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Special math needed to use results: Same 
Results useful to: Computer designers and reliability analysts 

Summary & Conclusions - The reliability of two replication 
methods, partial and full, is analyzed for a 2-process/4-processor 
case. Three types of systems are analyzed and compared: no repair, 
f i i te  repair-rate, and instantaneous repair. These systems are 
modeled using discrete-state continuous-time Markov chains. The 
condition under which a partially replicated system might yield a 
better reliability than that of a fully replicated system is quantified 
and expressed in terms of system design parameters. Partial replica- 
tion is most favorable in systems without repair capability and this 
advantage is manifested most when the underlying hardware is 
unreliable. 

1. INTRODUCTION 

Replication normally refers to full replication in which a 
module of a system is fully replicated to provide several iden- 
tical copies. For example, in the Electronic Switching System 
[2], the CPU is duplicated and in the Fault Tolerant Multi- 
Processor System [3] the bus and processor modules are 
triplicated. We have proposed [4,5] a replication technique for 
process-control systems in which a module can be only partial- 
ly replicated for systems where control data are smooth func- 
tions of time. Figures 1 & 2 show an example of distributing 
2 process modules, a, b, among 4 processors, pl, p2 ,  p3, p4; 
a/pi  means that processor p i  is allocated to process a. Both a 
and b are critical components and, hence, must not fail. A full 
replica ( a  or b) of a process module consumes the full pro- 
cessing power of a processor. 

Figure 1. Full Replication 

Figure 2. Partial Replication 

Figure 1 shows full replication being used. Each processor is 
allocated to either a or b. On the other hand, figure 2 illustrates 
partial replication where a process module is replicated to yield 
one full replica (eg, a) and two partial replicas (eg, a’ ) .  For 
illustration, we assume that a partial replica in this case uses 
only 0.5 of the processing power of the processor to which it 
is allocated. This is achieved by restricting the processing and 
information flow to a partial replica in a ratio that is propor- 
tional to 0.5. 

Partial replication is possible when information can be 
stored at various levels of detail, ranging from complete infor- 
mation to summarized information. A full replica has complete 
information and provides full control while a partial replica has 
only summarized information and is in standby mode. When 
a full replica fails, a partial replica can immediately provide 
temporary control based on the summarized infohation it has 
while it gradually acquires additional information to become 
a full replica. 

Chen & Bastani [5] have demonstrated the feasibility of 
partial replication with a case study of a simulated chemical 
batch reactor. The system has to control the temperature pro- 
file in a reaction chamber to maximize the yield of a certain 
reactant. The full replica samples the temperature every 6t 
seconds and adjusts the heating and cooling sources to bring 
the temperature to the desired level. A partial replica samples 
the temperature every n.6t seconds, n L 2. It is on standby 
to take over control when the full replica fails. In the standby 
mode, it needs only l / n  of the processing power required by 
the full replica. This allows several partial replicas to run on 
the same backup processor. When a partial replica needs to 
become a fidl replica, the processor is then devoted to that 
replica. This can require one or more other partial replicas on 
that processor to cease execution in order to meet the process- 
ing requirements of the new full replica. 

In this paper, we are interested in evaluating the system 
reliability of fully and partially replicated systems. Continuous- 
time Markov chain models [l , 9 ]  are used to describe the time 
behavior of these systems. Our reliability model focuses on a 
2-process/4-processor case. Other cases can be analyzed similar- 
ly. Three cases are evaluated: 

1. nonrepairable (zero repair-rate) system, 
2. repairable systems with finite repair rate, 
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3. RELIABILITY MODELS 3. repairable systems with instantaneous repair (infinite 

Case #3 models the situation in which there exists an infinite 
number of off-line spare processors that can be used to replace 
failed on-line processors instantaneously. Our objective is to 
identify design conditions under which partial replication is 
preferable to full replication and vice versa. 

