
Warm Standby in Hierarchically
Structured Process-Control Programs

Ing-Ray Chen and Farokh B. Bastani

Abstract-We classify standby redundancy design space in process-
control programs into the following three categories: cold standby, warm
standby, and hot standby. Design parameters of warm standby are
identified and the reliability of a system using warm standby is evaluated
and compared with that of hot standby. Our analysis indicates that the
warm standby scheme is particularly suitable for long-lived unmaintain-
able systems, especially those operating in harsh environments where
burst hardware failures are possible. The feasibility of warm standby
is demonstrated with a simulated chemical batch reactor system.

Zndex Terms-Fault tolerance, process-control, standby replacement,
replication, knowledge representation, reliability assessment.

I. INTRODUCTION

Process-control programs, such as those for controlling manufac-
turing systems, can often be organized in a multilevel hierarchical
control structure where higher level processes formulate long-term
control strategies, e.g., optimizing resource management, whereas
lower level processes perform real-time control functions [1], [13].
The long-term nature of the decisions made by non real-time upper
level processes means that the system may be able to tolerate
temporary loss of such processes, e.g., by using suboptimal strategies.
However, the loss of critical real-time processes can disrupt the whole
system. This suggests that different fault tolerance techniques should
be adopted for upper and lower level processes since their reliability
requirements are quite different.

The standby replacement approach [2], [6], [7], [121 is an econom-
ical and efficient way of achieving fault tolerance at reasonable cost
for processes in the control hierarchy. In one scheme, termed “cold
standby,” only one copy of each process is active at a time, and each
copy is allocated to a processor that is designed to be fail-stop [111,
i.e., able to detect if it contains a fault during the normal course
of operation by using redundant hardware such as a self-checking
circuit [8],[10]. When a processor is faulty, processes which reside
on the failed processor are assigned to a spare processor or other
functional processors if no spare processors are available, The main
disadvantage of this “cold standby” scheme is its long recovery time
to load and restart a backup copy. This problem is overcome by using
the “hot standby” scheme where two or more copies are allowed to
run at the same time on different fail-stop processors, with one copy
serving as the primary and the others serving as active backups. When

Manuscript received November 27, 1989; revised August 1993. This work
was supported in pan by the National Science Foundation under Grant
CCR-9110816 and the US Nuclear Regulatory Commission under award
NRC-04-92-090. Recommended for acceptance by J. Knight.

I.-R. Chen is with the Intitute of Information Engineering, National Cheng
Kung University, Tainan, Taiwan. The work was conducted while he was with
the Department of Computer and Information Science, University of Missis-
sippi, University, M S 38677 USA; e-mail: irchen@lexus.cs.olemiss.edu.

F. B. Bastani is with the Department of Computer Science, University of
Houston, Houston, TX 77204.3475 USA.

IEEE Log Number 9403566.

658

Concise Papers

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994

the primary copy fails (due to the failure of the processor on which it
resides), a backup copy running on another processor can take over
instantaneously without any recovery time delay. However, this “hot
standby” approach requires up-to-date copies of a process and may
not be cost-effective for upper level processes which do not require
instantaneous recovery.

This concise paper develops a warm standby scheme in which the
copies of a process may be parrial copies instead of full copies as
in the “hot standby” scheme. In the design space of replication, we
envision that a) for cold standby, there is only a single active copy
of the process and, hence, there are no other active copies; b) for
hot standby, there are multiple active, full copies of a process; c) for
warm standby, there are also multiple active copies of a process, some
of which are partial copies. Warm standby is suitable for upper level
processes because it incurs medium cost and moderate recovery time
delay as compared with other standby schemes, although it potentially
can also be used for lower level processes that are less time-critical.

The rest of the concise paper is organized as follows. Section
II defines the meaning of a warm standby copy in a hierarchically
structured system as opposed to a hot standby copy, and identifies the
design parameters of the warm standby scheme. Section III presents a
reliability analysis of warm standby and a simulation evaluation using
a simulated chemical batch reactor. Finally, Section IV concludes the
paper and outlines some future research areas.

