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Abstract—Batteries play an important role in modern
sustainable energy systems. However, batteries are expensive
and have a limited life time. Having a deep understanding of
how batteries operate in working situations is crucial to de-
signing advanced control mechanisms. Battery performance
and life time is highly dependent on how it is used and also
on environmental working conditions. While batteries have
been extensively studied through model-based approaches,
there is no previous work about modeling behavior based
on data analytic methods. In this paper, we propose an
integrated data-driven framework to study the behavior of
battery systems in a grid, based on data mining techniques.
The proposed method provides a high level characterization
of battery behavior and online parameter estimation using
supervised and unsupervised learning methods. This work
can be used in intelligent control systems and would help
administrators to know what is happening inside a battery
system.

I. INTRODUCTION

Energy storage systems like batteries provide flexibil-
ity in use of generation resources and management of
demand, e.g., in demand shifting, peak shaving and effi-
cient operation of energy resources [1]. However, efficient
operation of batteries to maximize lifetime and optimize
efficiency requires a good understanding of battery charg-
ing models, data from modern measurement tools, and
capturing the effects of battery usage and environmental
conditions on performance.
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Here we propose a data mining approach to model
and optimize stationary batteries based on available in-
formation (e.g. current, voltage, and depth of discharge
of batteries). The operating characteristics of the batteries
can be understood by defining the states of our system
and drawing state transition diagrams. Results would be
valuable for storage administrator regarding performance
and optimization of system. We use the available data
taken from measurement units to estimate the remaining
life of the battery in terms of efficiency and capacity using
regression methods. Furthermore, the pattern of battery
usage is discovered which results in a more accurate
estimation battery efficiency. The ultimate goal is to use
these results to develop more intelligent control strategies
and improve the efficiency of whole battery energy storage
system.

II. PREVIOUS WORKS

Previous studies on battery systems can be roughly
categorized in two groups: estimating state of charge
(SOC) and estimating state of health of the battery (SOH).

SOC estimation is a challenging task in batteries. SOC
describes battery’s remaining capacity which is an impor-
tant parameter for control strategy [2]. A good estimation
of SOC can protect the battery, prevent overdischarge, and
also improve the battery life and moreover, allows applica-
tion to make rational control strategies to save energy [3].
SOC estimation methods fall into two categories: direct
computational methods and intelligent ones. In direct
computational methods, SOC is directly calculated based
on the relationship between battery parameters such as
open-circuit voltage or internal impedance. Alternatively,
approaches such as [4] use Kalman filters to estimate SOC
of lithium-ion batteries in electric vehicles with the use of
an equivalent circuit model of the battery.

Overcharging, overdepleting, and other reasons can
damage the battery. Also, battery operation is dynamic
and its performance varies with its age. State of health of
battery (SOH) captures the ability of the battery to store
and deliver energy. Two common methods for calculating
SOH involve battery impendance or battery power, and
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using battery capacity [5]. Typical SOH methods charac-
terize battery power or energy. In [5], new SOH estimation
methods are proposed based on battery energy represented
by Ampere-hour throughput (Ah).

III. DATASET AND SYSTEM MODEL

In a typical micro-grid infrastructure, the battery op-
erates in order to minimize the costs (minimize energy
from utility) in cooperation with generators such as solar
PV and diesel generators [6]. In this study we use a dataset
which contains information gathered from a microgrid for
over a year (provided by NEC Labs). The database has
information about the battery for that year (from February-
2012 to April-2013) with the sampling rate of one sample
per 20 seconds. Several parameters were logged such as
terminal voltage, current, and Depth of Discharge (DoD)
of the valve-regulated lead-acid battery (VRLA). DoD
determines the level of charge of the battery (DoD of
100% means it is empty).

