
4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 1, FEBRUARY 1995

On the Reliability of AI Planning Software
in Real-Time Applications

Ing-Ray Chen, Member, IEEE, Farokh B. Bastani, Member, IEEE, and Ta-Wei Tsao

Abstract- We define the reliability of a real-time system in-
corporating AI planning programs as the probability that, for
each problem-solving request issued from the environment, the
embedded system can successfully plan and execute a response
within a specified real-time deadline. A methodology is developed
for evaluating the reliability of such systems taking into consid-
eration the fact that, other than program bugs, the intrinsic char-
acteristics of AI planning programs may also cause the embedded
system to fail even after all software bugs are removed from the
program. The utility of the methodology is demonstrated by ap-
plying it to the reliability evaluation of two AI planning algo-
rithms embedded in a real-time multicriteria route-finding sys-
tem.

Index Items- Artificial intelligence (AI), hetiristics, AI plan-
ning software, real-time, reliability analysis, overall hard-
ware/software system reliability.

I. INTRODUCTION

A N AI planning program embedded in a real-time envi-
ronment [7], [15] typically must respond to an environ-

ment request by formulating and executing a plan within a
real-time deadline or the system may fail. An example is a
combat aircraft system [8] in which an AI planning algorithm
is used to search for a path to a target location with the goal of
optimizing some specified criteria such as minimizing the
probability of radar detection, the distance flown, fuel con-
sumption, etc., subject to the constraint that the total time spent
in planning and flying the route must be completed within a
real-time deadline.

A design trade-off that exists in such a real-time AI envi-
ronment is the time invested in planning versus the optimality
of the plan formulated by the embedded AI program. As more
time is spent in planning, the plan formulated is more likely to
be optimal and thus can be executed by the underlying hard-
ware more reliably, e.g., a combat aircraft is less likely to be
detected and destroyed when it follows a more optimal route.
On the other hand, if too much time is devoted to planning, the

Ing-Ray Chen is with the Institute of Information Engineering, National
Cheng Kung University, Tainan, Taiwan. Ta-Wei Tsao is with the Depart-
ment of Computer and Information Science, University of Mississippi, Weir
302, University, MS 38677. The work of Ing-Ray Chen and Ta-Wei Tsao was
supported in part by the National Science Foundation under Grant CCR-
9110816. Farokh B. Bastani is with the Department of Computer Science,
University of Houston, Houston, TX 77204-3475. The work of Farokh Bas-
tani was supported in part by the US Nuclear Regulatory Commission under
award NRC-04-92-090. The opinions, findings, conclusions, and rccommen-
dations expressed herein are the authors and do not necessarily reflect the
views of the NRC.

IEEE Log Number K95OOl.

mission may also fail because there may not be enough time
left for executing the plan within the real-time deadline. This
trade-off exists for any real-time system incorporating AI
techniques for analyzing combinatorial problems as the time
for executing an AI algorithm typically grows exponentially as
a function of problem size.

Two approaches have been investigated in the literature to
address this trade-off, hoping to make AI techniques more
suitable for real-time applications. One approach is to explore
parallel or distributed architectures with the goal of reducing
the time needed for planning and execution, particularly in the
area of production systems [4], [9], [12], [16]. Another ap-
proach is to devise real-time or time-constrained AI planning
algorithms [lo], [14], [23] that attempt to plan (and possibly
execute) a response within a specified real-time deadline so
that the solution found is near-optimal most of rhe time. For the
second approach, there is little work that addresses the associ-
ated reliability issue when these AI planning algorithms are
applied to real-time systems. It is not satisfactory to rely on
informal methods of selecting appropriate designs, given the
fact that these AI planning algorithms may work most of the
time but sometimes fail miserably [141, [191. The main issue is
a reliability modeling method with which the trade-off between
solution optimality and search efficiency in the presence of a
real-time deadline can be quantified, and with which the effect
of the variance in the planning and execution times on system
reliability, as a result of adopting AI planning algorithms, can
be accounted for and analyzed. Previous performance analyses
of AI planning algorithms, such as A’ [191, anytime algorithms
[2], [6], RTA* [14], TCA* [23] and DYNORA [lo], are only for
the average time/space behavior and thus are not applicable to
reliability modeling.

In our previous work, we investigated a reliability model [31
in which the reliability of a real-time system incorporating an
AI planning program in a single mission is defined as the
probability that the system can successfully accomplish the
mission, without causing a software or hardware failure. That
is,

tfq t,Q -fp
R system = JJ R horhvore ($n &I &fim Op &> W$Je)

0 0
where t,, is the planning time used by the embedded AI plan-
ning program to plan a strategy, te is the execution time used
by the underlying hardware to carry out the formulated plan,
and rR is the specified real-time constraint for the mission. In
the above formulation, the system reliability of the embedded

1O41-4347/95$04,OO Q 1995 IEEE

CHEN, BASTANI AND TSAO: ON THE RELIABILITY OF AI PLANNING SOFTWARE IN REAL-TIME APPLICATIONS

system, System, is the product of the hardware reliability, Rhnrd-
WWe9 and software reliability, Rsotia,e, accounting for all possi-
ble time distributions of the planning and execution phases.

Hardware failures in a mission are mostly due to stress and
wear of the underlying hardware components for carrying out
the plans formulated by the software. On the other hand, soft-
ware failures of AI planning software in real-time applications
are caused by (a) residual faults, i.e., bugs in the program, and
(b) intrinsic faults of AI software, i.e., the use of heuristic al-
gorithms which have fundamental limitations that may occa-
sionally result in software failures and/or real-time deadline-
violation. For example, a bug-free AI program for controlling
an automated factory can sometimes assemble products not of
the best quality or not in the most optimal way, which in effect
can be considered a software failure. Real-time deadline viola-
tion failures manifest themselves particularly in AI software
because, unlike conventional software, AI software typically
must find a solution in a combinatorial search space which
involves a tradeoff between the planning time and the execu-
tion time. Note that in the above equation, the sum of the vari-
ables tP and te must be less than tR in order to satisfy the real-
time requirement - this is indicated by the upper bounds on the
double integrals. With this formulation, it is possible to ana-
lyze the effect of some AI planning procedures, such as hill
climbing and A* [24], on system reliability [3] based on some
assumptions regarding the distributions of tp and t,, the soft-
ware and hardware failure rates, and the reliability of the
planning algorithm itself.