Section 2 lists the assumptions & notation. Section 3 pro- 
vides the reliability analysis of fully and partially replicated 
systems based on Markov chain models. Section 4 evaluates 
design parameters for optimizing system reliability for the same 
cost function. 

repair-rate) . 0 

2. ASSUMPTIONS & NOTATION 

2.1 Assumptions 

1. Repair and failure times of processors are exponential- 
ly distributed r.v.’s with a constant repair rate (for finite repair- 
rate) and a constant failure rate. 

2. Processors are fail-stop. 
3. When a processor is repaired and brought back on line, 

the time required to recover processes allocated to it is exponen- 
tially distributed with a constant recovery rate. 

4. A full replica of a process requires the full processing 
power of a processor and serves as either a primary replica or 
a hot standby of that process [ 5 ] .  This assumption is adopted 
to ease the reliability analysis. 

5 .  A partial replica of a process requires half of the pro- 
cessing power of a processor and serves as a warm standby of 
that process. 0 

2.2 Notation 

processor i 
full replica of process module a,b 
partial replica of the process module a,b 
system reliability at time t 
a newly repaired processor 
processor failure, repair rate 
recovery rate of a full replica of process a on a newly 
repaired processor 4 
recovery rate of a partial replica of process a and a 
partial replica of process b from a newly repaired pro- 
cessor 4 
recovery rate of a partial replica of process a to a full 
replica of process U 

recovery rate of a partial replica of process b to a full 
replica of process b, 
software failure rate of a partial replica 

s1 - s2 a state transition from state s1 to state s2 
f failure state 
Prht} Pr{system is in state f at time t ,  given that it was in 

0 

Other, standard notation is given in “Information for Readers 
& Authors” at the rear of each issue. 

the initial state at time 0) 

Reliability assessment of replicated systems normally falls 

1. Systems with repair capability, eg, electronic switching 

a. a failed module can be repaired with a finite repair-rate, 
b. it can be repaired instantaneously (eg, if there is a 

standby processor pool for replacing processors that have 
failed). 

2. Systems without repair capability, eg, spacecraft con- 
0 trol systems. 

The reliability analysis of a repairable system is, in general, 
more complicated than that of a nonrepairable system because 
we need to consider the repair rate. We consider these cases 
separately in the following subsections. 

within the following classes. 

systems, 

3.1 Nonrepairable Systems 

Assumptions 

1. A processor functions for an exponentially distributed 
time with rate X and then fails. Once a processor fails it stays 
down because there is no repair capability in the system. 

2. When a partial replica takes over, it takes an exponen- 
tially distributed time (the vulnerable period) to become a full 
replica. 

3. During a partial replica’s vulnerable period, there is a 
software failure rate, 0, representing the rate at which a partial 
replica fails to deal with a task which would require its data 

0 structure to be completely up-to-date. 

The failure event in assumption #1 is represented by remov- 
ing the processes which are originally running on the failed pro- 
cessor, from the state description. For example, the failure of 
eitherpl 0rp2 in state (a,a,b,b) is described by a state transi- 
tion (a,a,b,b) - (a ,b ,b ) .  This transition shows that one full 
replica of a has been removed from the system. It has a transi- 
tion rate of 2 .A  since it is triggered by the failure of either p1 
or P2. 

The Markov chains in figures 3 & 4 model a fully replicated 
and a partially replicated nonrepairable system, corresponding 
to figures 1 & 2, respectively. In the fully replicated system, 
when a full replica (eg, a) fails, the other full replica (eg, a) 
takes over instantaneously. The reliability of the fully replicated 
system is: 

rm( t )  = 1 - PrAt}, for the initial state = (a,a,b,b) 

Prht} can be obtained by solving the set of differential equa- 
tions describing the Markov chain in figure 3, using Laplace 
transforms: 

+ exp( -4.X.t). 
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Figure 3. Full Replication Model 
[No Repair] 

