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AbstractÐIn a wireless mobile client-server environment, a mobile user may voluntarily disconnect itself from the Web server to save

its battery life and avoid high communication prices. To allow Web pages to be updated while the mobile user is disconnected from the

Web server, updates can be staged in the mobile host and propagated back to the Web server upon reconnection. In this paper, we

analyze algorithms for supporting disconnected write operations for wireless Web access and develop a performance model to identify

the optimal length of the disconnection period under which the cost of update propagation is minimized. The analysis result is

particularly applicable to Web applications which allow wireless mobile users to modify Web contents while on the move. We show how

the result can be applied to real-time Web applications such that the mobile user can determine the longest disconnection period such

that it can still propagate updates to the server before the deadline so that a minimum communication cost is incurred.

Index TermsÐWireless mobile systems, Web access, disconnected operations, performance analysis, coherency interval, mobile

client-server systems.
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1 INTRODUCTION

A mobile host (MH) performing Web accessing can
voluntarily disconnect itself from the server to save its

battery life and avoid high communication prices in
wireless networks. Before disconnection, the MH can
prefetch into its local cache frequently used Web pages of
various formats [12] based on the MH's specification or the
past Web access history. During disconnection, the MH
accesses the Web using only these prefetched pages. In
addition to supporting read-only Web browsing, write
operations to these prefetched pages can be performed by
recording new values into a log. When the MH is
reconnected to the system, the operational log entries can
be reintegrated back to the Web server to resolve conflicts
with updates performed at other sites. In the literature, the
three phases of supporting disconnected operations are
termed hoarding, disconnection, and reintegration [4], [10],
respectively.

Over the past few years, various schemes have been
proposed to support disconnected Web access in wireless
mobile environments in these three phases [1], [2], [3], [4],
[6], [7], [9]. However, most existing schemes assume read-
only Web browsing during disconnection. Of particular
interest is the eNetwork Web Express system [2] which uses
a coherency interval associated with a Web page to specify
how often a cached Web page should be checked for
changes, e.g., one day for text pages and no limit for images.

Since different coherency intervals apply to individual Web
pages, it makes the notion of ªa disconnection periodº
practically nonexistent when more than one page are
cached in the MH. To support Web page write/create
operations during disconnection, the Caubweb project [9],
on the other hand, proposes modifying contemporary Web
browers/servers. The basic idea is to support disconnected
updates via a HTTP (Hypertext Transfer Protocol) client
proxy running on the MH side to cache staging updates
while disconnected, and a PUT script running on the
HTTP server to accept PUT requests from the HTTP client
proxy upon reconnection. ARTour Web Express [1] and
ROVER [5] both allow staging updates to be incrementally
and asynchronously flushed back to the server to support
intermittent or weak connections. The BAYOU system [14]
proposes the notion of application-specific conflict resolu-
tion to allow application-specific merge algorithms to be
applied when update conflicts are detected. Coda [7] also
provides mechanisms to resolve update conflicts upon
reintegration to support disconnected operations on files.

None of these systems above addresses the issue of
when a disconnected MH should be reconnected to the
server. Our work aims at addressing the issue of how and
when staging updates should be propagated from a
disconnected MH for wireless Web access in mobile
client-server environments. We integrate the concept of
coherency interval for supporting disconnected Web brows-
ing [2] with the concept of versioning and locking as
advocated by WEBDAV/IETF1 [15], [16] for supporting
disconnected write operations for wireless Web access.
We first describe how these concepts can be integrated in
designing update propagation algorithms applicable in
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the reintegration phase. We then develop analytical
models with the goal of identifying when a disconnected
MH should be reconnected to the server (after the
prefetch phase) to propagate a set a Web pages so that
the system's performance in terms of the communication
cost is optimized during the reintegration phase based on
these algorithms.

The rest of the paper is organized as follows: Section 2
states the system assumptions by means of a system
model. Section 3 discusses three update propagation
algorithms for supporting disconnected write operations
in wireless mobile environments and derives cost expres-
sions associated with these algorithm as a function of the
disconnection period, along with the derivation of the
optimal disconnection period for minimizing the commu-
nication cost for update propagation. Section 4 shows
some numerical data identifying the length of the
disconnection period under which the system performance
is optimized and provides physical interpretations of the
analysis results. Section 5 presents the simulation valida-
tion and discusses the sensitivity of the analysis result
with respect to probability distributions. The applicability
of the algorithms developed is discussed in Section 6. In
particular, we exemplify how the analysis result can be
applied to mobile client-server Web applications with a
real-time deadline requirement. Finally, Section 7 con-
cludes the paper and outlines possible future research
areas deriving from this work.

2 SYSTEM MODEL

2.1 Assumptions and Parameters
We assume that a number of Web pages will be prefetched
and stored in the MH's cache during the prefetching phase.
Some of these pages are read-only, while others may be
updated by the MH during the disconnection phase if
needed to facilitate distributed Web content authoring. We
assume that a prefetching policy exists to determine which
pages are to be prefetched, e.g., based on a prediction
algorithm [3].

We assume that, for each Web cached page, the MH
also obtains from the Web server some update history
information in terms of a general parameter, i.e., the
update rate of that Web page by all users of the system.
This information can be collected by the Web server by
monitoring the update history of the Web page. For a
cached Web page i, we denote this parameter as �wi . In
addition, we assume that the MH has some idea of how
often it is going to perform updates on each cached Web
page. For each cached Web page i, we call this parameter
�i. For read-only cached Web pages, �i � 0.

We assume that the Web server is located somewhere in
the fixed network and is not moved during a Web session.
The MH communicates with the Web server via expensive
wireless links (to the base station) and, thus, will voluntarily
disconnect itself from the Web server after the prefetch
phase to avoid expensive communication prices and also to
save the battery power. When the MH reconnects to the
Web server, it enters into the reintegration phase during
which it propagates all staging updates performed during
the disconnection phase to the server to resolve update
conflicts. During the reintegration phase, we assume that
the MH uses an enhanced HTTP algorithm to connect to the
server such that only one TCP/IP connection is required by
making use of server/client proxies [9], instead of requiring
a TCP/IP connection for every Web page access. For each

modified page, the MH submits the differences between the
original Web page prefetched from the server and the latest
version that it modifies, as well as the version number
associated with the original version, to the Web server. The
Web server checks to see if the page has been modified
during the MH's disconnection period by comparing the
version number of the Web page it currently keeps with the
version number submitted to it by the MH. If they are the
same, the Web server will accept the update request and
modifies the Web page accordingly based on the differences
received from the MH; otherwise, the update request of the
Web page is rejected.

