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Imprecise computation is known as a technique for real-time systems where precise outputs are
traded off for timely responses to system events. This paper discusses how the technique can be
applied to a class of real-time AI systems designed for solving combinatorial problems and proposes
an evaluation method for assessing if imprecise computation can satisfy both the timing and
functional requirements of these systems.
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1. INTRODUCTION

Real-time computing is an open research area which
represents a major challenge to engineers and computer
scientists. The objective of real-time computing is to meet
the timing and functional requirements of individual tasks.
Thus, the most important property is predictability; the
functional and timing behaviour of each task should be as
deterministic as necessary to satisfy the system specifica-
tions.

The incorporation of Artificial Intelligence (AI) tech-
niques into real-time control systems has emerged to
become a state-of-the-art demand in recent years as
evidenced from numerous conferences, workshops and
articles [1–5] held or published each year to discuss the
subject. One central theme of the discussion is how to
make such AI systems real time, that is, how to ensure
that the functional and timing requirements of such
systems are satisfied. This issue is interesting for two
reasons: (1) from the timing perspective, the exponential
search time behaviour exhibited by AI programs makes
them highly undesirable for real-time applications; and (2)
from the functional perspective, the correctness of the
output of AI programs is a fuzzy [6] rather than a binary
quantity, since results produced by AI techniques may not
be categorized as correct or not. For example, a non-
optimal result may not be considered as completely
correct because it is not the best solution; however, since
a non-optimal result normally takes less time to produce
than an optimal one, under a rigid time frame (e.g.
minutes to seconds, such as that in managing defensive
weapons against missile threats), non-optimal results may
be more desirable than optimal ones because they can
better satisfy the timing requirement. The existence of a
real-time constraint thus complicates the design and
implementation of AI real-time systems since satisfying
the timing requirement may have an adverse effect on the
satisfaction of the functional requirement, and vice versa.
Unfortunately, current design, analysis and verification
techniques for integrating AI techniques into control
systems have not kept pace; little work has been done in

designing and verifying the functional and timing
requirements of such systems [4, 7].

Current research directions toward making AI systems
real-time are conducted on anad hocbasis and basically
adopt one of the following two approaches. One approach is
to look at parallel architecture [8–10] for better performance
with real-time applications in mind in the hope that the
timing requirement may be better satisfied. Another
approach is to devise time-constrained search algorithms
[11–14] coupled with knowledge-constrained search space
[15, 16] so as to commit to actions based on limited
information and computation in limited time, e.g. the result
produced thus far when time expires is the one to be used
since it represents the best bet. These approaches give the
system designers better confidence in the embedded AI
systems in control systems; however, the degree of
confidence is still an open issue. Questions that remain to
be answered include: (1) since fast computing does not
imply real-time computing, how can one be sure that the
timing requirement is always (or most of the time) satisfied
using parallel architecture, and, if it does, how much
confidence should the system designers have in the use of
parallel architecture, (2) If time-constrained algorithms can
indeed be used to satisfy the timing requirement, then how
much functional requirement is compromised and, in terms
of the probability that the task can be executed successfully
(say, in missile systems), what is the implication of using
time-constrained algorithms, i.e. how much confidence
should the system designers have in these algorithms? This
paper is motivated by these questions. We hope to provide
implementation guidelines for implementing real-time AI
systems with the assurance that both the timing and
functional requirements of the system can be satisfied.

We address the issue of trading off solution quality
(consequently the functional requirement is less satisfied)
for guaranteed response time (consequently the timing
requirement is more satisfied) in real-time AI systems by
formalizing the notion of acceptability criteria under which
the resulting system is considered to have satisfied both its
functional and timing requirements and thus can be
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considered real-time. More specifically, we investigate
whether the imprecise computation method [17, 18] can be
applied as a specific technique for developing real-time AI
systems. Under the principle of imprecise computation,
more than one version of the AI system software for the
same system task are developed. These versions may be
implemented by incorporating time-constrained search
process and/or knowledge-constrained search space, and
are designed to find a solution for the same problem-solving
request. However, each version in succession is given less
time to produce a solution with the guarantee that some
solution must be found within the specified timing
constraint, although the solution found perhaps is not of
the best quality. In other words, the quality of the solution is
monotonically decreased as we select the first version over
the second version and so on. However, guaranteed
response time is assured more as we go in the same order.
Of course, even with imprecise computation, some systems
still cannot find a solution when time expires, especially if
the time constraint is stringent. In this paper, we exclude this
possibility (such that there is no deadline-violation failures)
by considering a class of real-time AI systems for solving
combinatorial problems for which there always exist any-
time or time-constrained solutions [11], so that a solution,
no matter how imperfect it can be, can always be found
when time expires. Such systems include flying route-
finding systems for which a direct flying route between the
source and destination can be considered as an any-time
solution [19], missile systems for which not considering
radar threats can lead to a quick solution, and medical
monitoring and caring units for which immediate imperfect
treatment plans are available [4]. In these systems, lowest
versions conceptually correspond to the mandatory compo-
nent whose execution time must be bounded and thus can be
guaranteed off line, while higher versions correspond to
optional components which are to be selectively executed at
run-time to refine the solution according to how much
computation time remains.