This paper extends our previous work with the following
specific contributions. First, it proposes a new method for
evaluating the reliability of an AI system on a mission by mis-
sion basis, rather than on a time basis as has been done in the
area of software reliability growth modeling [20], thus unify-
ing this work with our previous work for which only a single
mission is considered. The reliability measure on a mission by
mission basis is more appropriate for embedded AI systems
designed to deal with real-time events each corresponding to a
mission for which the system must formulate and execute a
control strategy within a real-time deadline specified by the
event. An example is an aircraft system incorporating an AI
planning program for performing combat missions. This reli-
ability measure can estimate how many such missions the sys-
tem can accomplish before it fails and is more informative than
a time based reliability measure. Specifically, we consider the
overall system reliability as a function, Rvsre,,, (J’VJ, of the
number of missions (or problem-solving requests), w which
the system may encounter during its life time. A method for
estimating R,vys,em (5’V) will be presented in the paper. Second,
the paper quantifies the failure of AI programs due to intrinsic
faults by introducing the concept of fuzzy failure levels. That
is, it considers the output of an AI planning program as a fuzzy
quantity [25] ranging from 0 to 1 with 0 meaning no failure
and 1 meaning a definite failure, rather than treating the output
as a binary 0 or 1 quantity as in conventional software. It then
considers the possibility that a single heuristic failure may not
cause the system to fail but a sequence of heuristic failures
may do so. This concept is similar to shock analysis in hard-

ware reliability theory [l]. An example is a combat aircraft
system where a plan formulated with radar detection probabil-
ity of 0.1 may not be catastrophic to the aircraft for that mis-
sion, but a number of such missions may cause the aircraft to
fail. Third, the paper develops a reliability model that facili-
tates reliability assessment without having to make any specu-
lative assumption regarding the behavior of the AI system. The
idea is based on software reliability modeling where the AI
system is tested with its mission profile, through which failure
data due to software or hardware failures are collected for es-
timating the overall system reliability. Lastly, it applies the
reliability model to a class of planning algorithms in a practi-
cal route-finding system and analyzes the effect of possible
design alternatives on the reliability of the system embedding
these planning algorithms.

II. METHODOLOGYANDMODEL

We first give an abstract description of real-time systems
incorporating AI planning programs (for brevity, we will
henceforth refer to these as real-time AI systems). We will use
the term “mission” interchangeably with “problem-solving
request” or “sensor event” in contexts where appropriate. In
our model, problem-solving requests arrive at the AI system
periodically, each representing a mission for which the system
must plan and execute a response within a specified real-time
deadline associated with the mission. These problem-solving
requests are not known a priori but can be simulated during
testing based on the system’s anticipated mission profile. An
example is a combat aircraft system for which the target and
radar locations for a mission are not known but we can simu-
late missions to test its responses based on its mission profile
during the operational period. Our model of a real-time AI
system processes these problem-solving requests one at a time.

The point of interest is a method for estimating the system
reliability for a specified number of missions. Now,

R system 04
= P{ no failure over Nmissions}
= P(no software failure and no hardware failure over Nmissions}.

We assume that the software is run to completion for each
mission. Hence, we can adopt the input domain view of soft-
ware reliability [20]. That is, we can view the software as ei-
ther failing or not failing for any given point in its input space.
This makes the failure probability of the software a function of
the number of runs or missions rather than time. Hence, the
reliability expression,

can be written as

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I, NO. 1, FEBRUARY 1995

which can be rewritten as

R system (1) = &iwa, (1) &miware (1).

Assuming that the hardware reliability is 1 in between mis-
sions, we get

In the following sections, we develop an approach for estimat-
ing &o&are (N and Rhrd,+-are WI.

A. Sofhyare Reliability Assessment

To estimate RSoftware (JVJ as a function of the number of
problem-solving requests X we make the following general
observations. First, not all software faults in AI planning al-
gorithms can be corrected since they may be due to limitations
in the fundamental techniques used in the algorithms rather
than due to coding errors. For example, the RTA* planning
algorithm [14] may find suboptimal solutions and may some-
times even find a solution with a poor solution quality. These
software faults are not correctable even after all program bugs
are completely removed. Second, some AI planning algorithms
guarantee finding optimal solutions, such as the A* algorithm
with underestimated heuristics [24]. However, optimal algo-
rithms are subject to deadline violation failures. A deadline
violation failure in this case is not caused by program bugs but
rather by the fundamental technique used in the implementa-
tion. Third, to model the fact that AI planning algorithms may
sometimes output a plan that is not acceptable, for each formu-
lated plan we can associate a failure level which is a fuzzy
member [25] of the distribution over the interval [O,l], with 1
representing a definitely unacceptable output and 0 represent-
ing a definitely acceptable output. It is often possible to toler-
ate a few ill-formulated plans occasionally, but not too fre-
quently because of the higher probability of system failure. In
general, the assignment of fuzzy levels to plans is to be done
during the testing period by experts in the application domain.