If an update request (by means of a PUT request) is
rejected, we assume that the MH will stay connected and
will issue a request to write lock the Web page.2 Differences
relative to the MH's original version before updating are
sent to the MH, so the MH can regenerate a new version.
Then, the MH will apply an application-specific merge
algorithm such as the UNIX diff3 program to resolve the
update differences. After the update is done, the MH will
propagate the changes to the Web server by means of
differencing again and will then release the lock. It is
assumed that the MH will stay online performing the merge
operation and update propagation in this algorithm, i.e., the
case in which the MH locks the page and then goes away
will not occur. If the MH is forced to be disconnected
because of environment changes (e.g., due to roaming), we
assume that the lock will be broken by the server after a
timeout period. This can be implemented by the server by
attaching a timestamp to the lock and releasing the lock
after a timeout period expires. The MH upon reconnection
will discover that it does not own the lock anymore and will
retry again by repeating part of the update propagation
algorithm. This extra time overhead involved in this
extreme case is not considered in this paper due to its
small probability.

We assume that a MH communicates with the Web
server via an intelligent server gateway located on the fixed
network, e.g., it can be just the base station. Further, the
communication time on the fixed network is negligibly
small compared with that on the wireless link. This
assumption is justified for future high-speed wired net-
works. While it is possible that optimization schemes based
on caching, transcoding, and differencing may be used by
the server gateway to minimize the volume of data sent
over the wireless network, we will assume that two general
cost parameters, T1 and T2, suffice for our analysis: T1 is the
one-way communication cost of transmitting a packet
carrying the differences along the wireless link between
the MH and the server gateway; and T2 is the one-way
communication cost of transmitting a simple acknowl-
edgement/reply packet. These two parameters can be
estimated by knowing more specific parameter values of
the wireless network under consideration. Let sr be the
average size of a simple acknowledgement/reply packet.
Let so be the average size of a Web page. Let pm be the
average fraction of any Web page being modified. Let B be
the bandwidth of the wireless channel through which the
MH communicates with the fixed network. Assume that the
communication time in the fixed network is relatively small
compared with that in the wireless network. Then, T1 and
T2 can be estimated as

CHEN ET AL.: ALGORITHMS FOR SUPPORTING DISCONNECTED WRITE OPERATIONS FOR WIRELESS WEB ACCESS IN MOBILE 47

2. The implication of applying locks is that it helps push updates a little
quicker at the expense of causing other clients possibly a longer lock
waiting time. We assume that the effect of the latter can be ignored as the
probability of concurrent update propagations upon reconnection is low.



T1 � pmso
B

; �1�

T2 � sr
B
: �2�

From the MH's perspective, T1 accounts for the time for
transmitting the PUT update request that carries the
version number of the original cached page and the
differences between the latest version and the original
prefetched version. From the server's perspective, T2

accounts for the time for transmitting a reply from the
Web server to the MH.

For notational conveniences, let T � T1 � T2, represent-
ing the round-trip communication cost for propagating a
Web page that has been updated by the MH, but has not
been updated by the server at the reconnection time.
Normally, T1 >> T2, so T � T1.

2.2 Performance Metric
The objective of the paper is to design and analyze
algorithms for supporting write operations in mobile
client-server environments and to identify the best recon-
nection time for propagating updates so as to optimize the
system performance. We use the following metric as the
basis of our design and analysis: The total communication
(or reconnection) time between the MH and the Web server
in the reintegration phase during which all updates are
propagated to the Web server based on versioning and
locking mechanisms supported by the Web server. A main
goal of this paper is to find the best disconnection period so
that the total communication (or reconnection) time for
propagating updates is minimized, thereby saving the
power consumption of the MH. For real-time Web applica-
tions, in addition to the above goal, we must also satisfy the
requirement that the deadline not be missed. We will
illustrate how our analysis result can be applied to real-time
applications with such a requirement in Section 6.

Here, we should emphasize that we intentionally
exclude (from the communication time metric above)
certain costs that will always incur irrespective of when
the MH is reconnected to the server, e.g., the connection set-
up time, the server processing time, etc. since adding such
cost terms to the cost objective function doesn't affect the
outcome of the analysis. Also, while it is possible that the
MH can employ heuristics to possibly make more intelli-
gent decisions about when it should reconnect to the server
to adapt to resource changes (e.g., wireless bandwidth and
server load changes), we will not consider this possibility in
the paper.

3 UPDATE PROPAGATION ALGORITHMS

We assume the following update propagation protocol is
used when the MH propagates a modified Web page to the
Web server during the reintegration phase. The MH sends
the differences between the latest version and the original
version, and also the version number of the original version
in a PUT request packet. This step takes T1 time. There are
two possible cases following this step:

1. If the Web page has not been updated by other
users, the Web server will send an ACK reply
packet to the MH to accept the PUT request. In
this case, the communication cost for the MH to
update the modified Web page to the server is

exactly T1 � T2 or simply T . This case is illustrated
in the top part of Fig. 1.

2. If the Web page has been updated by other users
and thus two versions do not match, the Web
server sends a rejection reply packet to the MH
(which takes T2 time). When the MH is informed,
it sends a lock request packet to the Web server to
lock the Web page (which takes another T2 time).
On receiving the lock request packet, the Web
server acts accordingly and also sends the new up-
to-date version to the requesting MH via differen-
cing (which take T1 time). After the MH applies a
merge algorithm (possibly with some manual
inspection if not done automatically) to resolve
the update conflict based on the new version
received (which takes Dm time to be defined
below), it sends another request packet (which
takes T1 time to transmit), carrying the differences
to the Web server along with a command to release
the lock, for which the Web server acts accordingly
and afterward sends a reply packet to the MH to
complete the update process (which takes another
T2 time). The overall communication cost in the
latter scenario is 3T1 � 3T2 �Dm � 3T �Dm, where
Dm stands for the average time taken to resolve the
update conflict by the MH. This case is illustrated
in the bottom part of Fig. 1.