II. DEFINITION OF W A R M STANDBY COPIES

We first define our fault model. We assume that if a processor
fails then its failure is detected by redundant hardware and it ceases
operation. In no cases does a machine behave unexpectedly. This
assumption can be satisfied using techniques based on fail-stop
processors [I I].

As an example of warm standby copies, consider a part of a
process-control system where a temperature profile is controlled by
a control process according to a prescribed optimal time-temperature
curve. This control process monitors the temperature sensor input
and calculates the actuator output for effecting temperature changes
(with a goal of minimizing the mean square error between the actual
temperature profile and the optimal temperature profile). To tolerate
possible failure of the control process, a standby copy is created in
another computer. The standby copy can be implemented in three
ways: a) it has the same view of the control information as that
of the primary copy and the Mquency of receiving the temperature
sensor input is the same as that of the primary copy, b) it only has
a partial view of the control information and, hence, the frequency
of receiving the sensor input is less than that of the primary‘copy,
and c) it does not have any view of the control information and,
hence, the frequency of receiving the sensor input is zero. These three
implementations correspond to the hot standby, warm standby, and
cold standby schemes, respectively. Fig. I illustrates the sensor input
temperature profile as perceived by the standby copy using hot, warm,
and cold standby schemes, respectively. In effect, the sensor input
temperature profile is viewed at different levels of detail, ranging
from the most detailed one corresponding to the use of maximum
sensor sampling frequency, to the least detailed one corresponding to
the use of min imum sensor sampling frequency.

-7 0098-5589/94$04.00 0 1994 IEEE

IEEE TRANSAmIONS ON SOnWARE ENGINEERINGVOL. 20,NO.t?.AUGUST 1994

Tem m
ITime

Temperature

Temperature

Fig. 1. Different detailed view of a temperature profile. vp E P : Cu(a.p)l(n) I c(p).

There are two implications in this example which must be pointed
out. First, a warm standby copy, although possessing only a partial
view of the sensor input temperature profile, still has a useful
and summarized view of the temperature profile, e.g., it may still
know what the max imum temperature is, when it was attained, etc.
This allows a warm standby to immediately take charge using its
summarized information without having to start from scratch as in
the cold standby scheme. Second, the amount of processing power to
create and maintain a standby copy is proportional to the sampling
frequency and, hence, a warm standby copy will not consume as
much processing power as a hot standby copy since the sampling
rate is lower. This means that for the same hardware cost a higher
degree of replication may be achieved by using warm standby
instead of hot standby copies. This higher degree of replication
for the same hardware cost can provide the system with a better
reliability, particularly for long-lived unmaintainable systems, and
those operating in harsh environments where burst hardware failures
are possible, because now a process has more copies to tolerate
multiple processor failures. A reliability analysis will be performed
later in Section III to illustrate this point.

In the following, we give a more formal definition of a primary
or standby copy of a control process, and its interaction with other
control processes in a hierarchically structured system. The definitions
are illustrated using the system shown in Fig. 2. It consists of four
application processes, o, I), c, and d.

A. Seniority Function
A copy of a process may impose only a partial load on a processor

depending on a design parameter called the seniority of that copy.
Formally, let .4 denote the set of processes in the hierarchical control
system (e.g., n, h, c, and (1 in Fig. 2) and let P denote the set of
available processors. Then, let X: .-I + .-I U{@} be the parent function
(e.g., r(h) = r(c) = n in Fig. 2) for the hierarchical structure;
1: d -+ [O. X) be the load function (e.g., instr/sec) of processes in .-I;
c: P + [O. x) be the capacity (e.g., instr/sec) of processors in P.
The seniority function allocates copies of processes to processors,

u: .-I x P + [O. 11.

b

Fig. 2. An abstract hierarchy.