Figure 4. Partial Replication Model 
[No Repair] 

In the partially replicated system (figure 4), when a full replica 
(eg, a)  fails, a partial replica (eg, a’) switches in to take over. 
Then a processor that was originally labeled a ’ b ’ is selected 
to make a transition to a full replica, either a or b depending 
on whether a or b failed. For example, when a fails in state 
(a, b, a‘b‘, a’b’) the event is described by (a, b, a‘b‘, a’b’) - ( a  ’ , b, a ’ b ’ ). This means that a processor originally per- 
forming a ’b’ is now locked into a recovery transition from a ’ 
to a. A partial replica taking over might involve increasing the 
data acquisition frequency to that of a full replica until the in- 
formation in its data structures is brought completely up-to-date 
[ 5 ] .  We represent this recovery event by a state transition with 
a constant transition rate. For example, when a partial replica 
of process a, viz, a ’ ,  takes control, the event is represented 
by a ‘ - a with a recovery rate of p - , .  This recovery event 
is instantaneous for full replication since the information in a 
full replica’s data structure is always up-to-date. The reliabili- 
ty of the partially replicated system is 1 - Prht}, for the in- 
itial state = (a,b,a’b’,a’b’). Prf{t} can be obtained 
numerically by: 1) solving a set of differential equations describ- 
ing the behavior of the Markov model in figure 4 using the Gear 

backward method, or 2) by using its Matrix-Geometric solu- 
tion [8] : 

Prf{t} = 2 .exp(At)l 

exp(At) = Aj-tj/j!. 

Notation 

A 

m 

j = O  

m x m matrix for the Markov process with negative 
diagonal elements and non-negative off-diagonal 
elements, 

m + 1 a state corresponding to state f 
- (Y 1 x m  initial probability vector: ( l , O ,  ... ,0) 

Then, even without having access to a procedure for numerically 
solving differential equations, Prht} can be computed by us- 
ing an appropriate summation truncating rule to approximate 
exp (At) as closely as feasible. 

Section 4 compares the resulting system reliability due to 
the use of partial replication and full replication for 
nonrepairable systems. 

- 1 m x  1 vector of 1’s 0 

3.2 Repairable Systems with Finite Repair-Rate 

Assumption 

1. Once a processor fails, it takes an exponentially 
0 

The repair event is represented by adding a newly repaired pro- 
cessor, +, into the state description. For example, (a, b, b)  - 
(a, +, b, b) represents a transition in which p2 (with a full 
replica of process a allocated to it) is just newly repaired and ready 
to be put on line again. Once a processor is repaired, it takes 
another exponentially distributed time (to load the p m s  modules 
and to acquire process information) to become operational. For 
example, (a, +, b, b) - (a, a ,  6,  b) with a transition rate pa+ 
represents a transition in which a full replica of a has been 
recovered on a newly repaired processor +. The average time that 
is required to perform such a transition is 1 / pa+ .  This and other 
transition rates are defined in section 2. 

distributed time with rate 6 to be repaired. 

Table 1 
Full Replication Markov Chain 

[Finite Repair-Rate] 

State Label Transition 
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Table 2 
Partial Replication Markov Chain 

[Finite Repair-Rate] 

State Label Transition 

(a, b, a ’b ’ ,  a ’b ’ )  
(a, b, a ’b ’ ,  Q) 
(a ,  b ’ ,  a ’b ’ ,  Q) 
(a ’ .  b, a’b’ ,  6) 
(a ,  b,  6, 4) 

(a, b ’ ,  4, Q) 
(a ’ ,  b, Q, Q) 
( a ’ ,  b’ ,  6, Q) 
(a ’ ,  b ‘ ,  a‘b’ ,  Q) 
(a ’ ,  b ’ ,  a’b’ ,  a ’ b ’ )  