Many online Web applications necessitate forced updates
when the MH is reconnected to the server, i.e., the MH must
propagate its updates to the server at an appropriate
reconnection time so as not to miss the deadline require-
ment. This real-time requirement calls for a special handling
protocol for those pages that have not been updated by the
MH at the time of reconnection and also mandates that the
MH be reconnected to the server at an appropriate time
prior to the real-time deadline to account for the time
needed to propagate updates.

We assume that if the MH must perform a forced update
on a cached Web page which has not been updated by the
MH at the reconnection time, it will first issue an inquiry
packet carrying the Web page's version number to the
server to check if the cached page is still valid (an operation
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which takes T2 time). Then, one of the following two cases
will occur:

1. Case 1. If the server has updated the Web page, the
server will send the differences to the MH so that the
MH can perform its forced update operation based
on the new version received. This conditional step
takes T1 time.

2. Case 2. If the server has not updated the Web page,
the server will simply send a reply packet to the MH
indicating that the MH's cached page is still valid.
This conditional step takes T2 time.

In either case, the particular Web page will be locked to
prevent other users from updating it. The MH subse-
quently modifies the Web page (which takes Dm time)
while it is online and propagates the differences to the
server (which takes T1 time). The server then will send
an ACK to the MH and release the lock (which takes T2

time). Summarizing above, Case 1 will take a total
communication cost of 2T1 � 2T2 �Dm � 2T �Dm (see
Fig. 2), while Case 2 will take a total communication
cost of T1 � 3T2 �Dm � T � 2T2 �Dm (see Fig. 3).

Table 1 summarizes the parameters which will be used
in the paper. Suppose that the length of the disconnection
period is L. Upon reconnection, the MH will attempt to
propagate the update of a modified Web page. The PUT
request will be denied, however, if the Web server has
modified the Web page during L. Thus, ri, the probability
that an update request for page i is rejected by the server
upon reconnection after the MH has been disconnected for a
period of L, is given by

ri � Probfserver update time to page i � Lg � Fs
i �L�; �3�

where Fs
i �t� is the cumulative distribution function (CDF) of

the time t that the server updates page i. For the case that
updates to page i arrive at the system as a Poisson process,
with rates �i and �wi by the MH and by the world,
respectively, then,

ri � 1ÿ eÿ��wi ÿ�i�L: �4�
Since we are interested in estimating the cost of

propagating updates to the Web server during the reinte-
gration phase, we like to know the probability that a Web
page has been modified by the MH at the end of the
disconnection phase. Suppose that the length of the
disconnection phase is L again. Then, pi, the probability

that page i is updated by the MH within a period of L, is
simply given by

pi � ProbfMH update time to page i � Lg � FMH
i �L�; �5�

where FMH
i �t� is the CDF of the time t that the MH updates

page i. For the case that updates to page i arrive at the
system as a Poisson process with rate �i by the MH,

pi � 1ÿ eÿ�iL: �6�
Below, we consider three update propagation algo-

rithms. The first is for a special case in which the MH
caches only a single Web page. The second considers the
case where the MH has multiple cached Web pages but it
propagates one Web page update at a time to the server.
The third model also considers multiple cached Web pages;
however, the MH propagates all the updates to the Web
server in ªbatchº using as few message exchanges as
possible in order to reduce the reconnection time. The third
case requires the server and the MH to pack and unpack
individual Web page updates embedded in a message.

3.1 Single-Page Update Propagation Algorithm
We first consider the case in which the MH prefetches only a
single cached Web page. Here, we apply the concept of
coherency interval to determine the best disconnection
period for the MH. Recall that under the coherency interval
method for supporting read-only Web browsing, an access to
a cached page is allowed to proceed as long as the access time
is within the interval. If the access time is out of the interval,
then the MH must reconnect to the server and fetch a new
copy if it is different from the cached copy. In the previous
work [2], the length of the interval is heuristic in nature,
defined arbitrarily either by the system or by the user.

We modify the above algorithm to support write
operations on a single Web page, say page i, as follows:

1. If the time of modifying the cached page by the
MH is less than L (relative to the beginning of the
disconnection phase), we allow the modification to
proceed by recording the differences between the
latest version and the previous version in the MH's
local cache/log without propagating the update to
the server. All subsequent updates to the cached
page, if any, are processed locally until the time
reaches L, at which point the MH is reconnected to
the Web server and updates are propagated by
following the nonforced update protocol described
earlier. Since at time L, the probability that the
PUT request is rejected by the server is ri, the
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communication cost of update propagation is 3T �
Dm with probability ri or T with probability 1ÿ ri.

2. If the time of modifying the cached page by the MH
is greater than L, that is, the MH has not updated the
page by the time L is reached, a forced update is
performed at L, i.e., the MH is forced to perform an
update at time L. The MH at time L does not know if
the cached page is valid or not. To avoid performing
the forced update operation on an out-of-date
version, it sends a message carrying the version
number of its cached page to the server, for which
the server responds by locking the page and, if the
page has been updated during L, also sends the
difference to the MH.

The communication time in this case thus
depends on whether the cached page has been
updated by the server or not at time L. Following the
forced update protocol discussed earlier, it can be
obtained by considering the following two subcases:

a. The cached page has been updated by others
during L and, therefore, a fresh copy must be
retrieved from the server before a forced update
by the MH can be performed. In this case, the
communication time is 2T �Dm.

b. The cached page is still valid, i.e., not being
updated by others during L. In this case, the
communication time is T � 2T2 �Dm.

Note that the probabilities of the above two
subcases are ri and 1ÿ ri, respectively.