Thus, if a copy of a process n’s seniority a(n,p) is 1, then it means
that the copy is either a primary copy or a hot standby copy and
it runs at its full load, I(n), on processor p, whereas u(a.p) = 0
indicates that processor p does not execute n at all. A value between
0 and 1 means that this copy of prFcess n is a warm standby copy
and imposes C(n, p)r(n) load on processor p. The allocation must
satisfy the following constraint,

B. Logical Communicat ion Link
In a conventional hierarchical structure, for each parent/child

process-pair, we have one parent-to-child logical communicat ion link
(for sending control instructions) and one child-to-parent logical
communicat ion link (for transmitting status information). In the
hierarchical structure with warm standby copies, similar logical
communicat ion links are used. However, the logical communicat ion
links need not be of the same capacity. Formally, let

allocation(n) = {.rIfl(~, .r) > 0},

primary(o) = {.rlVy.fl(n..r) 2 c~(n,y)}.

In other words, allocation(n) is the set of processors having at least
one copy of n and primary(o) is the set of processors having the most
senior copies of o. There are two sets of active logical communicat ion
links in the hierarchy.

l A parent-to-child link from s to y iff 3n E A such that
.r E primary(a(n)) and
y E aliocation(o). The capacity of the link is proportional to
(T(n, y).

* A child-to-parent link from .I‘ to y iff 30 E .4 such that
.r E pr ima@ n) and
y E allocation(K(n)). Th<. capacity of the link is proportional
to u(7r(o).y).

Notice that the load on the communicat ion subsystem is the same
for both the warm standby and hot standby schemes since the source
of all information is the set of primary nodes while the destination
is the set of allocated nodes. If the receiver is a full copy (one that
is allocated to a primary node) then it gets complete information,
otherwise it receives only partial information.

III. EVALUATION

W e first show that the use of warm standby copies instead of
just hot standby copies can enhance the system reliability. Design
conditions under which the above statement is true are investigated.
Then, we present a simulation evaluation of the warm standby scheme
using a case study.

660 IEEE TRANSACJIONS ON SOFIWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994

A. Reliability of Partial Replication
As pointed out in Section II, since a warm standby (i.e., a partial)

copy requires less processing power than a full copy, more standby
copies for the same hardware cost can be used to tolerate hardware
failures, resulting in a system that is less vulnerable to hardware
failure. A direct consequence of this effect is enhanced reliability.
At the same time, there is no increase in software complexity since
all copies of a process run the same program. Nevertheless, a design
tradeoff associated with the use of warm standby copies over just hot
standby copies is that there exists a possibility that a warm standby
copy may not be able to deal with a control situation when it takes
control. The period that is required for a partial copy to advance
its seniority to become a full copy when it initially takes charge is
called a vulnerable period, which depends on the copy’s seniority.
In the following, we present an analysis that illustrates conditions
under which the warm standby scheme may be favored over the hot
standby scheme.

Consider the case of allocating two processes, u and b, to four
processors, pl, pz, ~3, and ~4, where n(a) = a (a is the parent of b
and thus both are important system functions and cannot fail at any
time) and c(pl) = I(a) = I(b), 1 5 i 5 4 (each processor has the
processing capability of loading up to one full copy, either a or b).
W e assume that a processor functions for an exponentially distributed
time with rate X; once it fails it stays down because there is no repair
capability in the system. Now, consider the following two ways of
achieving fault tolerance by means of standby redundancy.

1) Using only hot standby copies, e.g., allocation(n) = {PI, pz},
allocation(b) = {pa, p4}, u(a,pl) = u(a,p~) = 1, and
u(b,p~) = a(b,pd) = 1. It consists of a series structure of two
subsystems with one consisting of pl and pz, each containing
a full copy of a, in a parallel structure, and the other consisting
of p3 and ~4, each containing a full copy of II, also in a parallel
structure. The reliability of the system is given by

2) Using warm standby copies, e.g., allocation(a) = {p1,p3,p4},
allocation(b) = {pz,pa,p4}, a(a,pi) = u(b,pz) = 1, and
u(n,ps) = u(b,p3) = u(n,p4) = u(b,p4) = 0.5. A seniority
of 0.5 means that a copy runs only at its one-half load on the
processor it is allocated to. The reliability of this system is
bounded from above by the reliability of a 2-out-of-4 system.
Let .I:< be 1 if p, is alive and, let it be 0 if p, has failed,
for i = 1,2,3,4. Let E, denote th complement of s;. Then
the structure function for the system [3] is s(.ri, ~2, sg, 2-4) =
.~1.)‘2s3s4+1ls2s3.~4+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.r1.r~s3.r4. From this, the upper bound on the reliability of the 
warm standby system is given by: 

upper 
~(Nvar,,, ;‘,‘:1%, = 6p-2x’ - &-“” + 3e-4X’, 

which is better than the reliability of the hot standby system. 
However, the lower bound on the reliability is given by 