In order to identify the states of the battery, we calcu-
lated two other features: Ah;, and Ah,:. Ah;, indicates
how much of energy is saved in the battery during a
specific charging period while Ah,,; is an indicator for the
amount of energy which is discharged from the battery. To
calculate Ah;, and Ah,,:, the sample time immediately
after termination of a full charge is considered as a
reference point. Reference point is the time that we start
our calculations. First of all, in complete charging events,
the value for Ah;, and Ah,,: would be set to zero as
a reference point. Starting from the reference point, if
battery is getting partially charged (DoD # 0), Ah;,
would increase and if battery is idle or discharged, Ah,,:
would increase. Ah;, is calculated based on the following
equations:

Al = / Idit (1)
tePartialCharge

Ahyy s calculated similar to Eq. 1 except that integral
is taken over discharge period.

Due to the nature of devices, sometimes measurement
tools cannot log data in a regular sampling rate. Hence,
we might miss some valuable data or we may encounter
variations in sample rate or different sampling rates in
different devices. However, in order to have a higher
accuracy and consistency in our experiments, we have to
make sure of having a consistent sampling rate. Therefore,
measurements are pre-processed to identify the missing
values and also alleviate the sampling rate to a static
degree.

Our proposed framework is illustrated in Figure 2. At
the first step, the behavior of the battery is characterized
in terms of state diagrams and matrix transitions. States
of the battery are derived using clustering methods. After
that, in this phase, sets of frequent sequence of state
transitions are detected based on frequent episode mining
algorithm [7]. At the second phase, after data alignment
step, the cycle of charging followed by discharging events
are detected and the relations between different parameters
of state are illustrated. At the next step, a time-series
clustering algorithm is applied on all cycle profiles to
group similar profiles in terms of usage. At the end,
capacity and efficiency estimation are compared with and
without the help of profile clusters.

1V. BATTERY CHARACTERIZATION
A. State detection

It is well-known that batteries have three major states:
charging, discharging, and being idle. However, experi-
ments show that several states can be recognized based
on the history of battery (amount of energy remained
in battery) and its current operating status. As an ex-
ample, battery can be in bulk phase charging (charging
with constant current) while it was completely depleted
beforehand. Hence, different states can be identified such
as charging while it was depleted, idle while it was
full, discharging while it is almost empty, and so on.
Identifying these states helps us to understand the behavior
of battery more precisely, which in turn, helps us to
design more accurate control strategies. In this section,
we provide a framework for battery state detection based
on unsupervised learning methods.

In order to detect states of the battery we applied
clustering methods on the dataset without considering the
time-dependencies between data points. Here, we use K-
means and density-based clustering algorithm (DBSCAN)
on two sets of features. At first, DBSCAN is applied on
DoD, current, and voltage of battery. Clustering results
show that by DBSCAN algorithm, data points are catego-
rized into 8 different clusters. Furthermore, K-means (with
K=3) is applied on the difference between the normalized
values of Ah;, and Ah,,:. Prototypes of each cluster is
illustrated in Figures 3 and 4.

Each data point belongs to one cluster of DBSCAN
and one cluster of k-means. Combination of these two
clustering approaches can be considered as the final state
of each data point. Experiments show that while we have
24 possible combinations of clusters (3 K-means clusters



TABLE I
STATES OF BATTERY WITH THEIR AVERAGE STAY TIME AND STATE

PROBABILITY.
State | DBSCAN | k-means Average State
ID label label stay time(h) | probability
1 1 1 4.34 0.1741
2 1 2 2.77 0.2316
3 1 3 0.09 0.4112
4 2 1 1.51 0.0582
5 2 2 0.69 0.0344
6 2 3 0.76 0.0421
7 3 2 0.07 0.0253
8 4 1 0.01 0.0074
9 4 2 0.07 0.0001
10 4 3 0.01 0.0019
11 5 2 0.95 0.0097
12 6 2 0.64 0.0006
13 7 2 2.99 0.0028
14 8 2 0.54 0.0005

and 8 DBSCAN ones), for the studied battery, only 14
combinations occur. Each of these 14 combinations is
considered as a state of battery and are shown in Table
I. The last two columns of this table show the average
stay time and the steady state probability of each state,
respectively. The whole state-diagram of the battery is
illustrated in Figure 5. In this figure, arrows show the
available transitions from each state and the value on each
arrow represents the probability of that transition.
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Fig. 3. Profiles resulted from k-means clustering with difference of
normalized Ah;, and Ahoyt.
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Fig. 4. Profiles resulted from DBSCAN clustering with current, DoD,
and voltage.