Summarizing all of the above, the average communica-
tion time involved in propagating the update from the MH
to the server for a single Web page upon reconnection is
thus given by

Ci � pi � ri � �3T �Dm� � �1ÿ ri�T� � � �1ÿ pi�
� ri � �2T �Dm� � �1ÿ ri��T � 2T2 �Dm�� �: �7�

By taking the differentiation of Ci with respect to L to
zero, we can determine the best L value (representing the
disconnection period) that minimizes the total reconnection
time. The expressions of ri and pi depend on the underlying

assumption regarding the update interarrival time distribu-
tion. For the case that updates to page i arrive at the system
as a Poisson process, with rates �i and �wi by the MH and by
the world, respectively, we plug in the expressions for ri
and pi given in (4) and (6) into (7) and take the derivative of
the resulting Ci with respect to L to zero, yielding

�2T �Dm���wi ÿ �i�eÿ��
w
i ÿ�i�L

� T�ieÿ�iL ÿ �T � 2T2 �Dm��wi eÿ�
w
i L � 0:

�8�

The best L that minimizes the communication cost must
satisfy the above equation.

Note that the best L exists as long as �i < �w. For the
extreme condition that the MH is the only process
updating the Web page such that �i � �w, the above
equation reduces to

ÿ �2T2 �Dm��ieÿ�iL � 0

which means that under the extreme case �wi � �i, the best
L would be at 1. This is because at L � 1, the probability
of Web page update pi � 1 and, thus, Ci � T � 2T2 �Dm ÿ
pi�2T2 �Dm� � T is at its minimum with no forced-update
cost. We observe that, in this extreme case, there exists a
time point, Lsubopt <1, beyond which the cost is nearly the
same as the minimum cost at Lopt � 1. Thus, if �wi � �i (i.e.,
the MH dominates the Web page update), in order to avoid
an extremely large disconnection period in this case, the
MH should connect to the system at Lsubopt such that the
cost is close to the minimum (whose exact value is
determined by (7)). In addition, if the application has a
real-time deadline, say tR, then the MH should connect to
the system such that the deadline is not violated. This latter
case will be addressed in Section 6.

3.2 Multiple-Page Update Propagation Algorithm 1

We now consider the case in which the MH prefetches a set
of cached Web pages, say, based on a prediction algorithm.
All updates occurring before L are again staged and later
propagated back to the server at time L relative to the
beginning of the disconnection phase. Moreover, all Web
pages not updated during L are also forcibly updated,
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following the algorithm described in the previous section.
Again, we are interested in identifying the best disconnec-
tion period that will optimize the system performance. In
this section, we consider the case in which modified Web
pages are propagated to the server one at a time. In the next
section, we will consider the case in which all modified Web
pages are propagated back to the server in ªbatchº to
further save the communication cost.

Without loss of generality, consider a particular Web
page, say i, in a set of N prefetched pages. Again, let �i and
�wi be the update rates on page i by the MH and by the
world, respectively. Since the MH propagates one page at a
time to the server upon reconnection at time L, the total
reconnection time needed for the MH to propagate updates
of all N pages to the server is simply given by

Ccase 1
N �

XN
i�1

Ci; �9�

where Ci is given by (7), standing for the reconnection time
needed for propagating updates to page i. Again by taking
the differentiation of Ccase 1

N to zero, we can find the best L
that minimizes Ccase 1

N . The derivation is similar to that in
Section 3.1 and is not repeated here.

3.3 Multiple-Page Update Propagation Algorithm 2
Here, we also deal with the case in which the MH
prefetches a set of Web pages before disconnection.
However, when the MH reconnects at time L, the server
and the MH execute a more sophisticated algorithm to
propagate updates in batch in order to shorten the
reconnection time. Fig. 4 illustrates the following seven
steps taken to execute the algorithm:

1. The MH sends to the server a bit vector A (carrying 0
or 1 values) indicating which cached pages have
been updated by the MH, and also a value vector B
(carring integer values) indicating the original
version numbers associated with the cached Web
pages prefetched into the MH before disconnection.
This is done by sending a single message from the
MH to the server. The time needed for this step is T2.

2. The server decides accepting or rejecting page
updates based on vectors A and B received from
the MH and the current version numbers associated
with the requested pages stored in the server. It then
sends a bit vector C indicating which pages can be
accepted (for which the value is 0) and which pages
are to be rejected (for which the value is 1). Those
pages not updated by the MH have their corre-
sponding values also marked with 1 in vector C. The
server also sends a separate version number vector
D indicating the current version numbers of the
pages stored in the server. All the above information
are embedded in a single message sent from the
server to the MH. The time for this step is also T2.

3. For those pages not accepted by the server, the
server locks those pages to prevent them from being
updated by other users in the system. Simulta-
neously, the server sends to the MH the differences
of those pages rejected by the server (because the
server has updated those pages) and also those
pages that have not been updated by the MH but
have been updated by the server. The time for this
step is

XN
i�1

riT1

because, on average,
PN

i�1 ri pages (out of N) are
updated by the server during �0; L�, for which the
server must send the differences to the MH so that
the MH can perform forced updates on the newest
version.

4. When the MH receives vectors C and D, it knows
immediately which pages are accepted by the server.
Those accepted pages (i.e., those updated by the MH
but not updated by the server during �0; L�) are then
sent to the server by means of differencing. The time
for this step is

XN
i�1

pi�1ÿ ri�T1

because on average
PN

i�1 pi�1ÿ ri� pages are up-
dated by the MH but not updated by the server (thus
are accepted by the server) during �0; L�.

5. The server sends an acknowledgement to the MH
after it receives and processes the update propaga-
tion for those accepted pages. The time for this step
is T2.

6. The MH then performs forced updates for those
pages not having been accepted by the server,
including a) pages updated by the MH and also
updated by the server; b) pages not updated by the
MH but updated by the server; and c) pages not
updated by the MH and not updated by the server.
After the MH receives differences for those pages
updated by the server during �0; L�, it performs
merge/update operations on all of the above three
types of pages. Then, it sends differences of the
newest versions of all these pages to the server. The
time for this step is given by

XN
i�1

ri�Dm � T1� �
XN
i�1

�1ÿ ri��1ÿ pi��Dm � T1�;
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where the first term accounts for the time taken to
generate and propagate updates for the first two
types of pages (i.e., those updated by the server
during �0; L�) based on the versions received from
the server; the second term accounts for the time
taken to generate and propagate updates for the
third type of pages (i.e., those not updated by either
the MH or the server during �0; L�).