The reason the reliability is less than the upper bound is because 
of the probability of a faulty control decision while the warm 
standby is in the process of gathering sufficient information 
to become the primary controller after the primary fails. W e  

., . . . 
‘0. 

‘. 
.‘. . 

. . . . 
.‘.o . . . . 

‘. 
“‘::., Y. . . 

‘. ‘. . . 
.. ‘:. 

. . . . ., ‘0. . 
‘. . . 

#, ‘. ‘.O 
‘. ‘. 

‘. ‘. ‘. ‘. ‘. .;A 1OA = 58  = p  
b  ‘. 

‘. . . ‘* Hot Standby ‘. 

1OA = 108  = p  

0.80 

0.76 

‘. 
‘. 

:., t = 96000 aeeonda’.,, 
‘. = 10houm .’ 6, 

I. 

o.72 1 ““r ..(_ ,, , .‘.... ..,. p  lo~=ce=~ , 
2  4  6  8  lo A (10m6sec”) 

Fig. 3. Reliabilities of hot standby and warm standby with lower and upper 

have developed a detailed reliability model [5] that assumes 
that when a partial copy of process a or process b takes over, 
it takes an exponentially distributed time (this is the vulnerable 
period) with rate 11. or /IL, respectively, to become a primary 
copy. Moreover, it models the fact that during this vulnerable 
period, there is a software failure rate, 8, representing the rate 
at which a partial copy fails to deal with a control task when 
it takes over. 

Detailed calculations [5] show that the reliability of the system 
using warm standby copies is better than that just using hot standby 
copies as 0 (software failure rate of a partial copy) decreases and as 
1~ (recovery rate of a partial copy) increases (here /I,, = /II, = 11). 
A general observation is that when B 5 X, the reliability of the 
warm standby system is always better than that of the hot standby 
system. Fig. 3 compares the reliability of these two systems with 
all parameters varying proportionately. When 8 is comparable in 
magnitude to X, the warm standby system can provide a better 
reliability than the hot standby system as the underlying hardware 
becomes more unreliable. An explanation of this is because state 
transitions that could lead to system failure in the warm standby 
system are mostly due to 0 rather than X and the probability that a 
state transition can lead to system failure in the warm standby system 
is less than that of the hot standby system since there are more states 
in the warm standby system. Consequently, the reliability of the warm 
standby system will decline by a lesser extent than that of the hot 
standby system as X increases since increasing X only increases H 
by the same order of magnitude. Conversely, when H is an order of 
magnitude higher than X (e.g., 10X = H = I/), the warm standby 
system will suffer more from increasing X since this increases H by 
an extra order of magnitude (i.e., IO times) and the probability of 
state transitions that can lead to system failure for the warm standby 
system is greatly increased. In summary,  we conclude that the warm 



IEEE TRANSACIWNS UN SUP-1 WAKE ~NUINM?K,NC~, ““L. L”. NV. h, A”LJLJ> I 661 

doaa open 
9 15 

dor open 
9 3  

Fig. 4. A  batch reactor. 

standby scheme is most favorable when 0 is of the same order of 
magnitude as X and this favorable situation is most likely when the 
underlying hardware is unreliable and/or the recovery rate (~0 is high. 

B. Simulation Evaluation 
, 

In this section, we first develop a process-control program for a 
simulated experimental chemical batch reactor system to illustrate 
the warm standby technique in practice. Then, we present the sim- 
ulation results and analyze the effect of various parameters on the 
reliability of the recovery procedure. In this case study, the physical 
environment of the batch reactor in which the control processes are 
embedded is simulated; however, the control processes are completely 
implemented, instead of being simulated, and operate in real-time. 
The environment simulator sends sensor data in every At interval to 
the control processes; when it receives control actions in response to 
a sensor event (e.g.. opening a fraction of a steam valve) from the 
control processes, the simulator updates the state of the environment 
(e.g., temperature and pressure) to that at t + At based on the state 
at t, and advances its simulation clock to t + At. 