(a ,  b ’ ,  a’b’ ,  a ’ b ’ )  
( a ‘ ,  b, a’b’ ,  a ’b ’ )  
(a, b, a ’ b ’ )  
(a, b. Q) 
(a. b’ ,  Q) 

( a ’ ,  b, 4)  
(a ,  b ’ ,  a’b’ 
( a ’ ,  b, a’b’ 
( a ’ ,  b ’ ,  Q) 
( a ’ ,  b ’ ,  a‘b 

( a ,  b ’ )  
( a ‘ ,  b )  
( a ’ ,  b ‘ )  
(a ,  b )  
f 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

We can model the finite repair-rate by using 2 Markov 
chains, as shown in tables 1 & 2 which correspond to fully 
replicated and partially replicated systems, respectively. A state 
is labeled with a number. For example, table 1 has 10 states, 
numbered from 1 to 10. Under the Transition column, a “(state, 
state transition rate)” denotes possible outward state transitions 
from a given state. For example, ( a ,  a ,  b, b )  has 2 possible 
state transitions, leading to states ( a ,  a ,  b )  & ( a ,  b, b ) ,  with 
a transition rate of 2 .h  each. Hence, state 1 (a,a,b,b) has 2 
possible outward state transitions: (5, 2 . h )  & (6, 2 . h ) .  The 
reliability of a fully replicated and a partially replicated system 
under finite repair-rate can be computed numerically from tables 
1 & 2, respectively, again using the Gear backward method. 

3.3 Repairable Systems with Instantaneous Repair 

A system with instantaneous repair can be viewed as hav- 
ing an infinite backup processor pool. When a processor fails, 
it is repaired instantaneously (or in the case of an infinite backup 
processor pool, it is instantaneously powered-up) and ready to 
be put on line. Hence, unlike the previous two systems, the 
failure of a processor cannot be simply represented by remov- 
ing the processes allocated to the failed processor in the state 
description, eg, ( a ,  a,  b, b )  - ( a ,  6 ,  b )  whenp, orp2 fails. 
Instead, the failure event is denoted by ( a ,  a ,  b, b )  - ( a ,  4, 

b, b )  since the failed processor, either p 1  or p2, is repaired in- 
stantaneously. The transition rate of the above event, however, 
is still 2.h since the repair is instantaneous. The Markov chain 
shown in figure 5 models the fully replicated system with in- 
stantaneous repair, with state ( a ,  a ,  b ,  b )  representing the in- 
itial state, while the Markov chain shown in table 3 models the 
partially replicated system with ( a ,  b, a ’ b ’ , a ’ b ’ ) represen- 
ting the initial state. 

Figure 5. Full Replication Model 
[Instantaneous Repair] 



CHENIBASTANI: RELIABILITY OF FULLY & PARTIALLY REPLICATED SYSTEMS 

- 

179 

(a ,  b, a’b’ ,  a’b’)  
(a ,  b, a ‘b ‘ ,  6) 
(a ,  b ’ ,  a’b’ ,  6) 
( a ’ ,  b, a ‘b ’ ,  6) 
(a ,  b, 6, 6) 
(a ,  b ’ ,  6, 6) 
( a ’ ,  b.  6, 4) 
( a ’ ,  b ’ ,  6, 6) 
( a ‘ ,  b ‘ ,  a’b’, 6) 
( a ’ ,  b ’ ,  a’b’ ,  a’b 

(a, b’,  a’b’ ,  a’b’ 
( a ’ ,  b, a ‘b ‘ ,  a’b’ 
f 

4. RELIABILITY COMPARISON OF FULLY & 
PARTIALLY REPLICATED SYSTEMS 

System reliability of fully and partially replicated systems 
(as modeled in section 3) are compared in this section. 

1.  We show for each case that there is a set of parameter 
values under which a partially replicated system has a better 
reliability than that of a fully replicated system. 