7. The server sends an acknowledgement to the MH
after it receives and processes the update propaga-
tion for those pages being forcibly updated by the
MH in the previous step. All locks are also released
in this step. The time for this step is T2.

The total reconnection time to propagate updates of all
cached pages is therefore equal to the sum of all the
individual times in steps 1 to 7 above, i.e.,

Ccase 2
N � 4T2 �

XN
i�1

�riT1 � pi�1ÿ ri�T1

� ri�Dm � T1� � �1ÿ ri��1ÿ pi��Dm � T1��:
�10�

For the case that updates to page i arrive at the system as a
Poisson process, with rates �i and �wi by the MH and by the
world, respectively, the best L value that minimizes the
communication cost will satisfy the following equation:

XN
i�1

�T1 �Dm���wi ÿ �i�eÿ��
w
i ÿ�i�L ÿDm�

w
i e
ÿ�wi L

h i
� 0: �11�

Again, in the extreme case that �wi � �i and thus ri � 0 and
pi � 1 for all i, Ccase 2

N is at its minimum, i.e., 4T2 �NT1,
when Lopt � 1. Thus, if �wi � �i for all is (i.e., the MH
dominates the Web page update activities for the set of
pages prefetched), then similar to the arguments discussed
in Section 3.1, there exists a Lsubopt beyond which the cost (as
determined by (10)) is nearly the same as the minimum cost
at Lopt � 1. To avoid an arbitrarily long disconnection
period, the MH should reconnect to the system at Lsubopt.
Similarly, if a real-time deadline exists, then the MH should
connect to the system such that the real-time requirement is
not violated. Section 6 will deal with the latter case.

4 NUMERIC EXAMPLE

In this section, we present numerical data based on the

analytical result derived in Section 3 for the case in which

the update interarrival time to a Web page is exponentially

distributed. Later, in Section 5, we validate the analytical via

simulation and analyze the sensitivity of the result with

respect to the probability distribution of the update

interarrival time by considering other general types of

distributions.
Three cases to analyze the effect of different parameters

(�; �w;Dm; pm; so) on the optimal disconnection period (L)

are reported:

1. the effect of the ratio between the MH update rate
and the world update rate (�=�w);

2. the effect of the average time to execute a merge
algorithm (Dm);

3. the effect of the size of differences between two
versions (pmso).

Other cases can be found in [11]. For each case, we obtain

analytical results under three algorithms: single-page
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Fig. 5. Effect of �=�w ratio on Single-Page Update Propagation

Algorithm.

Fig. 6. Effect of �=�w ratio on Multiple-Page Update Propagation

Algorithm 1.

Fig. 7. Effect of �=�w ratio on Multiple-Page Update Propagation

Algorithm 2.



update propagation (Section 3.1), multiple-page update
propagation algorithm 1 (Section 3.2), and multiple page
update propagation algorithm 2 (Section 3.3). We provide a
physical interpretation of these results.

4.1 Effect of �=�w Ratio

To demonstrate the effect of �=�w ratio, we fix T1 � 5
seconds, T2 � 0 second, Dm � 100 seconds. We arbitrarily
select a �w value and vary the � value from 0:2�w to �w.

For the single-page update propagation algorithm, we
consider the case where the MH updates a Web page for
which the world will update it with a rate �w � 10
updates/hour (in Fig. 5). For the multiple-page update
propagation under both algorithms, we consider the case
where the MH updates five Web pages (an arbitrary
selection) for which the corresponding �w values are
arbitrarily selected in the range of [0, 15] updates/hour
(in Figs. 6 and 7, respectively).

We observe that as the MH's update rate � varies from
0:2�w (the top curve) to �w (the bottom curve), the curves
get deeper. This means that when the MH's update rate is
closer to the world update rate, the MH can save more
communication cost by propagating updates at the optimal
disconnection point L. An exception occurs when � equals
�w, which means that the page is updated only by the MH.
In this extreme case, there is essentially no optimal
disconnection period, i.e., the optimal disconnection period
equals infinity. In this special case, the MH can connect to
the system at Lsubopt (say 1,500) at which the cost is very near
to the optimal cost. Last, we also observe that the optimal
disconnection point shifts toward right as we go from the
top curve to the bottom curve. This indicates that the
reconnection time interval (L) is shorter when the MH's
update rate is far below the world update rate, and it is
longer when the MH's update rate is close to the world
update rate.

4.2 Effect of the Time to Perform Merge Operations

To demonstrate the effect of the time to perform the merge
operation, we selectively fix the �=�w ratio to 0.8, T1 � 5
seconds, T2 � 0:1, and vary the Dm values in the range of 30
to 180 seconds. Figs. 8, 9, and 10 show the results.

We observe that as the time to perform merge operations
varies from 30 seconds (the bottom curve) to 180 seconds

(the top curve), the curves get deeper as the Dm value gets
larger for all algorithms. This means that the MH can save
more communication cost by propagating updates at the
optimal disconnection point when the merge operation
requires more time to perform.

4.3 Effect of the Size of Differences between Two
Versions

To demonstrate the effect of the size of the differences
between two versions, we selectively fix �=�w to 0.8 and
the Dm value to 100 seconds. We vary the fraction of the
Web page modified by the MH (pm values) in the range
of �10%; 50%�, and the average size of a Web page (so
values) in the range of [50 KB, 250 KB]. In this case, the
size of the version differences (pmso values) will vary
from 5 KB to 25 KB. Figs. 11, 12, and 13 show the results.

As the size of the version differences varies from 5 KB
(the bottom curve) to 25 KB (the top curve), we observe that,
for all cases, the curves get deeper as the product of pm and
so gets larger. This means that the MH can save more
communication cost by propagating updates at the optimal
disconnection point when it modifies a larger portion of the
Web pages or a larger Web page.

When comparing multiple-page update propagation
algorithms 1 and 2, we observe that the MH can save
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Fig. 8. Effect of Dm on Single-Page Update Propagation Algorithm. Fig. 9. Effect on Dm on Multiple-Page Update Propagation Algorithm 1.