A. I. A Mission-Based Model to Consider AI Intrinsic Faults

In our model, we consider not only program bugs, but also
intrinsic faults which exist in AI programs that cause heuristic
and deadline-violation failures. We split the failure probability
into three independent portions. The first one has a decreasing
value during the development phase reflecting the growth in
the reliability as a result of program bugs which are detected
and removed. The second one has a constant value and is due
to heuristic faults which are not removed. The third one also
has a constant value and is due to intrinsic faults which cause
real-time deadlines to be violated. Thus,

R sofnvare vv
= P{ no coding failure over 3Vruns,
no heuristic failure over JVruns,
no deadline violation over Nruns } .

Since these are independent failure processes,

R sc?tiware ml
= P(no coding failure over Nmissions} X
P{ no heuristic failure over JVmissions} x
P{ no deadline violation over Nmissions}
= (l- hi)“X (l- QUx (l- b)”

where hi = P(coding failure over 1 run), b = P(heuristic failure over 1
run}, and b = P{ deadline violation over 1 run}. For large Nand
small hi, &, and J.3, the geometric distribution in the above
expression can be approximated by the corresponding expo-
nential distribution:

During the software testing and debugging phase, the im-
plemented program is tested with its mission profile until a
failure is encountered. If the failure is due to program bugs, the
fault is located and removed from the program. The failure
history of the AI program is defined to be the realization of a
sequence of random variables (Ni, Nz,..., N,), where Ni denotes
the mission number for which a failure is detected. For exam-
ple, if the system is tested with 10 test cases, each representing
a mission, and test cases #2 and #5 each cause a particular type
of failure to be detected, then the failure history for that par-
ticular failure type will be (2, 5). Hence, the unit in our model
is mission, rather than time as in most software reliability
growth models [20].

We use a modified version of the Musa-Okumoto Loga-
rithmic model [171 to estimate hi. The probability of failure
due to program bugs after the irh mission is assumed to be
given by

a0 h, (i) = -
n,e, +l

(1)

where b and 8 are model parameters, representing, respec-
tively, the initial failure probability of the program and the
relative change of failure probability per failure experienced
and removed. Equation (1) models the fact that the program
failure probability due to residual program bugs decreases
continuously over the testing and debugging phase, rather than
at discrete event-points corresponding to failure detection and
removal times. Further, the rate of decrease in
h,(i) itself decreases as more test cases are tested, thus model-
ing the decrease in the size of errors detected as debugging
proceeds.

We model the unchanging failure probabilities due to in-
trinsic faults as follows:

JQ (i) = & and & (i) = 13,

where b(i) and &(i) are constant failure probabilities due to
intrinsic faults associated with AI planning programs. b(i) is
due to heuristic faults while & (i) is due to deadline-violation
faults. We distinguish between heuristic and deadline-violation

CHEN, BASTANI AND TSAO: ON THE RELIABILITY OF AI PLANNING SOFTWARE IN REALTIME APPLICATIONS

faults because the latter, unlike the former, involve a trade-off
between time and accuracy. Heuristic faults are generally due
to the use of heuristic search procedures and can result in
s&optimal decisions even though the search procedure is exe-
cuted fully. On the other hand, to deal with real-time con-
straints, a suboptimal decision may have to be accepted simply
because there is no time to fully execute the search procedure.
If the program is run on a faster machine, failures due to real-
time violations will decrease while those due to heuristic faults
will remain unchanged.

During the operational phase, no program bug is removed,
so that AI(i) is also constant, say 3L1. Thus, the reliability during
this phase is given by

The above equation for software reliability estimation is
pessimistic because it considers a heuristic failure as a definite
failure so that when a heuristic failure occurs the system also
fails. There are systems that can accept suboptimal solutions
(which are fuzzy in the sense that the solution found may not
be the best possible solution) as long as the mission in a plan-
ning and execution cycle can be accomplished within the real-
time deadline. This fuzzy situation can be modeled by consid-
ering the distribution of heuristic failures over [O,l], with 0
denoting a benign (i.e., no) failure and 1 denoting a definite
failure. Heuristic faults due to the underlying approach are
assumed to have a distribution G, with G(0) = 0 and
G(1) = 1. The level of service provided by the program can be
measured in several ways, one of which is discussed in the
following.

We consider the system as having failed if the sum of all
heuristic failures encountered exceeds some limit, say X,. This
models situations where the effect of failures can accumulate.
An example is in the problem of route planning where the
route is decomposed into several segments. In this case, if
there is a slight error in a segment, then it can be tolerated.
However, the errors in the segments can accumulate resulting
in a substantial and unacceptable error in the overall path.
Another example is for a combat aircraft system designed to
deal with a sequence of missions. The aircraft system may tol-
erate some plans each with a radar detection probability not
equal to 0, but if the sum of such radar detection probabilities
is greater than 1, the system is likely to fail eventually. ...

Let Xi be a random variable indicating the level of the ith
heuristic failure. Then, during the system’s operational phase,
the software reliability is given by

R sofnvare a5
= P (Software is alive after Nmissions)
= PI no failure due to bugs or deadline-violation is experienced} X

P(accumulated heuristic failures experienced I XL}

=e -($+S)Nx
c Pr(n heuristic failures over Nmissions} Pr(X1
n=O

+... +x, <XL)

=e -(A,+u)Nx c - +v2Jf)” G(“)(X,)
n=O n!

where n is the total number of heuristic failures which can
probabilistically occur in JVmissions, and G (“) (x) denotes the
n-fold convolution of G(x), representing the probability that
the sum of n random variables of G(.) is less than x. It is de-
fined as

I 1 if n=O
G(“)(x)= G(x) if n=l

I I ’ G(“-‘)(x- y)dG(y) ifn21
0

where G(x) is the probability of X I x for a random variable X
that represents the fuzzy level of a heuristic failure.