2. We analyze the effect of parameters on system reliability 
and their relationship with each other. 

3. We conclude that among the three cases, partial replica- 
tion is most favorable when the system is nonrepairable, ie, 
when hardware resources are scarce and there is no repair 
capability in the system. 0 

Processes a & b both consume the full processing power 
of a processor. 

Assumptions 

1.  p = p a ‘  = pbb’.  
2. The average time required to recover a full replica from 

a newly repaired processor is about twice as much as that re- 
quired to recover a full replica from a partial replica. This is 
reasonable because the replication level is 0.5 for a partial 
replica. That is, we let pad = jtbd = jta‘b‘4 = p/2. h is 
selected to go from 2.77.10-4, 1 hour per failure, to 
2.77.10-5, 10 hours per failure. This range shows meaningful 
differences in reliability between the partially replicated and fully 
replicated systems. 0 

We adopt the following two strategies to analyze the ef- 
fect of parameters on system reliability: 

1.  All parameters vary proportionately. 
2. Only one parameter varies while all others are kept 

constant. 

4.1 Analysis of Strategy #I 

Strategy #1 is used to see how parameters are interrelated 
when they vary proportionately. For that purpose, the ratio of 
the processor failure rate (A) to the processor repair rate (6) 
or the replica recovery rate (p), is 0.1, while the ratio of the 
processor failure rate to the software failure rate (8) varies from 
0.1 to 1, ie, 10-X = x . 8  = p = 6, withx ranging from 1 to 
10. The intent of this strategy is to reveal the cross-over points 
at which one replication technique provides a better reliability 
than the other. 

Figures 6 - 8 show the difference in reliability between 
the partially replicated and fully replicated systems, rpartial ( t )  
- rw(t) ,  for nonrepairable, finite repair-rate, and instan- 
taneously repairable systems, respectively. When 1 O . X  = 8 = 
j t  = 6 ( x  = 1 ) , all three cases show that the reliability of the 
fully replicated system is better than that of the partially 
replicated system for all h values under consideration. The ad- 
vantage of full replication over partial replication disappears, 
however, as 8 becomes comparable in magnitude to X, ie, for 
x 1 5 .  In this case, the partially replicated systems provide bet- 
ter reliability than the fully replicated systems as X increases. 
The 2 reasons for this are: 

1.  State transitions that could lead to system failure in par- 
tial replication are mostly due to 8 rather than A. This is in con- 
trast to full replication where system failure is exclusively due 
to hardware failures. 

2. The number of states from which state transitions could 
lead to system failure in partial replication is less than that of 
full replication. Consequently, the reliability of the partially 
replicated systems will decline by a lesser extent than that of 
the fully replicated systems as h increases, since increasing X 
only increases 8 by the same order of magnitude. Conversely, 
when 8 is an order of magnitude higher than X (eg, 1 O . X  = 
0 = p = 6), the partially replicated systems suffer more from 
increasing A. The reason is that this increases 0 by an extra order 
of magnitude (ie, 10 times) and the probability of state 
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transitions that can lead to system failure for partially replicated 
systems is greatly increased. These arguments explain why in 
figures 6 - 8 when 1 O . X  = 8 = p, the rpahd(t) - rhn(t)  
decreases as X increases, while when 1O.X = 5-13 = p, the 
rpartial( t )  - rhll ( t) increases as X increases. In these cases, X 
and all other parameters increase proportionately. Below we 

0 apply strategy #2 to see the absolute effect of A. 

Figure 9 demonstrates that when 8 is comparable in 
magnitude to X, the benefit of partial replication over full replica- 
tion is manifested most when there is no repair in the system. 