Fig. 10. Effect on Dm on Multiple-Page Update Propagation Algorithm 2.



more communication cost by propagating updates under
algorithm 2. Algorithm 2 is especially effective when the
MH modifies a large portion of the Web pages or a large
Web page.

5 SIMULATION

All analytical results presented in Sections 4.1-4.3 are

validated via simulation. A simulation model was devel-
oped based on smpl [8] running on a SUN Ultra 10 machine

with Solaris. To simulate update events, we randomly

generate the time when an update will occur to page i by
the MH (Tci ) and by the server (Tsi ) based on the probability

distribution of the update interarrival time. We first report
the simulation results obtained based on exponential

distributions to validate results obtained in Section 4. Then,
we report the sensitivity of the results obtained with respect

to the underlying probability distribution by considering

other types of time distributions, viz., Erlang, hyperexpo-
nential, normal, and uniform. For each value of L in the

x-coordinate, we generate a value of C in the y-coordinate
as follows: We compare L with Tci and Tsi and use the

update propagation algorithms described earlier in Section 3
to determine C. The number of states that page i could be in

is given by p�3; 2� � 3!=�3ÿ 2�! � 6 as there are six distinct
ways to arrange L, Tci , and Tsi (see Table 2 for illustration).

According to our protocol when both the MH and server
(i.e., other users) have updated a Web page before the
disconnection period, the order in which who updates the
page first does not affect the total communication cost. This
also applies to the case when both the MH and the server
have not updated a Web page before the disconnection
period. Therefore, for each Web page, there are four
remaining possible states:

State 1. The MH has updated the page but the server has
not updated the page, i.e., Tsi > L > Tci .

State 2. The MH has updated the page and the server has
also updated the page, i.e., L > Tci ; T

s
i .

State 3. The MH has not updated the page but the server
has updated the page, i.e., Tci > L > Tsi .

State 4. The MH has not updated the page and the server
also has not updated the page, i.e., Tci ; T

s
i > L.

Table 3 shows the possible states and the associated
communication costs (C) for the single-page update
propagation algorithm.

If the MH updates N pages, the total number of possible
states for these N pages altogether is given by 4N . Tables 4
and 5 show examples of calculating C for a five-page
update propagation case under multiple-page update
propagation algorithms 1 and 2, respectively.

We use the batch means analysis method to obtain the

average communication cost (C) for a given L value with

5 percent accuracy and 95 percent confidence levels. To

collect data and get the average value of a batch run, we run
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Fig. 11. Effect of pmso on Single-Page Update Propagation Algorithm.

Fig. 12. Effect of pmso on Multiple-Page Update Propagation Algorithm 1.

Fig. 13. Effect of pmso on Multiple-Page Update Propagation Algorithm 2.

TABLE 2
Possible State of a Web Page



2,000 simulation runs in one batch run, where each

simulation run returns a C value. After k batch runs, we

compute the sample mean and the sample variance to

determine if the accuracy and confidence levels have been

achieved. If not, we run another batch run. We use k � 10 in

the simulation. The sample mean is given by

C �
Pk

i�1 Ci
k

:

The sample variance is given by:

S2 � �
Pk

i�1 C
2
i � ÿ k � C

2

kÿ 1
: �12�

The confidence level is determined as

prob�C ÿH � � � C �H� � 1ÿ �; �13�
where H is given by

H � t�
2;kÿ1 � S���

k2
p : �14�

The accuracy level is determined as

H

C
� �: �15�

The parameters used in the simulation model are shown in

Table 6.
For all data generated by our simulation based on

exponential distributions for the generation of update
interarrival times, we observed virtually the same curves
shown earlier in Figs. 5, 6, 7, 8, 9, 10, 11, 12, and 13. The
difference between simulated and analytical data is less
than 0.1 percent. We show an example of the simulation
results for the effect of �=�w on the single-page update
propagation algorithm in Fig. 14. This figure is virtually
identical to Fig. 5 obtained earlier from the analytical
results.

We tested the sensitivity of the results obtained with
respect to the probability distribution of the update
interarrival time by considering other types of probability
distributions including Erlang,3 hyperexponential,4 nor-
mal, and uniform. Tables 7 and 8 report the cost (C)

obtained versus L for the case in which �i � 0:5�wi under
different distributions for the single page update case.
Other cases display similar sensitivity results and are not
shown here. As we can see, although different distribu-
tions may slightly affect the exact position of Lopt, the
shape of the curve is relatively insensitive to the under-
lying probability distribution used. All data curves exhibit
virtually the same shape with the optimal Lopt in the
range of [400,600]. Thus, we conclude that the analysis
results reported in the paper are valid and are not
sensitive to the probability distribution used.

6 APPLICATION

In this section, we show how the analysis results can be
applied to mobile client-server Web applications. Examples
include distributed calendar tools or meeting room sche-
dulers as having been considered in BAYOU and ROVER
mobile systems [4], evolving design document/form edit-
ing systems with several authors updating the same set of
Web pages concurrently as described by WEBDAV [15],
and online newspaper/journalism/sports services [17]. We
consider the case in which these Web pages are updated by
multiple users, some of which may be stationary while
some of which may be mobile so as to collect the needed
information on the go. Regardless of who is performing the
update, there is a real-time deadline by which these Web
pages must be updated. We denote this deadline by tR
whose magnitude depends on the application. For stock
Web servicing applications, this deadline may be in the
order of seconds. For less urgent applications such as
distributed document editing, this deadline may be in the
order of minutes or hours.

Let the optimal disconnection period be denoted as Lopt
as a function of model parameters. If this optimal dis-
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3. The Erlang distribution models a r-stage exponential center connected
in a series structure such that it has the same mean interarrival time x �
1=�i for the MH update and x � 1=�wi for the world update as that under
the exponential distribution with the standard deviation s (square root of
the variance) less than x. The number of stages is equal to b�x=s�2c.

4. The hyperexponential distribution models a 2-stage exponential center
in a parallel structure such that the mean (x) is the same as that under the
exponential distribution but the standard deviation (s) is higher than the
mean.