A. 2. Estimation of Model Parameters

Four sets of failure data are required in order to estimate the
parameters of Equation (3). These are (N,l, NC2,..., NJ (for
failures caused by program bugs), (Nhl, Nh2,..., Nhl) (for heu-
ristic failures), (fi, fi,..., fr) (for associated fuzzy levels), and
(k, Nav.., N4) (for failures cause by deadline-violation),
where Nci is the mission number for which the ith failure caused
by program bugs is found and the corresponding program bugs
are removed; Nhi is the mission number for which the ith heu-
ristic failure is found; Ndi is the mission number for which the
ith deadline-violation failure is found; and fi is the fuzzy level
of the irh heuristic failure. These failure data may be obtained
during the testing and debugging phase through testing the AI
system with its anticipated mission profile.

The maximum likelihood estimates (MLEs) can be derived
separately for each of the three independent failure processes.
Let us first consider the MLEs for &, and 8 which are parame-
ters of the probability of failure due to coding faults. The
probability density function pdf (i) for the event “there is no
failure between runs Ndi-1, and N,-i and there is a failure on run
NC/’ is given by:

il,(NCi -1) forsmallil,(j).

Now,

N, -2 Nci-2 %(,-I) -1

C 4(j) = CW) - CW)

i=N+,) j=l j=l

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 1, FEBRUARY 1995

Hence,

-hog- I&N,+1

pdf(i) = e 0 A,w+,)+I a,
aoeNc, + i

From this, approximate values of the maximum likelihood
estimates of & and 8 can be obtained by numerically solving
the following equations [171:

+ -&o@,~N‘-~ +l) - n ~a”Ncs
e(aoeNcs + 1)

= 0

(4)
The failure probability density of heuristic failures on a

mission by mission basis is

Therefore, the maximum likelihood estimate [171 of Lr due to
heuristic faults can be estimated as

(5)

where r is the total number of heuristic failures experienced
during the testing period, and Nhrr defined as before, is the
mission number for which the tih heuristic fault is experienced.
For example, if (#2, #8, #25) are a set of 3 missions for which
heuristic failures are detected during the testing phase, then &
will be calculated as 3/25. In other words, the system can ex-
perience a heuristic failure once in about every 8 missions
when the system is in its operational phase.

The maximum likelihood estimate of & due to deadline-
violation can be estimated in a similar way as

where q is the total number of deadline-violation failures ex-
perienced during the testing and debugging period.

A reasonable model for G is the Beta(a, /I) distribution’
[1 l] with density

1

r(a+N a-l &+)= ;(a)r(a) x (wp-’ ifO~x~1
otherwise

’ A Beta distribution is defined as follows: if X and Y are independent
Gamma random variables with parameters (a, h) and @, h), respectively, then
the joint density of X/(X+Y) is called the beta density with parameter (a, B.

The maximum likelihood estimates of a and p can be obtained
by numerically solving the following equations using the fuzzy
level data set (fi, f2,...,fi) collected during the testing phase:

r ‘A ’ r;
8 n

I-(& + j)
-*+~log(l-&)=o

r(4
(7)

i=l

where

e+B)=- logx
d& I(b

h+j-le-Xdx

0

A less general, though simpler model, is to consider a single
parameter Beta distribution with a equal to 1. In this case, the
density is jl (l-x) ‘-’ for 0 I x I 1 and 0 otherwise. The maxi-
mum likelihood estimate of JLl is

B. Hardware Reliability Assessment

In this’ section, we develop a method for estimating
Rhordwarc (JV) as a function of the number of missions N We
again assume that during the testing and debugging phase, the
system is tested with the anticipated mission profile so that
each test case corresponds to a mission for which a control
plan formulated by the embedded AI program is executed by
the underlying hardware.

B. 1. Collecting Hardware Failure Data

For any mission, the hardware system can be considered to
have failed if the estimated hardware reliability of the mission
is less than a specified hardware reliability requirement, e.g.,
0.9i where the notation 0.9i represents a hardware reliability
requirement having i 9’s to the right of the decimal point [131.
Such hardware failure data can be collected during the testing
phase on a mission by mission basis. That is, for each mission
we (a) first compute the hardware reliability of the planning
phase and the hardware reliability of the execution phase, re-
spectively; (b) then multiply these two quantities to obtain the
hardware reliability of the mission; and (c) then compare the
hardware reliability of the mission with the specified hardware
reliability requirement to determine if the mission has caused a
hardware failure. The hardware failure data set collected this
WaY is (Nt,l, Nta,...r Nhw) where w is the total number of hard-

CHEN, BASTANI AND TSAO: ON THE RELIABILITY OF AI PLANNING SOFTWARE IN REALTIME APPLICATIONS

ware failures experienced during the testing phase, and Nhj, 1 I
j < W, is the mission number for which a hardware failure is
experienced.

In the following, we outline a procedure for collecting
hardware failure data. Suppose that for the j’h test case
(mission) the system spent time tit0 plan a strategy, then the
hardware reliability of the planning phase for the j” mission

can be calculated as e
-a tj p p where &, is the failure rate (in unit

of failures/time) of the computer system on which the embed-
ded AI planing program is run, assuming that the failure time
of the computer hardware is exponentially distributed with a
constant rate of hp. In hardware reliability theory, it is common
to assume that a hardware component obeys this “exponential
failure” law during its useful life period [131. Of course, other
distributions such as the Weibull distribution [22] can also be
used to model the computer system if justified.

The hardware reliability of the execution phase of the jrh
mission, on the other hand, can be calculated based on the plan
formulated by the embedded AI planning procedure in re-
sponse to the j” mission, using standard hardware reliability
assessment techniques [131, [22]. For example, if the embed-
ded system is a robot system and the formulated plan is to
move its hand, arm and leg hardware actuators simultaneously
to reach for an object such that as long as two actuators remain
alive mission j can be accomplished, then the hardware reli-
ability of the execution phase is that of a 2-out-of-3 parallel
system for the duration of the execution phase for mission j, a
quantity which can be computed easily since the component
reliabilities of the hand, arm and leg are normally known a
priori, e.g., each obeying the exponential failure law with a
distinct constant failure rate. On the other hand, if the formu-
lated plan is to move the leg actuator first and subsequently the
hand actuator after the leg motion has come to a stop, then the
hardware reliability of the execution phase is that of a series
system connecting the leg and hand components, which again
can be computed easily. For a vehicle system, we can first
compute the total execution time needed to execute mission j,
say, ti. Then, by assuming that the vehicle underlying hard-
ware also obeys the exponential failure law with a constant
failure rate of 3L,, the hardware reliability of the execution
phase can be computed as e-‘~‘~. . . .