4.2 Analysis of Strategy #2 

The effect of 8 ,  of course, is not surprising since 8 relates 
to partial replication only. What is surprising, however, is the 
effect of the recovery rate ( p )  on system reliability. Recall that 
the recovery rate is the rate at which the recovery of a replica 
can be performed on an on-line processor. Since the replica- 
tion level for a partial replica is 0.5, the time required to recover 
a full replica from a newly repaired processor is about twice 
as much as that required for recovering a full replica from a 
partial replica. Hence, we have set pbb’ = paat = p, and pas 
= pbb = parb’,#, = p/2 .  With this provision, it seems that the 
recovery rate should have equal effects on both the fully and 
partially replicated systems because their recovery rates are pro- 
portionally comparable. This is, however, not the case. 
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Figure 10 shows that in all three cases, the reliability of the 
partially replicated system can benefit more from an increase 
of the recovery rate than the fully replicated system. In fact, 
the reliability of the partially replicated system becomes better 
than that of the fully replicated system when p exceeds a 
threshold value. One explanation of this phenomenon is that the 
number of states from which a replica can recover (due to p )  
in partial replication is much larger than that of full replica- 
tion. For example, for finite repair-rate systems, it is 21 vs 5 
after excluding the initial state, the failure state, and states from 
which no replica recovery (no transitions due to p )  is possible. 

In the partial replication scheme, all states other than the initial 
state ( a ,  b, a 'b ' ,  a 'b ' ) ,  the final statesf, state ( a ,  b, a 'b ' ) ,  
and state ( a ,  b) (25 - 4 = 21 states) can attempt to perform a ' - a or b' - b transitions. In the full replication scheme, only 
5 out of 10 states can perform 4 - a or 4 - b transitions. 
For example, state ( a ,  a, b )  cannot recover to state ( a ,  a ,  b, 
b )  without first going to state ( a ,  a ,  b ,  +), ie, the failed pro- 
cessor must be repaired first before recovery can take place. 
In partial replication, however, state ( a ,  b ' ,  a 'b') ,  for exam- 
ple, can recover to state ( a ,  b, a 'b ' )  without having to wait 
for the failed processor to be repaired, ie, there is no need to 
go first to state ( a ,  b ' ,  a 'b ' ,  4) in order to perform replica 
recovery. 

While the above rationale suggests that partial replication 
is more favorable when the value of p is large, it also implies 
that when the repair rate becomes larger, the advantage of par- 
tial replication over full replication regarding p is less impor- 
tant since there are no wait states in either replication scheme. 
This is indeed the case. Figure 10 shows that in the system with 
instantaneous repair (6 = 00 ), the effect of p is least important 
among all 3 cases. The advantage of partial replication over 
full replication vis-a-vis p, on the other hand, increasingly 
manifests itself as the repair rate decreases and is at the max- 
imum point when 6 = 0 (no repair). 

rpartladt) - r l u d f )  ( x  IO3)  

-4.0 I I I I  I I  I 
2.7 7.7 12.7 17.7 22.7 27.7 X ( x  

Figure 11. Difference in Reliability As a Function of X & 6 

With the above result, which shows that an increase in p 
favors partial replication, especially when 6 is low, it is con- 
ceivable that if we fix p and increase 6, then the fully replicated 
system will benefit more from the increase in 6 than the par- 
tially replicated system (since the advantage of partial replica- 
tion due to p becomes less important when 6 is high). This is 
indeed the case and is illustrated in figure 11. Hence, the ef- 
fects of p and 6 are inversely related. Since typically a system 
is not likely to have instantaneous repair, the effects of p and 
X appear to favor the adoption of partial replication over full 
replication. Furthermore, the advantage of partial replication 
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over full replication is augmented when the underlying hard- 
ware is unreliable. Figure 11 summarizes what we have describ- 
ed so far. It shows that partial replication is most favorable in 
systems with no repair capability, viz, when 6 = 0, and this 
advantage is manifested most when the underlying hardware 
is unreliable. 

We thus conclude that partial replication is most favorable 
when 0 is of the same order of magnitude (within a factor of 
10) as X and there is little or no repair capability in the system. 
This favorable situation is most likely when the underlying hard- 
ware is unreliable and the software recovery rate (p) is high. 
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