To quantify the effect of trading off solution quality for
guaranteed response time due to the employment of
imprecise computation, we need a metric to tell whether
the system, after satisfying its timing requirement this way,
also satisfies its functional requirement. We define this
metric the quality function of the system, which is a
probability function that the functional and the timing
requirements of the AI system are both satisfied for all
problem solving requests encountered during the lifetime of
the AI system. In this paper, we first investigate if various
time-constrained algorithms can fit within the specific
framework of imprecise computation, i.e. they can be used
to produce various levels of solution quality under various
degrees of response time requirement for the same system
task. Then, after the timing requirement is satisfied this way,
we propose an evaluation method to compute the quality
function of the system so as to assess if the functional
requirement of the resulting system is also satisfied with
respect to some acceptability criteria for functionality.

The rest of the paper is organized as follows. Section 2

describes the method for implementing real-time AI
systems based on imprecise computation, and discusses
possible ways of implementing multiple versions of AI
system software for the same system task. Section 3 presents
an evaluation methodology for assessing the resulting
quality function of such real-time AI systems. Section 4
illustrates the utility of the design and evaluation methodol-
ogy with an example. Finally, Section 5 summarizes the
paper and outlines some future research areas.

2. APPLYING IMPRECISE COMPUTATION TO
REAL-TIME AI

In this section, we define the system model and discuss
possible approaches for implementing real-time AI systems
based on the concept of imprecise computation, with the
objective of satisfying the timing requirement. In the next
section, we will develop an assessment method based on the
notion of acceptability criteria to quantify the trade off
between the sacrifice in solution quality and the guarantee in
response time.

2.1. System model

In embedded control systems, the AI system is only a part of
a larger system such as a missile system. The AI system
usually must provide control functions and must operate in
real time in response to problem solving requests to cope
with various deadlines. Our system model follows one
possible structure of imprecise computation in which the AI
system software can haven versions V1;V2; . . . ;Vn for
solving problem requests (n � 2 is the common practice).
V1 is the highest version which can presumably produce the
best possible solution but may need a longer time to run,
while Vn is the lowest version which may run a non-optimal,
time-constrained algorithm but is able to generate a solution
much quicker. Thus, the versions are ordered according to
the efficiency with which they are able to produce solutions.
This structure is similar in concept to that of recovery block
in software fault tolerance [20].

Let F1;F2; . . . ;Fn be the respective response time
distributions and W1;W2; . . . ;Wn (in monotonically
decreasing order) be the worst-case computation times
which are obtained by testing each version with the
anticipated operational profile which the system is expected
to encounter during its operational phase [21, 22]. In
responding to a problem solving request with a deadline
of tR, the system adopts the following policy to ensure that
the timing requirement is satisfied while it tries to meet the
functional requirement as much as possible. The system first
selects the highest versioni which has a worst-case response
time Wi not higher thantR to ensure that the timing
requirement is satisfied in real time with respect to the
request. Since the selection of versioni described above is
based on the worst-case planning time, it is likely that the
actual time needed to solve the problem request by versioni
is much less thantR. If this is the case, the system uses the
remaining time to further improve the solution quaility as
much as possible, possibly by running the next higher
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version i ÿ 1 until tR expires. This situation applies to the
case when versioni is implemented with an any-time
algorithm. On the other hand, if versioni is implemented
with a time-constrained algorithm, thenWi can be set totR
so that versioni is required to generate a solution at or
beforetR. The bottom line is that the real-time requirement
must be satisfied from the system’s perspective, although
the solution quality may be compromised. Below we
describe possible ways of implementing multiple versions
of the AI system software to achieve such a guarantee.

2.2. Possible ways of implementing real-time AI
systems based on imprecise computation

For combinatorial AI search problems, existing any-time
and time-constrained algorithms (e.g.RTA� [14],
DYNORAII [13] andTCA� [12]) can be used to implement
lower versions while optimal algorithms (e.g.A� [23] and
IDA� [24]) can be used to implement higher versions. For
rule-based production systems [9, 25] different versions can
be implemented based on imprecise computation by
restricting the knowledge or information used by the AI
software in searching for a solution. A real-time rule-based
production system repeatedly executes the so called match-
select-act cycle in which it responds to an external event (for
example, a sensor event which inputs facts) by first
matching arriving facts against the left-hand-side (l.h.s.)
condition elements of the rules comprising the system
(called the match phase), then selecting a rule to fire among
the rules that are instantiated (called the select phase), and
finally executing the right-hand-side (r.h.s.) actions of the
selected rule (called the act phase). Firing a rule may
generate more new facts, causing the match-select-act cycle
to activate again. This process continues until some newly
generated facts meet the termination condition, at which
point the system is said to have reached a decision and the
sequence of rules fired on the solution path is referred to as
the solution found in response to the problem-solving
request.