B. 2. Computing Hardware Reliability

It is important to note that hardware failures experienced
during the testing and debugging period are partly determined
by intrinsic faults of AI programs which, through planning,
implicitly determine the execution time as well as the structure
function of the underlying hardware system. Let hh denote the
constant hardware failure rate of the embedded system (in unit
of failures/mission) due to uncorrectable intrinsic faults of AI
planning programs. Then, the maximum likelihood estimate of
%, may be estimated as

i, =e

where w, defined as before in Section B.l., is the total number
of hardware failures collected during the testing phase, and N,,,,,
is the mission number for which the last hardware failure is
observed. The hardware reliability of the embedded system in
the operational phase then can be calculated as

Multiplying Rhrhare (5%) with RsOfiarc (JVJ obtained earlier
in Equation (3) in Section A.1 yields the overall system reli-
ability RVstcm (w as a function of the number of missions JV

III. APPLICATION

In this section, we show the application of the methodology
and model developed in Section II. The objective is to dem-
onstrate how the model can be used to evaluate the reliability
of a real-time system incorporating AI planning algorithms.

A. Description of the Case Study

The real-time system used in our case-study is a version of
the multicriteria aircraft routing system reported in [8] where
an AI planning algorithm embedded in the system is used to
plan and follow a path across radar-threating areas to reach a
target location within a specified real-time deadline. Missions
are assigned one at a time. The locations of the target and ra-
dars, the detection intensity of each radar, and the real-time
deadline are not known until a mission is assigned.

For analysis purposes, a two-dimensional version of the
system, i.e., a multicriteria vehicle routing system, is consid-
ered. Each mission is characterized by (a) 50-100 routing
points arbitrarily located on a Cartesian plan with arbitrary
connections between them, and (b) 3 radars randomly located
between the (randomly generated) start and target locations,
and (c) a real-time deadline of 2 minutes to reach the target;
the targets are mobile and can move beyond the target zone in
2 minutes. The cost of the distance between two connected
routing points is in the interval of [lo, 1001 in unit of feet.
Each radar is capable of detecting the vehicle with a circular
detection intensity inversely proportional to the distance be-
tween the vehicle and the location of the radar. The radar de-
tection intensity has the unit of radar detection probability per
foot to account for the fact that traveling a longer route with a
nonzero radar detection probability intensity will incur a
higher detection probability than traveling a shorter route with
the same radar detection intensity. The radar detection inten-
sity of a connecting edge with respect to a radar is in the range
of [0, O.OOS], depending on how far the edge is away from the
location of the radar.

Note that our reliability model allows each mission to be as-
sociated with its own deadline. Our deadline assumption of 2
minutes is arbitrary and does not affect the way the fuzzy fail-
ure level of a mission is calculated. For the vehicle routing
system, the fuzzy failure level of a mission is the cumulative
probability of radar detection during that mission’s execution
phase and, therefore, includes the effect of the execution time

IO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO, 1, FEBRUARY 1995

(e.g., 1 minute vs. 1 hour) in the mission. It is thus a measure
indicating the probability of a mission failure, regardless of
whether the mission is short or long. We also note that when
the vehicle is idle (i.e., in between missions), the system can be
considered reliable with probability 1, i.e., during the time in
which the system is idle or between missions, the reliability of
the system is 1.

Fig. 1 shows an example routing map with radar threats.
The mission profile generated this way is assumed to corre-
spond to the operational profile when the system is released
for operational use.

Fig. 1. A Routing Map with Radar Threats (1: Start; 50: Target)

We next give a brief description of the multicriteria vehicle
routing system itself. The objective of the system is to plan and
execute a route for each mission with a cumulative cost as
small as possible without violating the specified real-time
deadline tR = 2 minutes. Two criteria for the cost function are
the radar detection probability and the total distance traveled,
the relative weight of which is determined by a design parame-
ter called w,,~,. Adopting the cost function definition in [8],
the cost between any two points with a direct edge is given by

cost = Wrahr x pradar x distance + (1 - wTadar) x distance (9)

where wrdr is the relative weight for the radar detection crite-
rion, pladnl is the radar detection probability of the edge, and
distance is the true distance of the edge in feet. When w,~~ is
equal to 1, the major concern is to minimize the radar detec-
tion probability. If the vehicle must execute a plan with a radar
detection probability greater than 0, then the plan is considered
unsafe, corresponding to the case that a heuristic failure has
been experienced with the radar detection probability of the
route planned equal to its fuzzy level. Furthermore, in analyz-
ing the effect of different AI planning algorithms on system
reliability, it is assumed that if the sum of accumulated fuzzy
failure levels exceeds 1, the system is considered to have
failed. Each failure poses a certain amount of risk to the opera-
tors and only a fixed number of such exposures to danger can

be tolerated before considering the system as unacceptable.
The hardware characteristics of the vehicle system are de-

scribed in the following. The vehicle can travel a route with a
speed of 10,000 feet/minute. The failure time of the underlying
hardware components of the vehicle due to wear and tear is
assumed to be exponentially distributed with a constant failure
rate of h, = 3 x 10e5 failure/minute. (About once in every 20
days of continuous operations.) The computer system embed-
ded in the vehicle to run an AI planning program is assumed to
have a failure time exponentially distributed with a constant
failure rate of &, = 5 x lo+ failures/minute (about once in
every 100 days of continuous operations), and can process
(expand or generate) about 2,000 nodes per minute. The hard-
ware reliability requirement of any mission is 0.99999. There-
fore, suppose a mission requires tp planning time and the total
distance (not the cost) of the route planned is C feet, then the
system is considered to have experienced a hardware failure
for that mission if

-a f e PPxe
-h&

< 0.99999.