B. Frequent motif mining

In the last subsection, we determined battery states and
state-diagram. We use state IDs of Table I to encode
states as symbols for further analysis. Hence, we encode a

Fig. 5. State diagram of the battery. Numbers are the probability of
transition from one state to another.

multivariate series of states as a stream of symbols. In this
stream, times where state transitions occur are considered
as points of interest. We use motif mining algorithms to
extract frequent patterns of states.

The idea of frequent motif mining is to identify the
contiguous sub-sequence of patterns which are repeated
several times in the time series. In our work, we look for
a sequence of state transitions and we aim to know what
the frequent sequences are. In this part, state transitions are
considered as an event in a timely manner. This process
is the Apriori-like algorithm that iteratively generates
candidates and counts their frequencies. This algorithm
can accommodate ”don’t care” states and this is beneficial
in discoverying of hidden patterns. The algorithm has been
described in details in [7]. The output of the algorithm is
a set of frequent episodes for a given frequency threshold.

For the studied battery we use states of Table I to build
event sequences. We set inter-event time constraint to 24
hours (one day) and the minimum frequency threshold to
35. Two sets of frequent motifs are shown in Figure 6.
Here, the first sequence contains state transitions from 1
to 4 and subsequenntly from 4 to 1. The second motif
shows transitions 3 — 6, 6 —+ 4, 4 — 5, 2 — 1, and
1 — 3. The first sequence spans 1.84h and the second
one spans for 11h. The frequency of first sequence is 39
and for the second sequence this frequency is 36.

V. LIFE OF BATTERY

In this section, we study how data mining can help
us to identify the changes in capacity and degradation
in efficiency. In order to study the life parameters of the
battery including the capacity and efficiency of battery, we
need to expand our view to cycles rather than individual
time-steps. In the following subsections, we first define a
cycle and provide an algorithm for cycle detection. In the
next step, we use clustering to categorize battery cycles
based on DoD. Then, we study efficiency degradation for
each cycle based on the information we extracted from
the clustering results.
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Fig. 6. Examples of frequent motifs: (a) sequence of 1-4,4-1. (b)
sequence of 3-6,6-4,4-5,2-1,1-3.

A. Cycle detection

In order to study the parameters of battery, the ideal
way is to measure the battery in open circuit model.
Since removing battery from the system and measuring its
voltage is not always applicable, especially when battery
is working in a micro-grid and system relies on that, we
need to look at available cycles of charge and discharge.
Since, the battery is not fully charged after each charging
period and it is not fully discharged in corresponding
discharge periods, we are not able to estimate the true
capacity of the battery for all the cycles. However, if we
estimate the capacity for those cycles that have incomplete
charge/discharge periods, the value can give us an idea of
how capacity was degraded over time. The important thing
that should be taken into consideration is that if we want
to compare the resulted values for different cycles, DoD
values before and after these events should be similar. The
parameters of different cycles (with different DoDs) can be
converted to a reasonable ratio for further comparison. We
define a cycle as a charging event including a fully charged
battery (DoD=0) followed by combination of discharge
and idle events (current<0).

Cycle detection is performed with Algorithm 1. This
algorithm, at first finds the full charging points in the
dataset. Full charging points are the times when battery is
in idle condition (no charging and no discharging occure)
and DoD is zero. For each of these points it expands its
range from both directions in time backward and forward.
At first, it determines the starting point where charging
event starts (¢;) and then it looks for the ending point
when the next charging event starts (¢.). Due to the nature
of the data, sometimes we encounter a missing value
which may alter the final results. Hence, before this step,
signal reconstruction step is done in which it construct
the missing value based on linear interpolation of data. In
order to compare time-series with different length, a time
alignment step is done to make their sampling rate even
(to 1 sample per minute). At the end of this algorithm,
a refining step prunes the irregular events (e.g. pruning a
cycle of complete charging event followed by a long idle
event).