A Chemical Batch Reactor System: Consider the batch reactor 
sketched in Fig. 4 where first-order consecutive reactions take place 
in the reactor as time proceeds. Reactant .l (with a corresponding 
solution concentration C.4) is initially charged into the vessel. Steam 
is fed into the jacket to bring the reactor up to a temperature at which 
the consecutive reactions begin. Cooling water is later added to the 
jacket to remove the exothermic heat of reactions. The product that 
is desired is component L3 (with a solution concentration CB). If 
the control process lets the reaction go on for too long, tco much B 
will react to form compound C (with a solution concentration cc) 
and consequently the yield of B will be low. On the other hand, 
if the control process stops the reaction too early, too little .-I will 
have reacted and the conversion and yield of B will again be low. 

Therefore, the control process needs to control the batch reaction to 
follow a specific temperature profile (i.e., t ime vs temperature profile) 
in order to optimize the yield. The actual temperature is adjusted by a 
controller which controls two split-range valves, a steam valve and a 
water valve. The fraction of the steam valve which is open, S,, and 
the fraction of the water valve which is open, S,., are determined 
by an output signal, P, , produced by the temperature actuator. The 
steam valve is wide open when I’,. = 15 and is closed when P, 5 9 
while the water valve is closed when I’. 1 9 and wide open when 
P, = 3. Hence, the control process needs to communicate closely 
with the temperature controller to properly adjust the temperature 
in the reactor. 

Fig. 5 shows an instance of the opt imum temperature and concen- 
tration profiles with T,,,,, representing the max imum temperature and 

‘opt 
- 

l ime 

Fig. 5. Batch profiles 

C, representing the concentration of d, B, or C. If the reaction runs 
longer than f,,t , the yield of B decreases. A complete set of equations 
that describe the kinetics of the first-order consecutive reactions can 
be found in [9]. 

A Hierarchically Structured Control Program: The control pro- 
cess described above can be implemented as a four-level control 
hierarchy (Fig. 6) as follows: 

Level 4: This level controls the inventory of chemicals, the sched- 
uling of batch reactions, the maintenance of production level, etc. 

Level 3: This level governs the kinetics of different batch reactions 
(e.g. formulating optimal temperature profiles). 

Level 2: This level consists of processes (i.e., master control 
processes) each of which controls a batch reaction using an optimal 
temperature profile provided by a Level 3 process. The respon- 
sibilities of a master control process include a) minimizing the 
mean square error (mse) between the actual and the desired reactor 
temperature profiles such that ““*“e~~“,~~~~r;~ctU~l 5 3% for the final 
concentration of product B, and (b) dynamical ly formulating desired 
jacket temperature profiles one segment at a time to be followed by 
a Level 1 process. The mse is defined as 

where fl,at,ct, is the total batch reaction time in minutes. 
Level I: This level consists’of specialized processes (i.e., jacket 

temperature control processes) each of which is responsible for 
regulating jacket temperature changes (by controlling the steam and 
cooling water valves and flow rates) such that the prescribed jacket 
temperature profile formulated by a level 2 process is followed. 

W e  focus our attention on a Level 2 process (the master control 
process) and a Level I process (the jacket temperature control 
process) of the control hierarchy. (In a hierarchical control structure 
as such, Levels 1 and 2 are normally made fault-tolerant because 
on-line repair is not practical for lower level real-time controllers.) 
W e  assume that a Level 3 process which formulates the desired 
temperature profile to be followed by the master control process 
is allocated to some processor in the system and there are four 
processors, pi. 112.1)~ and 114. to which the master and the jacket 
processes can be allocated for controlling the batch reaction. Also, we 



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 19Y4 662 

level4 

level 3  

level 2  

d 
formulation of 

optimd 
oparaloh 

tmpamllJn pmfllo wndr 

1 St8 
oonlmllw 

level 1 

I batch Process 

I 

Fig. 6. A  control hierarchy for the batch reactor system. 

assume that a Level 2 or a Level I process will consume a’fraction of 
the processing power of a processor in a ratio that is equivalent to its 
seniority. For example, if a copy’s seniority is 1, then it will consume 
the full processing power of a processor that it is allocated to. 