There are two possible ways of implementing imprecise
computation in rule-based production systems. One way is
to build several versions of the rule base, with higher
versions being more restricted than lower versions. In other
words, the algorithms used for matching, selecting and
firing rules remain the same, but the rule base consists of
less informative (and thus better summarized) and more
constrained sets of rules as we go from higher versions to
lower versions. Less informative rules can be created by
grouping several rules together into one rule which
summarizes the knowledge of several rules. More con-
strained rules can be created by not using the full expressive
power provided by the rule language as the rule base is
being created. These approaches reduce the matching time
performed by the underlying matching algorithm during the
match phase because the rule base is simplier, smaller and
less powerful [15, 16]. Consequently, less time is needed to
find a solution.

The second way to implement imprecise computation is

to keep the rule-base the same, but use multiple versions of
the algorithms used in the match, select, and/or act phases in
order to reduce the planning time. For the match algorithm,
lower versions can have a more restricted way of
performing the match, including limiting the number of
matches for a join operation and/or the number of instances
of a pattern or a relation embodied in the l.h.s. condition
elements of rules (as suggested in [26]). For the select
algorithms, higher versions can use optimal algorithms such
as A� and lower versions can use time-constrained
algorithms such asRTA� [14] or DYNORAII [13] to speed
up execution. For the firing phase, parallel rule firing [9] can
also be considered for implementing lower versions, while
sequential rule firing can be used for implementing higher
versions.

There are some important points that should be
mentioned. First, it is possible to combine the two
approaches to implement the lower versions of the AI
system software so as to reduce the worst-case computation
time. Second, to guarantee that the timing requirements for
all problem-solving requests are satisfied, it is necessary to
perform a statistical analysis of the implemented versions to
obtain the worst-case upper bound on the response time for
each version. After the analysis is done, if no version
(among the implemented versions) exists to satisfy the
timing requirement, more restrictive rule base and/or
algorithms should be sought to implement (at least) the
lowest version. Third, conceptually the lowest version
functions as the mandatory part of the imprecise computa-
tion process and therefore its response time must be
bounded and thus guaranteed off-line. If due to non-
convergence of AI techniques employed its worst-case
response time cannot be bounded, we must instead
implement (at least) the lowest version using an any-time
or time-constrained algorithm so as to guarantee a bounded
worst-case response time. In this case, it suffices to use the
average rather than the worst-case response time to
characterize higher versions (corresponding to the optional
components) since higher versions can gradually refine the
solutions based on the solutions found by lower versions
when time is available. In the simplest form, the lowest
version can be just a table-lookup module, listing approx-
imate or crude solutions for some problem-solving requests
under perceived conditions. Also, for a class of applications
(e.g. a flight system with radar threat), it is always possible
to find an immediate solution (e.g. a direct route between the
source and the target without radar consideration), based on
which the solution can be gradually refined when more time
is available. For this latter class of real-time applications,
the lowest version can be implemented by using any-time
algorithms [11] to guarantee that the timing requirement is
satisfied.

3. ASSESSMENT METRIC AND
METHODOLOGY

In order for the system designer to have a concrete idea on
whether the functional requirement has been compromised

436 I. -R. CH E N

THE COM P UT E R JO URN AL, V OL. 38, NO. 6, 1995



by the deployment of imprecise computation, we propose
the notion of acceptability criteria which precisely define
the belief of the system designer regarding a functional
failure. Based on these acceptability criteria, the quality
function of the embedded AI system software can be defined
and later assessed based on testing of the resulting system.
In our earlier work, this quality function metric was defined
as the probability that the AI system can satisfy both its
timing and functional requirements as a function of the
number of problem requests (or missions) which the system
may encounter during its life time [21]. Of course, for
continuous, reactive systems, the number of problem
requests which the system may encounter during its lifetime
is infinity. This quality function metric in this paper now
transforms into the probability function that the AI system
can satisfy its functional requirement, given that the timing
requirement is always satisfied due to the employment of
imprecise computation.

The acceptability criteria are related to this transformed
quality function metric by defining exactly how the system
designer views the functional requirement has been satisfied
or compromised.

In the following, we first discuss a few possible ways of
defining these acceptability criteria and their relationships to
the quality function metric and then we discuss a possible
testing methodology with which the quality function of the
embedded real-time AI system incorporating imprecise
computation can be estimated from the testing result.