TABLE 3
Communication Cost under Single-Page

Update Propagation

TABLE 4
An Example of Calculating the Communication Cost under

Algorithm 1 for a 5-Page Update Propagation Case

TABLE 5
An Example of Calculation the Communication Cost under

Algorithm 2 for a 5-Page Update Propagation Case



connection time plus its associated update propagation time
is less than the deadline, then the MH should reconnect to
the server at Lopt, to reduce the communication cost and
power consumption; otherwise, it should reconnect to the
server at the time point less than Lopt such that the deadline
is equal to the sum of the selected disconnection time (less
than the optimal point) and the associated update propaga-
tion time (as a result of selecting the disconnection time) so
as to avoid deadline violation. In all numerical results
presented so far, as shown in Figs. 5, 6, 7, 8, 9, 10, 11, 12, and
13, we have used x-y diagrams showing the relationship
between the selected disconnection time period L (the x-
coordinate) versus the associated reconnection time C (the
y-coordinate) needed for update propagation based on that
selection, thus giving an estimate of the reconnection time
needed for update propagation when given a disconnection
period. Specifically, let �L;C� denote any point in a x-y
diagram and let �Lopt; Cmin� denote the optimal L point at
which the cost is minimum. For real-time applications with
a deadline of tR, if Lopt � Cmin < tR, then Lopt is the
disconnection time period of choice; otherwise, we select
the largest L < Lopt such that L� C � tR. Of course, for
non-real-time applications, we always select Lopt as the
disconnection time period to reduce the communication
time.

To illustrate how our earlier presented result can be
applied to real-time Web applications with a deadline,
consider that the data displayed in Fig. 15 are for a
real-time Web application for which tR � 25 minutes or
12,500 seconds and � � 0:5�w since two users are
updating the same set of Web pages simultaneously
with virtually the same rate. Then, from the figure we
see that the MH should propagate its updates at Lopt �
850 since Lopt � Cmin � 850� 350 seconds which is less
than 25 minutes. However, if on the other hand, the
real-time deadline is 15 minutes, then the MH should
disconnect itself from the server (while it performs
updates) for only approximately 540 seconds because
with that disconnection time period, the anticipated
update propagation time is 360 seconds as predicted
from the diagram, i.e., the point has the coordinate
(540,360) such that 360� 540 � 900 seconds � 15 minutes.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed several algorithms for
propagating updates made by the MH and analyzed their

effect on performance in terms of the communication time
needed to propagate updates, including the time needed to
detect and resolve conflict if it happens. We have developed
simple analytical arguments to relate the disconnection
period of the MH with the associated communication time
required based on the choice of disconnection period,
taking into account some system conditions such as the
update rates of the MH and the world, the time to
communicate between the MH and server based on
differencing/locking, and the time to resolve Web page
conflicts, etc. The end result is a simple Lÿ C diagram
which may be applied at the runtime by the MH to
determine the longest time to stay disconnected (L) so as to
minimize the communication time (C) needed to propagate
updates.

Our analysis shows that there exists an optimal Lopt
value under which C is minimized. Moreover, this optimal
disconnection period increases as the mobile user update
rate increases relative to the world update rate. At one
extreme where only the mobile user performs updates, the
communication cost is minimum at time equals 1. In this
case, the MH can connect to the system at a time point at
which the communication cost is near the minimum or is at
an acceptable level as identified by the cost expression
derived in this paper. At the other extreme where the
world's update rate is much higher than that of the MH, the
communication cost is minimum at time equals 0 since the
world is going to update the Web pages very often and the
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Fig. 14. Simulation data for the Effect of �=�w ratio on Single-Page

Update Propagation Algorithm.

TABLE 6
Parameters used in the Simulation



benefit of disconnecting from the Web server is lost since
the cost penalty for detecting and resolving conflicts
dominates. In this case, it is better that the MH stays
connected to the server, locks the Web pages, and
propagates updates to the server while it is connected.

For those cases where the MH's update rate is a fraction
of that of the world, we observed that there exists a finite
value of Lopt under which the communication cost for
update propagation is minimized. We also observed similar
curves with other sets of parameter values as long as the
time to execute the merge operation to resolve update
conflicts Dm is not too small, i.e., more than 10 seconds,
with all other parameter values fixed. When Dm is small,
the optimal disconnection time interval, i.e., Lopt approaches
1 because the penalty of rejection is virtually zero. In
practice, Dm is large relative to other parameter values since
a manual inspection may be required even with the help of
merging tools when the MH resolves update conflicts.

One application of the analysis result as we have
demonstrated in this paper is that for applications with a
real-time deadline. We can use the result presented in the
Lÿ C diagram to determine the time at which the MH
should reconnect to the server so that the total time,
including the disconnection time and the algorithm execu-
tion time for update propagation, is less than the deadline.
The needed Lÿ C diagrams can be generated at the static

time to cover a possible range of parameter values. Such
results can be stored in a table in the MH which can then
perform a table lookup at the runtime to adapt to
environment changes at the runtime to reflect network
conditions such as channel bandwidth. The (L;C) diagram
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TABLE 7
Cost (C) versus L Data Chart I with �i � 0:5�wi under Various Distributions

TABLE 8
Cost (C) versus L Data Chart II with �i � 0:5�wi under Various Distributions

Fig. 15. Applying to real-time Web applications with deadline
requirements.



generated from our analysis also provides information
regarding ªanticipatedº arrivals of disconnected mobile
users. This information can be very helpful to wireless
mobile networks as the system allocates wireless channels
to users.

There are some possible future research areas which can
be extended from this work. We can investigate how a
channel allocation manager in the mobile network could
use the (L;C) diagram information to decide when a mobile
user should be reconnected to the network so that the
mobile user will stay connected with the least amount of
time to propagate updates. We can further develop channel
scheduling algorithms for optimal allocation of wireless
channels taking into account both random and anticipated
arrivals of mobile users. We can apply the result obtained
from the paper to building real-time Web applications used
in wireless mobile environments so that the MH can always
select the longest disconnection time possible to reduce the
communication cost without violating the real-time require-
ment and also to save its valuable battery power.