Seniority Function: A Level 2 master control process, IH, is 
replicated on three processors, pl,p3, and 114 with seniority func- 
tions o(nz.~~~), a(nr.p~), and cr(n~,pd), respectively. (~(777.p~) is 
always equal to 1 .O and u( ~71.p~ ) > (T ( m, pa ). Only the copy with 
c( nr.pl ) = 1.0 (the primary copy) provides direct control to the 
batch reactor with the others serving as partial copies. On the other 
hand, a level 1 jacket temperature control process, j, is replicated 
on three processors, pz,p~ and 114, with seniority functions cr( j. 112 ), 
u(j,lj,), and (T(j.p4), respectively. fl(j.112) is always equal to I.0 
and g(j.11,) > a(j.ps). Again, only the copy with rr(j.112) = 1.0 
(the primary copy) provides direct control to the jacket temperature. 
Recall that a copy consumes a fraction of the processing power 
of a processor in a ratio that is equivalent to its seniority, so that 
o(m.p3)+u(j.ps) 5 I and u(mrp4)+~(j.p4) 5 1. Furthermore, 
when a junior copy becomes a primary copy, other partial copies 
residing in the same processor will be deprived of their processing 
power. For example, if (~(rrz.1)~) = 0.6 cr(j.113) = 0.2, and 
the junior copy with (~(711.p3 ) = 0.6 advances its seniority to 
(T( rtl.y~ ) = 1.0 due to detection of a failure of the primary copy 
of rn, the junior copy with r(j.113) = 0.2 will be deprived of its 
processing power from processor 113. In our implementation, this is 
achieved by scheduling it to die at the same time when failure of the 
primary copy of tn occurs. 

Knowledge Representation: W e  use the same knowledge represen- 
tation to describe the desired and actual reactor (or jacket) temperature 
profiles for all copies of rrr (or j). Fig. 7 shows the data structure used 
to describe a temperature profile. There are GO/f, slots which could 
be filled per minute, where f, represents the sensor sampling interval 
in seconds. The degree to which these slots are filled is proportional 
to a copy’s seniority. For example, every rlth slot is filled for a copy 

f f f f 
P P P P . . . 

T  TTT  

t t t t 

1: a flag indloatlng whether the slot contains data 
p: phase 
T: temperature 
1: t ime 

Fig. 7. The data structure for describing .4 temperature profile. 

of a control process with a seniority equal to l/r,. This data structure 
allows a temperature profile to be described at different levels of 
detail, i.e., as the number of filled slots increases, the temperature 
profile is known to a greater detail. Consequently, a copy with a 
low seniority will probably have more up-to-date information about 
less frequently updated information such as phase, rate of change of 
temperature (slope), etc., and have less up-to-date information about 
temperature slots. Note that with this implementation, a primary copy 
of rn does not send different information to different copies of j and, 
hence, broadcast protocols with sampling by copies of j (with a 
sampling rate proportional to their seniorities) could be used. 

Simulating the Batch Reactor Environment: The control environ- 
ment in which the master and jacket processes are embedded is 
simulated by the following three processes running on other pro- 
cessors: 

1) an environment process which simulates the physical environ- 
ment of the batch reactor and the sensor subsystem; 

2) a channel process which simulates the underlying communi-  
cation subsystem with varying degrees of channel capacities 
simulated by changing its input queue lengths (this parameter 
is called Cctlarlllei); and 

3) a supervisor control process which simulates a Level 3 process. 
These three simulated processes, together with the three copies 

of the master control process and the three copies of the jacket 
temperature control process, communicate with one another through 
the channel process. 