B. Possible Planning Programs and Design Alternatives

Given the description for the mission profile and the vehicle
routing system, a system designer is faced with the problem of
evaluating different design options for improving the reliabil-
ity of the system. Some possible design options are given be-
low.

l Option 1 is to use an optimal search algorithm such as A*
with lower-bound estimates [24] as the underlying plan-
ning algorithm. A* operates by ranking all partially ex-
plored routes by the accumulated cost so far (g) and a
lower-bound estimate of the cost remaining (h), and al-
ways expanding the route with the minimum
f = g + h value among all routes until the target is found.
Because the estimate of the remaining cost of a partially
explored route can be underestimated, i.e., using the lin-
ear cost between the frontier point of a partially explored
route and the target location with the radar detection
probability set to 0, the final route planned is optimal
[21], [24], implying that the route planned should incur a
smaller radar detection probability. Nevertheless, a po-
tential problem with A* is that the system may not be able
to plan and execute a solution within the real-time dead-
line tR due to excessive planning. In [8], A* was selected
as the planning algorithm for the aircraft routing system.
One can imagine that the system operating under A* first
plans a route, and then the vehicle executes the route in
one execution step to reach the target location.

l The second option is to avoid deadline-violation failures
as much as possible by using a planning algorithm that
allows the target to be reached more quickly, although
perhaps not through the best possible route with the
minimum cost function defined in Equation (9). An ap-
proach is to impose a maximum planning time interval
within which an embedded AI planning algorithm must

CHEN, BASTANI AND TSAO: ON THE RELIABILITY OF AI PLANNING SOFI-WARE IN REALTIME APPLICATIONS 11

formulate a solution. However, this approach is practical
only for applications where a low quality solution is
available initially which can be improved over time by
using a class of planning algorithms called anytime al-
gorithms [6]. For our vehicle routing system, since the
vehicle system must follow existing routes on the ground,
there is no immediate solution to begin with. The only
practical way is to try to plan and execute a solution
within the real-time deadl ine constraint since it is useless
to set a maximum time constraint on the planning phase
alone. There are many such real-time planning algorithms
reported in the literature over the past five years, such as
RTA* [14], TCA* [23], and DYNORA [lo].

l W ithout loss of generality, this paper considers RTA*;
other real-time algorithms can be analyzed using our
model in a similar way. As in A*, RTA* also expands the
route with the minimum f = g + h value. However, unlike
A*, RTA* at all time only expands one route until the tar-
get location is reached. It nullities actions by allowing
backtracking so that it can revisit a previously visited lo-
cation if it has to. When it decides the next routing point
to move, it actually executes the move to change the cur-
rent location of the vehicle, thus extending the route it
expands. Therefore, the routing point is measured rela-
tive to the current location of the vehicle, and the initial
starting location of the vehicle is irrelevant. One can
imagine that the vehicle system operat ing under RTA*
will repeatedly plan and move in cycles until the target
location is reached. In each cycle, it generates neighbor-
ing locations from the current location and expands the
one with the minimum g + h. The h value of a neighbor is
computed such that if the neighbor was visited before, the
h value is looked-up from a hash table that updates the h
values of all visited nodes; otherwise, a heuristic evalua-
tion function, possibly augmented by lookahead search,
is used to compute the h value [141.

l The advantage of RTA* is that the system may exper ience
fewer real-time deadline-violation failures. However,
more heuristic failures may occur because routes p lanned
may have a higher radar detection probability when com-
pared with those p lanned by A*. In this paper, we will use
our model to analyze how RTA* can affect the reliability
of the vehicle system described above for the case when
the heuristic evaluation function is the linear cost to the
target location with wradnr set to 0 (as is the case for A*),
and is not augmented by lookahead search for computing
h. It should be noted that having no lookahead search is a
special case when the search horizon is equal to 0 - it
still allows the vehicle to revisit previously visited loca-
tions to undo actions. Also, our reliability model is appli-
cable to other cases, so it is a potential tool to analyze the
effect of search horizon (= 0 or > 0) on system reliability.

l The third option is to use a faster computer system for
planning, say, twice as powerful, hoping to reduce the
planning time, thus leaving sufficient time for execution.
The analysis of this option requires no rerun of the mis-
sion profile. The same set of output data under A* or

RTA* can be used to deduce the new failure data by con-
sidering the fact that the time for expanding a node will
only require half as much. Also, using a faster computer
machine for planning will only change deadline-violation
failure data, since a planning algorithm will still plan the
same route for the same mission, regardless of whether
the computer on which it runs is more powerful or not.
Our model can answer this simple “what-if’ type of
modification quest ion without having to rerun the mis-
sion profile.