Algorithm 1: Cycle detection algorithm

Input: Current(I), Depth of Discharge (DoD) time series,
Thresholds Ie and De, Time step A,;.

Output: Set of complete cycles ()

1 Reconstruction and Interpolation for noise removal

2 FullChargeSet +—Find set of full charge points
(I < Ieand DoD < De)

3C=@

4 while FullChargeSet # @ do

5 t +— FullChargeSet(1)

ts —1

6
7 while 7(ts) > 0 do
8 ‘ ts +—— ts — A
9 end

10 te+—1t

11 while I(te) < [eDO do

12 | te+—te+ A,

13 end

4 | C+— CU{(ts, te)}

15 for t € FullChargeSetl do

16 if ¢ & (ts,te) then

17 | FullChargeSet +— FullChargeSet — i
18 end

19 end

20 end

21 Pruning incomplete cycles

22 return

After finding cycles, several features are extracted
which specify the characteristics of each cycle. These
features include duration of absorption phase, maximum
current at the time of charging, cut-off current, real DoD
before and after charging, and charging and discharging
capacity.

Cut-off current is current of battery right before charg-
ing event stops. It is also worth mentioning that charging
event contains two consecutive phases: bulk phase and
absorption phase. In bulk phase charging, current is con-
stant while in absorption phase charging, voltage remains
constant until it shuts off after a minimum current (cut-off
current) is reached.

Here, we assume that when battery is idle, terminal
voltage measurements of battery is almost similar to the
value of open-circuit voltage (OCV). Based on this, DoD
at time ¢, DoD; can be derived as the complement of state
of charge (SOC), SOC}.

For each time, when voltage is v;, SOC} is calculated
based on linear interpolation on the values in Table
II.Values of V and SOC in Table II are derived from
factory datasheets of battery.

Capacity at charging Cap., periods is derived as fol-
lows:

Capep, = / I *dt 2

Jtel—

where [~ is the set of times where current is negative.
Capacity at discharging period (Capgiscr,) is determined
similarly when current is positive.

In order to compare capacities, the DoD before charg-
ing, after charging, and after discharging must be scaled
to one value. Here, we convert all parameters to have DoD
of 40% (DoD, = 40). For example for charging capacity,
the converted capacity is as follows:



TABLE II
SOC AND OCV OF VRLA RECHARGEABLE BATTERY (246AH)

[SOC] V [Soc] VvV |
100 | 13.180 || 40 | 12.289
90 | 12.932 || 30 | 12.150
80 | 12.808 || 20 | 12.003
70 | 12.682 | 10 | 11.842
60 | 12554 | 0 | 11620
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Fig. 7. Different features of cycles through time. From top to the bottom:
DoD at one step before charging starts, DoD after charging is complete,
maximum current during charging, cut-off current in charging period,
duration of absorption phase in charging (hour), charging capacity,
discharging capacity

DoD,
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Figure 7 shows how the extracted features affect on
the charging and discharging capacity. For example, near
cycle 80 (in day 80), the charging capacity jumps up which
is due to the increase in maximum current of charging.
Also, in 120th cycle, the absorption phase increases and
lead to a high jump in capacity of battery. It is obvious
that the way we use our battery has a great effect on
the capacity and life of the battery. Hence, the profile of
usages must be specified to have a better understanding
of these effects.

In addition to the above analysis, a polynomial curve
fitting (p(x) = p12% + pax + p3) is applied on capacity
of battery (discharge) for different time ranges. To see the
slope of degradation, we need to study those cycles that
have been derived under the same condition. Hence, these
cycles are divided into two based on Figure 7. Figure 9
shows that the degradation is faster when absorption phase
was lower. This re-emphasizes an essential characteristic
of VRLA (Valve-Regulated Lead Acid) battery.

ChargingCap, = Cap.p, *

B. Clustering profile of usage

For the purpose of characterizing the profile of usage
on battery, we deployed a time-series based clustering

algorithm (k spectral clustering) [8]. The distance metric
in K-SC clustering algorithm makes the results invariant
to scale and translation (shift):

; Nz —ayl

d(z,y) = min
aq |z

@)
where y(, is a shifted time series y (by ¢ time unit) and
« is scaling coefficient.