Also, Web applications which are not real time do not
require mobile users to stay connected for propagating
updates. In this case, The mobile user may just send the
request to the server and then disconnect immediately.
Later, it can reconnect to the server to check if the server has
accepted/rejected the request. In the future, we can modify
our analysis model to account for this possibility. Finally, as
most Web applications are read-only applications, the
read/write probability ratio may affect the performance of
the overall system because, as Web pages are locked for
update propagation, read operations cannot be served.
Therefore, it is possible to develop algorithms taking into
account the effect of the read/write ratio factor to optimize
the overall system performance.

ACKNOWLEDGMENTS

This research is partially supported by a US National
Science Foundation grant #9987586 and by a Microsoft
Research grant.

REFERENCES

[1] H. Chang et al., ªWeb Browsing in a Wireless Environment:
Disconnected and Asynchronous Operation in ARTour Web
Express,º Proc. Third ACM/IEEE Conf. Mobile Computing and
Networking (MobiCom '97), pp. 260-269, Sept. 1997.

[2] R. Floyd, R. Housel, and C. Tait, ªMobile Web Access Using
eNetwork Web Express,º IEEE Personal Comm., vol. 5, no. 5, pp. 47-
52, Oct. 1998.

[3] Z. Jiang and L. Kleinrock, ªWeb Prefetching in a Mobile
Environment,º IEEE Personal Comm., vol. 5, no. 5, pp. 25-34, Oct.
1998.

[4] J. Jing, A.S. Helal, and A. Elmagarmid, ªClient-Server Computing
in Mobile Environments,º ACM Computing Survey, vol. 31, no. 2,
pp. 117-157, June 1999.

[5] A.D. Joseph, J.A. Tauber, and M.F. Kaasheok, ªMobile Computing
with the Rover Tool-Kit,º IEEE Trans. Computers, vol. 46, no. 3,
pp. 337-352, Mar. 1997.

[6] M.F. Kaashoek, T. Pinckney, and J.A. Tauber, ªDynamic Docu-
ments: Mobile Wireless Access to the WWW,º IEEE Workshop
Mobile Computing Systems and Applications, pp. 179-184, Dec. 1994.

[7] J.J. Kistler and M. Satyanarayanan, ªDisconnected Operation in
the Coda File System,º ACM Trans. Computer Systems, vol. 10, no. 1,
pp. 3-25, Feb. 1992.

[8] M.H. MacDougall, Simulating Computer Systems. MIT Press, 1987.
[9] M.S. Mazer and C.L. Brooks, ªWriting the Web while Discon-

nected,º IEEE Personal Comm., vol. 5, no. 5, pp. 35-41, Oct. 1998.
[10] E. Pitoura and G. Samaras, Data Management for Mobile Computing.

Kluwer Academic Publishers, 1998.

[11] N.A. Phan, ªPerformance Analysis of Algorithms for Supporting
Disconnected Write Operations in Wireless Web Environments,º
master's thesis, Dept. of Computer Science, Virginia Polytechnic
Inst. and State Univ., Dec. 1999.

[12] S. Saha, M. Jamtgaard, and J. Villasenor, ªBringing the Wireless
Internet to Mobile Devices,º Computer, vol. 34, no. 6, pp. 54-58,
June 2001.

[13] A.S. Tanenbaum, Computer Networks, third ed. Prentice Hall, 1996.
[14] D.B. Terry et al., ªManaging Update Conflicts in Bayou: A Weakly

Connected Replicated Storage System,º ACM SIGOPS Operating
Systems Rev., vol. 29, no. 5, pp. 172-182, Dec. 1995.

[15] IEFT WEBDAV Working Group, http://www.ics.uci.edu/pub/
ietf/webdav/, 2002.

[16] E.J. Whitehead Jr. and M. Wiggins, ªWEBDAV: IETF Standard for
Collaborative Authoring on the Web,º IEEE Internet Computing,
vol. 2, no. 5, pp. 34-40, Sept. 1998.

[17] The Washington Post, Online Journalism, Sept. 5, 1999.

Ing-Ray Chen received the BS degree from the
National Taiwan University, Taipei, Taiwan, and
the MS and PhD degrees in computer science
from the University of Houston, University Park,
Houston, Texas. He is currently an associate
professor in the Department of Computer
Science at Virginia Tech. His research interests
include mobile computing, multimedia, distribu-
ted systems, and reliability and performance
analysis. Dr. Chen has served on the program

committee of various conferences. He also served as program co-chair
of the 2000 IEEE Symposium on Application-Specific Systems and
Software Engineering Technology and program chair of the 2002 IEEE
International Conference on Tools with Artificial Intelligence. Dr. Chen
currently serves as an associate editor for IEEE Transactions on
Knowledge and Data Engineering and The Computer Journal. He is a
member of the IEEE Computer Society and ACM.

Ngoc Anh Phan received the BS degree from
Moscow Technical University of Communication
and Computer Science in 1997 and a MS degree
in computer science from Virginia Polytechnic
Institute and State University (Virginia Tech) in
1999. She is currently a PhD student at Virginia
Tech and a senior software engineer at America
Online Inc. Ms. Phan's research interests
include wireless communications, distributed
systems, and mobile computing. Her PhD

research work continues in the subject of supporting disconnected
operations in mobile client-server environments. Some extensions to her
previous MS thesis work includes developing algorithms to minimize the
tuning time during update propagations using cache invalidation and
data broadcasting, and applying these algorithms to mobile object
systems.

I-Ling Yen received the BS degree from Tsing-
Hua University, Taiwan, and the MS and PhD
degrees in computer science from the University
of Houston. She is currently an associate
professor of computer science at the University
of Texas at Dallas. Dr. Yen's research interests
are in distributed systems, fault-tolerant comput-
ing, self-stabilization algorithms, and security.
She has served as program co-chair for the
1997 IEEE High Assurance Systems Engineer-

ing Workshop, the 1999 IEEE Symposium on Application-Specific
Systems and Software Engineering Technology, and the 1999 Annual
IEEE International Conference on Computer Software and Applications
Conference. Dr. Yen is a member of the IEEE Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

58 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2002


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


