Also, it should be noted that this
is peak memory footprint. Note the additional model footprint nec-
essary for converting the classification model from an edge centric
architecture to a distributed architecture. This enables the model
to retrain on the device.

Table 6: Memory, disk footprint and execution time char-
acterization of distracted driving model for both the edge-
centric and distributed model variants.

Distracted Driver Model

Architecture Edge-Centric Distributed
Model Accuracy 77% 70%
Time to Predict 0.071s 0.071s

Time to Read Model N/A 0.007s
Memory Footprint (RAM) 208Mb 209Mb

Disk Footprint 76kb 76kb
Disk Space for

Software Dependencies 568Mb 568Mb

4.1 Recommendations
For the distracted driving use-case, the amount of RAM required
for running a single model is approximately 210 MB. The pipeline
for distracted driving has been developed to employ models that
are relatively frugal in their usage of memory during execution.
In light of this property, it would be possible to run up to 8 - 10
models for distracted driving, or related tasks on the employed
edge device simultaneously without running out of device memory
or facing other performance issues. It is still possible to address
multiple tasks with a single model (considering the same input) by
leveraging multi-task learning approaches as proposed by Caruana
et al. in [5].

5 CONCLUSIONS & FUTUREWORK
In this work, we have detailed our experiences in developing the
RAD framework for leveraging CAN data to perform vehicle ana-
lytics. We have showcased the performance of the machine learn-
ing models supported in RAD, on the specific task of detecting
distracted drivers. We have also detailed the entire RAD pipeline
related to on-device deployment and cloud based training and show-
cased model memory, disk footprint and prediction times on-device.
Finally, we now discuss the difficulties faced and how we plan to
augment RAD moving forward.
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Figure 6: A multimodal system design that uses structured
(from CAN) and unstructured (from camera) data.

5.1 Difficulties Faced
Limited data: One of the primary difficulties faced was in the case
of the distracted driver detection task. The complexity of this task
was due to the imbalanced nature of the data i.e., we had relatively
little representative data for effectively training models to detect
distracted drives and avoid bias towards attentive drives which was
the majority class.
Limited number of distinguishing features:Another challenge
we faced was to identify features which would enable us to effec-
tively discriminate between the different driver states (i.e., attentive
and distracted). The characterization of average drives for different
features helped us narrow down the set of useful features which
provided discriminatory capabilities.
Capabilities of OTS support tools: Another challenge was to
develop a lightweight machine learning framework, capable of
running multiple machine learning models in the same learning
framework, all while remaining nimble enough to be deployed
onto an edge device with memory and disk size constraints. The
implementation of the framework hit some difficulties because
the underlying technology is so new. Ultimately, as things mature,
implementation of new features will become easier.

5.2 Future Work
Data Quantity and Accuracy Tradeoff: During this project, we
faced the problem of seemingly not having enough data to train
more accurate and effective models. Ford representatives identified
that Ford developers are likely to run into similar problems. In
addition, they will be faced with the problem of identifying how
much data to collect to train a model. Collecting too much data will
incur an additional cost. Not collecting enough will result in poorly
trained models. Understanding this trade-off is critical to enabling
an effective model development environment.
Unstructured Data: CAN data can be combined with images and
other exogenous datasets to yield a multifaceted and holistic mod-
eling of distracted and drowsy driving alleviating the limitations
of our current feature set. This project has been extended to ex-
pand the RAD architecture to incorporate unstructured data. Fig. 6

showcases an architecture we plan to develop to incorporate im-
age data into the drowsy and distracted driving detection process.
The expanded project scope will also include analysis and "smart"
collection of unstructured vehicle data. Similarly this work will
provide insights into the architecture and framework necessary to
deploy unstructured models in limited resource environments.
Federated Learning: Further research and development into fed-
erated learning and incorporating it into the RAD model develop-
ment system would be valuable. This would further enhance the
distributed nature of models and it would also enhance privacy
limiting the amount of identifiable data that would be transferred
to the cloud.
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