K-SC algorithm uses k-means algorithm with the above
distance metric. Details of this algorithm is described
in [8]. A large scale version of this algorithm, called
incremental K-SC is used in our paper which utilizes the
benefit of discrete Haar wavelet transform.

Figure 8 shows the resulting prototypes of clustering
algorithm. In our method, the DoD values are considered
as a metric to specify the usage profiles. As this figure
depicts, the usage patterns vary within the time. The first
group consists of cycles where after charging, battery
remains idle and then discharged a little bit. Second group
are the profiles where discharging event occurs smoothly.
In group 3 and 4, idle event and discharging event occurs
where discharging rate is different between these two
groups. Since not all the cycles have a same duration,
a down-sampling method is applied to scale all cycles to
the same duration.

Profle 1 Profle 2 Profile 3 Profile 4
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Fig. 8. prototypes of usage profile.
C. Degradation analysis

In battery life cycle, battery degradation plays an impor-
tant role and before making any decision about the battery
control strategy, battery degradation should be addressed
precisely. In this section, we use regression analysis to
study degradation in terms of battery efficiency.

Here, we applied regression to predict the efficiency of
our battery. Efficiency can be calculated for each cycle as
follows:

n= Eout _ fteDz’scharge L.V dt (5)
Ein fteCharge L.vdt

Before calculating 7, values of E;, and F,,; are

multiplied by 222= where DoD, is a reference value.
Let us assume that we have a time series of battery
efficiencies, measured based on Eq. 5. In order to estimate
the efficiency at time ¢, (t), we define a window of size m
that covers m consequent efficiencies, n(t —m), ..., n(t —
1). Then based on the following regression method we

perform the estimation:

n(t) = ao + Y an(t —1) ©6)
1



where, a;s are constant coefficients. In the experiments
we use the window size of m = 2. Using training data,
we are able to estimate a;s.

In addition to the above regression task, we studied the
effect of cluster profiles from previous subsection on the
accuracy of our regression results. In the second regression
problem, we estimate efficiency based on efficiency at
earlier sample times and K-SC profiles based on the
following equation:

n(t) =C+ > am(t—i)+bP(t i) (7)
1

where, 1(t) is efficiency at time ¢, P(t) is K-SC profile at
time t, and C, a;, b;s are constant coefficients determined
through the training process.

After training the regression algorithms, we can use
resulted coefficients to predict efficiency of battery in the
future (or on test dataset). To measure the accuracy of our
methods, the following relative error metric is used:

In(t) = 7]

error @ (8)
where, 7)(t) is efficiency at time t and 7j(¢) is the
predicted efficiency at that time.

The experiment results are shown in Table III. As it
is obvious from this table, by using the usage profiles,
the accuracy of efficiency estimation is improved by more
than %20 (Figure 10).
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Fig. 10. Regression result on test set

TABLE IIT
RELATIVE ERROR OF REGRESSION

Without profiles | with profiles
36% 9%

Relative Error

VI. CONCLUSION

Energy Storage systems like batteries are key to grid
modernization and implementation of smart grid tech-
nologies. Performance of batteries highly depends on
their working conditions. However, existing model based
methods for battery behavior study, do not consider details
of battery usage profile. In this paper, we proposed a data-
driven approach to study the behavior of batteries while
they are in the circuit. This approach helps us to model
the battery based systems more precisely. We developed
an integrated solution to identify similar usage patterns
and deploy these information in efficiency estimation of
batteries. Experiments with real datasets show that the
proposed method effectively improves the accuracy of the
predictions. This work can be used in intelligent control
systems and would help the administrator to know what
is happening in battery. However, applied techniques are
generic (technology-agnostic) and can be used for non-
battery technologies too. As a future work, the whole
battery storage system including power electronics can be
considered for efficiency calculations. Developing more
intelligent control strategies and considering all tools in
micro-grid as an integrated unit for further analysis can
be studies further.
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