Fault Recovery Procedure: Process failure detection is imple- 
mented by “are you alive” and “I am alive” messages. Specifically, 
if a process does not respond to an “are you alive” message for more 
than :Ttl,,,at~caal (a program parameter) consecutive broadcasting 
intervals (a broadcasting interval = a sensor sampling interval in our 
implementation), then the process is considered dead. The recovery 
action taken by a junior copy of7n upon detection of a failure of its 
senior counterpart is a) advancing its seniority from either 0.2 to 0.6, 
or 0.6 to 1.0, and b) acquiring more detail control information from 
the supervisor control process (for the desired temperature profile) 
and the environment process (for the sensor data) in a frequency 
that is proportional to its new seniority. If the new seniority is 1.0, 
the junior copy takes charge immediately while gradually acquiring 
information from the environment. The recovery action taken by a 
junior copy of j is the same except that the parent process from which 
it acquires the desired jacket temperature profile is the primary copy 
of m. 

Simulation Resulrs: The parameters of our control program are 
shown in Table I. Table II compares the cases of single, double. 
and triple processor failures in terms of the mse (mean-square error) 
between the actual and optimal temperature profiles and the final 



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994 

PARAMETERS OF 

paramter 
h,Pl) 
4m,a) 
a(m,p4) 

u(i Pz) 
4j, p4) 
6, a) 
PlJailure 
P2,foiIure 
P3,foiiure 
P4,joiIure 
N~roodcmt 
C channel 

TABLE I 
BATCH REACTOR CONTROL PROGRAM 

description 
seniority of primary master process (always 1) 
seniority of first junior master process 
seniority of second junior master process 
seniority of primary jacket process (always 1) 
seniority of first junior jacket process 
seniority of second junior jacket process 
failure time of processor pl 
failure time of processor pz 
failure time of processor pa 
failure time of processor p4 
no. of messages for detecting a process failure 
channel capacity of the communicat ion subsystem 

TABLE II 
MSE AND C’s FOR SINGLE, DOUBLE AND TRIPLE PRWESSOR FAILURES 

Processor Failures* 1 MSE 1 CA9 (mole/P) 
none 0.674 1 0.285 

529706.890 0.000 

0.285 
0.285 
0.285 
0.285 
0.285 
0.285 

*bad on a(m,ps) = u(j,p4) = 0.6, u(m,p.+) = u(j,ps) = 0.2, 
c channel =  16, Nbroadeo,t = 3, and tj.ilure = 14.0. 

yield of CH. The time of processor failure is chosen to be at the 
most critical moment  of the batch reaction, namely, at the time when 
a phase change occurs (at the 14th minute mark). 

From Table II, we see that when all the copies of I)/ or j fail (for 
example, all copies of j process fail when processors 1>1.1~j, and pa 
all fail), the batch reaction goes on unattended and the final yield 
of C’H becomes quite low (in fact it is equal to zero) because too 
much D is consumed. On the other hand, for other cases (even for 
the case of a triple failure, e.g., QQ.~):s, and 11.2)) when one junior 
copy still survives, the yield of CB is quite good. T6is is partly due 
to the fact that the batch reactor is intrinsically a set-point based 
reactor system and thus a temporary out-of-sync between the control 
and environment processes can be tolerated in a short period of t ime 
without causing catastrophic damages. However, it also points out 
the importance of using partial copies to provide fault tolerance - 
even a partial copy with seniority equal to 0.2 can make a significant 
difference. Our other experimental results [4] show that in all cases 
when at least one partial copy survives failures (for both the Level 
I and Level 2 processes), the yield of C’H is good and the tttse is 
never more than 5” F’. 

Comparison of the simulation results with the case of using full 
copies is obvious. In the latter case, 111 and 1)~ may be allocated for 
the master control process, and 1):~ and 1~ may be allocated for the 
jacket control process. Hence, when a critical double failure occurs, 
namely, 0) I .~Jz) or Qj.1. I).,), the batch reaction will go on unattended. 
This is in contrast with the results for warm standby where we 
observe that when a double failure occurs, the batch reaction is always 
under proper control. Of particular interest is the simulation result as 
compared to the case of using cold standby processes. In the former 
case, there is no disruption of continuity of control when a warm 
standby process takes over whereas in the latter case a cold standby 
process would require a loading and restart period (e.g., to load the 

temperature history logged in some stable storage before restart) and 
during that period the system is left uncontrolled. 