C. Experiments and Interpretation of Results

Two real-time vehicle systems incorporating A* and RTA*,
respectively, were simulated, based on the descriptions given
in the previous two sections. Each system was tested with
10,000 missions and software and hardware failure data were
collected during the testing and debugging phase. These failure
data, one set for each system, are too large to be included in
this paper and can be found in [5]. W e note that even A* may
occasionally incur heuristic failures, al though the f requency of
this is not as high as RTA*. This is because for the vehicle sys-
tem, the fuzzy level of a plan is def ined as the total radar de-
tection probability of the route planned. Consequent ly, even A*
is not able to plan a perfect route without any radar detection
probability all the time. (Note: the f requency of heuristic fail-
ures is largely determined by the definition of the cost function
in Equation (9).) The failure data for each system were subse-
quently used to estimate model parameters hi, &, &, a, p and
hh, based on the procedure given in Section 2. Finally, the
system reliability is computed as a function of the number of
missions 5V

Fig. 2 shows the overall system reliability of the vehicle
systems operat ing under A* and RTA*, respectively, as a func-
tion of the number of missions L7K Figure 2 shows that, with
the failure condit ions def ined in Section III. A., a vehicle sys-
tem incorporating RTA* can provide a better reliability than a
system running A* when the number of missions LVis less than
2600. Before that cross-over point, deadline-violation failures
dominate heuristic failures, thereby favoring RTA* which in-
curs fewer deadline-violation failures because it plans more
quickly. However, after the cross-over point, RTA* no longer
can provide a better reliability than A* because RTA* reaches
the point when the sum of fuzzy failure levels exceeds 1 more
quickly since it incurs heuristic failures more frequently than
A* due to less optimal routes planned. Nevertheless, for practi-
cal purposes, the low reliability (i.e., 0.8) after the cross-over
point is not acceptable for a real-time system design, implying
that RTA* is still a viable approach, especially for the vehicle
system designed to operate for a finite number of missions. An
important observat ion is that neither planning algorithm can
provide the vehicle system with the best reliability for all
situations (in terms of the number of missions) because there is
a trade-off between the deadline-violation and heuristic fail-
ures. For a vehicle system designed to operate indefinitely,
neither algorithm can provide a good reliability since the sys-
tem will eventually fail due to heuristic faults.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. I. FEBRUARY 1995