IV. SUMMARY 

In this concise paper, we have developed a fault-tolerant tech- 
nique that can be used in a variety of process-control systems. 
This technique provides good reliability in a cost-effective way by 
incorporating the concept of warm standby. Our case study shows that 
a surviving warm standby copy with a seniority as low as 0.2 can 
make a significant difference in providing continuity of control when 
failures occur. Our comparative study of the reliability of partial and 
hot standby techniques suggests that warm standby appears to have its 
greatest advantage when it is applied to systems whose underlying 
hardware is unreliable. 

There are several research areas which include I) developing a 
decentralized management methodology for hierarchically structured 
process-control programs with warm standby and analyzing the 
effects of local and global factors which influence the distribution 
of (7 per process (influenced by &cal factors, e.g., importance of 
a process) and per processor (affected by global factors, e.g., load 
balancing requirements), 2) using a frame-structure-based knowledge 
representation technique to facilitate self-learning capability of con- 
trol processes, (e.g., via peer-to-peer communicat ions which can exist 
among copies of a process), and extending it to cases where the 
knowledge base represented by the frame structure is large, and 
3) comparing the performance of warm standby using unreliable 
communicat ion protocols (e.g., datagram services) with hot standby 
using reliable protocols based on timeout and retransmission. 

ACKNOWLEDGMENT 

The authors wish to thank the five anonymous reviewers for their 
detailed comments which have significantly improved the quality of 
this concise paper. 

REFERENCES 

[I] I. S. Albus, A. I. Barbera, and R. N. Nagel. “Theory and practice of 
hierarchical control,” in Proc. COMPSAC ‘8/, Washington, DC, Sept. 
1981, pp. 18-39. 

[2] A. AviZienis et ol., “The STAR (self-testing-and repairing) computer: An 
investigation into the theory and practice of fault tolerant computing,” 
IEEE Trans. Cornput., vol. C-20, pp. 1312-1321, Nov. 1971. 

[3] R. E. Barlow and F. Proschan, Statistical Theory ofReliohi/ity and Life 
Testing. New York: Holt, Rinehart and Winston, 1975. 

[4] 1. R. Chen, “An AI-Based architecture of self-stabilizing fault tolerant 
distributed process-control programs,” Ph.D. Thesis, Dept. of Comput. 
Sci., Univ. of Houston, Dec., 1988. 

[S] 1. R. Chen and F. B. Bastani. “Reliability of fully and partially replicated 
systems,” IEEE Trans. Reliability, vol. 41, no. 2, pp. 175-182, June 
1992. 

[6] R. Freiburghouse, “Making pricessing fail-safe,” Mini-Micro Syst., May, 
1982. 

171 B. W . Johnson and P. M. Julish, “Fault-tolerant computer system for 
the Al29 helicopter,” IEEE Trans. Aero. Elect. Syst., vol. 21, no. 2, pp. 
220-229, 1985. 

(81 B. W . Johnson, Design and Analysis of Fault Tolerant Systems. Read- 
ing, MA: Addison Wesley, 1989. 

[9] W . L. Luyben, Prcxess Modeling. Simulation, and Controlfor Chemical 
Engineers. New York: McGraw-Hil l ,  1973. 

[IO] M. Nicolaidis, “Evaluation of a self-checking version of the MC68000 
microprocessor,” in 15th Symp. Fault Tolerant Computing, 1985. 

[I I] R. D. Schlichting and F. B. Schneider, “Fail-stop processors: An 
approach to designing fault-tolerant computing systems,” ACM Trans. 
Comput. Syst., vol. I, no. 3, pp. 222-238, Aug., 1983. 

1121 W. Toy, “Fault-tolerant design of local ESS processors,” Proc. IEEE, 
vol. 66, 01% 1978, pp. 11261145. 

1131 T. J. Will iams, “The development of reliability in industrial control 
systems” lEEE Micm vol. 4, no. 6, pp. 6680, Dec., 1984. 