R c

i

b"

~~~000000000 
***** 0.8 ***** 00 

*+:$! 

f 

t****, 
0 ** 

* 
i 0.6 
; 

A’ :t 0 * 
RTA’ : o  0 

0.4 0 

0.2 - 0 
0 

0.0 ’ I I I I yo 
1000 1500 2000 2500 3000 3500 

number of mtsston~ N 

Fig. 2. Reliability Comparison of A’ and RTA’. 

Fig. 3  shows the improvement in reliability when a  com- 
puter system twice as powerful is used for planning. The reli- 
ability of either planning algorithm improves as less time is 
required for planning when compared with the original com- 
puter system. The same cross-over behavior is still observed.  
However,  using a  more powerful computer seems to benefit A* 
more because a  reduced planning time helps reduce deadline- 
violation failures, but has no  effect on  heuristic failures which 
affect RTA* even more. As a  result, the cross-over point is also 
moved slightly from 2600  to 2500  missions. 

R 
e 

A’ 
RTA : 0  0  

0.0 ’ I I I I I 
1000 1500 2000 2500 3000 3500 

Number  of mtssions N  

Figure 3. 
bled. 

Reliability Comparison of A* and RTA’ with Processor Speed Dou- 

IV. SUMMARY 

In this paper,  we first d iscussed why intrinsic faults of real- 
time AI planning programs may cause heuristic and  deadline- 
violation failures which are not removable even after the AI 
program has been  tested and  debugged  for a  long period of 
time. Then,  we developed a  mission-based method for estimat- 
ing the reliability of real-time systems incorporating AI plan- 
ning programs, where we consider failures due  to program 
bugs and  deadline-violation are definite mission failures, while 
failures due  to imperfect planning are just heuristic failures, 
which only cause a  definite mission failure if the sum of the 
accumulated fuzzy failure levels exceeds 1. Reliability evalua- 
tions of a  real-time vehicle routing system incorporating A* 
and  RTA* quantitatively revealed the trade-off between dead-  

line-violation and  heuristic failures: A* can avoid heuristic 
failures but may incur more deadline-violation failures, while 
RTA* is the other way around.  Therefore, there exists a  cross- 
over point in the number  of missions beyond which one  plan- 
ning algorithm is better than the other. 

It is worth mentioning that the exact cross-over point is 
sensitive not only to the definition of the mission profile, but 
also to the definition of failure conditions. Here we have de- 
f ined the sum of accumulated fuzzy levels exper ienced greater 
than 1  as a  definite failure condit ion for heuristic failures. One  
can imagine that a  different definition, say, a  heuristic failure 
with a  fuzzy level greater than 0.5 is considered a  definite fail- 
ure, may change the location of the cross-over point. Also, a  
definition based on  the product of fuzzy failure levels, rather 
than the sum, can give a  different result, It is therefore impor- 
tant in defining correct failure condit ions before applying the 
model  developed in this paper.  Our  method, however,  is uni- 
versally applicable for evaluating the effect of different design 
alternatives on  system reliability. A possible future extension 
of this work is to analyze the effect of parallel planning algo- 
rithms on  the system reliability of product ion systems, e.g., 
distributed algorithms with rule partitioning [4], parallel Rete 
or Treat matching algorithms [9], [ 161,  and  parallel rule firing 
algorithms [ 121.  

[II 

PI 

[31 

t41 

[51 

WI 

[71 

PI 

[91 

[lOI 

REFBRENCE~ 

R.E. Barlow, F. Proschan, Statistical Theory of Reliability and Life 
Testing, New York: Holt, Rinehart and Winston, Inc., 1975. 
M. Boddy, “Anytime problem solving using dynamic programming,” 
9th National Conf: Artificial Intelligence, pp. 738-143, 1991. 
I.R. Chen and F.B. Bastani, “Effect of Artificial Intelligence planning- 
procedures on system reliability,” IEEE Trans. Reliubility, pp.364-369, 
Aug., 1991. 
I.R. Chen and B. Poole, “Performance of rule grouping on a real-time 
expert system architecture,” /EEE Trans. Knowledge und Data Eng., 
vol. 6, no. 6, pp. 883-891, Dec., 1994. 
I.R. Chen, F.B. Bastani and T.W. Tsao, “On the Intrinsic Faults of 
Real-Time AI Planning Programs,” Technical Report UMCIS-1993-10, 
Dept. of Computer Science, University of Mississippi, 1993. 
T. Dean, and M. Boddy, “An analysis of t ime-dependent planning,” 
7th National Con$ Artificial Intelligence, pp. 49-54, August, 1988. 
A.C. Diaz, An Overview of Realt ime Expert Systems, National Re- 
search Council Canada, ERA-380, NRC No. 31759, April 1990. 
J. J. Grimm, G.B. Lament, and A.J. Terzuoli, “A parallelized search 
strategy for solving a multicriteria aircraft routing problem,” Proc. 
1993 ACMBIGAPP Symposium on Applied Computing, Indianapolis, 
pp. 570-577, 1993. 
A. Gupta, Parallelism in Production Systems, LOS Altos: Morgan 
Kaufman, 1987. 
B. Hamidzadeh. and S. Shekhar, “DYNORA: A real-time planning 
algorithm to meet response-time constraints in dynamic environ- 
ments,” Proc. 3rd Int. Co& Tools,for AI, San Jose, pp. 228-235, 1991. 
P.G. Hoe], S.C. Port, and C.J. Stone, lnrroduction to Probability The- 
ory Boston: Houghton Mifflin Co., 197 1. 
T. Ishida, “Parallel rule tiring in production systems,” IEEE Trans. 
Knowledge and D&a Eng., vol. 3, no. 1, pp.1 1-17, March, 1991. 
B.W. Johnson, Design and Analysis oj’Fuult Tolemnt Digital Systems, 
Addison Wesley, 1989. 
RX. Korf, “Real-time heuristic search,” Art@ial Inrelligence Journal, 
vol. 42, pp. 189-2 I 1, 1990. 
T.J. Laffey, P.A. Cox, J.L. Schmidt. S.M. Kao and J.Y. Read, “Real- 
time knowledge based systems,” Al Magazine, pp. 27-45, Spring 1988. 
D.P Miranker, and B.J. Lofaso, “The organization and performance of 



CHEN, BASTANI AND TSAO: ON THE RELIABILITY OF AI PLANNING SOFTWARE IN REAL-TIME APPLICATIONS 13 

v71 

[I81 

t191 
W I 

W I 
W I 

~31 

r241 

W I 

a TREAT-based production system compiler,” IEEE Trans. Knowl- 
edge and Data Eng., vol. 3, no. 1, pp. 3-10, March 1991. 
J.D. Musa and K. Okumoto, “A logarithmic Poisson execution time 
model for software reliability measurement,” Proc. 7th Iflr. Conf SOB. 
Eng., Orlando, FL., pp. 230-237, Mar. 1984. 
J.D. Musa, A. Iannino, and K. Okumoto, Sofhvare Reliability: Meas- 
urement, Prediction, Application, McGraw-Hill, 1987. 
J. Pearl, Heuristics, Addison-Wesley, 1984. 
C.V. Ramamoorthy, and F.B. Bastani, “Software reliability - status 
and perspective,” IEEE Trans. Soft. Eng., pp. 354-371, July 1982. 
E. Rich, Artificial Intelligence, 2nd. Ed., McGraw-Hill, 1991. 
S. M. Ross, Introduction to Probability Models, 4th Ed., Academic 
Press, 1989. 
B.W. Wah, and L.C. Chu, “TCA’ - A time constrained approximation 
A’ search algorithm,” Proc. 2nd Inter. Co& Tools for AI, Washington 
D.C., pp. 314-320, 1990. 
P.H. Winston, Artificial Intelligence, 2nd Edition, Addison-Wesley, 
1984. 
L.A. Zadeh, “Fuzzy sets and information granularity,” Advances in 
Fuzzy Set Theory and Application (edited by M.M. Gupta, R.D. Ra- 
gade, and R.R. Yager), North-Holland, 1979. 

Ing-Ray Chen (M’89) received the B.S. degree 
from the National Taiwan University, and the M.S. 
and Ph.D. degrees in computer science from the 
University of Houston, TX. 

He is currently an associate professor of Informa- 
tion Engineering, National Cheng Kung University, 
Tainan, Taiwan. His research interests are in teli- 
ability and performance analysis, and real-time 
intelligent systems. D. Chen is a member of the 
IEEE, ACM, and AAAI. 

Farokh Bastani (M’82) received the B.Tech de- 
gree in electrical engineering from the Indian Insti- 
tute of Technology, and the M.S. and Ph.D. degrees 
in computer science from the University of Cali- 
fornia, Berkeley. 

He joined the University of Houston, TX, in 1980, 
where he is currently a professor of computer sci- 
ence. His research interests are in the areas of self- 
stabilizing systems, inherent fault-tolerance, teli- 
ability assessment of safety-critical systems, and 
high performance modular parallel programming. 

Dr. Bastani is currently on the editorial boards of the IEEE Transactions on  
Knowledge and Data Engineering and the Oxford University Press High 
Integrity Systems Journal. He is the editor of the newsletter of the IEEE 
Technical Committee on  Multi-Media Comput ing and was the vice-chair of 
the 12th IEEE Symposium on Reliable Distributed Systems. He was on the 
editorial board of the IEEE Transactions on  Software Engineering from 1988 
to 1992 and was a guest editor of the April 1992 special issue of IEEE-TKDE 
on self-organizing systems, and the December 1985, January 1986, and No- 
vember 1993 special issues of IEEE-TSE on software reliability. He is a 
member of the IEEE, ACM, and INNS. 

Ta-Wei Tsao received the B.S. degree in electrical 
engineering from the National Taiwan University in 
1983, and the MS. and Ph.D. degrees in computer 
science from the University of Mississippi in 1989 
and 1994 respectively. His research interests are in 
artificial intelligence and reliability theory. Mr. 
Tsao is a student member of the ACM. 