3.1. Acceptability criteria

We first note that a problem solving request can always
meet its timing requirement due to the deployment of the
imprecise computation technique. However, the functional
requirement may be compromised. For example, a straight-
line route for a flight system in a radar threat environment is
apparently not a good solution, but it takes little time to
compute. For each problem solving request, the quality of
the solution generated can be considered as a random
variable in the range of [0,1] with 0 meaning that the
solution is totally functionally acceptable, and 1 meaning
that it is totally functionally unacceptable. This assessment
of the solution quality for each problem request can be done
by the tester during the testing phase and conveys the belief
of the system designer for the application in question. A
natural way of assessing the solution quality in this way
frequently exists. For example, in a flight system with radar
threats, the value assignment corresponds to the probability
of the flight being detected by the radar when following the
solution route planned. We shall call such value in [0,1] as
the ‘imperfect solution level’ (ISL).

The following acceptability criteria for functionality can
be applied to real-time AI systems implemented with the
imprecise computation technique.

. Strict. With the strict criterion, the system is considered
functionally unacceptable if the system has encountered
a problem solving request for which the ISL measure is

above an application-specified threshold value. This
criterion defines a system that cannot tolerate even a bad
solution; the threshold value defines the way a system
designer (or a user) views the quality level below
which the system can still tolerate an imperfect
solution. For example, a radar detection probability of
over 0.5 may be considered functionally unacceptable for
some flight systems.

. Accumulation. With the accumulation criterion, the
system is considered unacceptable for functionality if
the sum of the ISL measures of all problem-solving
requests encountered by the system exceeds an applica-
tion-specified threshold value, say 1. This criterion
defines a system in which a single or even several bad
solutions may not immediately cause the system to
violate its functional requirement, but the effect may
accumulate and cause the system to become functionally
unacceptable. For example, a radar detection probability
of 0.1 may not cause a flight system to be shot down for a
single mission, but chances are if there are many
solutions with non-zero radar detection probability then
eventually the flight system will fail. Note that this
criterion applies to systems designed to solve more than
one problem request, which is typically the case for
reactive real-time systems.

. Accumulation within a mission window.With this
criterion, the system is considered acceptable for
functionality as long as the accumulated ISLs encoun-
tered in an application-specified mission window do not
exceed an application-specified threshold value. A
‘mission window’ means a moving window of missions,
e.g. m means a moving window ofm missions within
which the accumulated ISLs cannot exceed a threshold
limit. This criterion defines a system that can tolerate
occasional imperfect solutions so long as not too many
such imperfect solutions occur in any mission window. A
smaller mission window hence implies a system with a
better recoverability because of the lower probability of
accumulating imperfect solutions’ ISLs within a smaller
window to exceed a threshold, given that imperfect
solutions occur at about the same rate regardless of the
size of mission window. This criterion is appropriate for
some real-time applications for which imperfect solu-
tions can be digested or tolerated as long as not all of
them occur in the same mission window period. For
example, in a manufacturing system, under a tight
production rate requirement, if too many bad products
are produced in the same window period, then the
functional requirement is considered not satisfied.

3.2. Relationship between acceptability criteria and
quality function

The quality function of real-time AI systems implemented
based on imprecise computation is driven by the accept-
ability criteria defined by the system designer. In this
section, we analyse their relationship by using probability
modelling.
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With the strict criterion, we consider the system function-
ally unacceptable if it ever generates an imperfect solution
with its ISL measure greater than a specified threshold value,
�, which defines the tolerance level of the resulting system
with respect to a functionally imperfect solution. The extreme
case is that when� is 0, the system cannot withstand even a
slightly imperfect solution. One possible way to obtain the
expression for the quality function of the system is to model
the ISL measure of an imperfect solution by a distribution
G��� such thatG�0� � 0 andG�1� � 1, and the arrival of
imperfect solutions by a Poisson process with an arrival rate
�. Let Xi be a random variable indicating the ISL of thei th

imperfect solution. Then, since 04� < 1, the quality
function of the system after the system has servicedN

requests, denoted byQ�N �, is given by

Q�N � � Prfsoftware is alive afterN problem requestsg

� Prfthe ISL of every imperfect solution
encountered 4 �<1, if any g

�

X
1

n�0

Prfn imperfect solutions experienced over
N problem-solving requestsg

� PrfX14 � < 1; . . . ;Xn4� < 1g �1�

�

X
1

n�0

eÿ�N ��N�

n

n!
�G����n

� eÿ��1ÿG����N

wheren is the total number of imperfect solutions which can
probabilistically occur inN problem-solving requests.

Equation (1) above gives the quality function as a
function of the number of problem-solving requests for an
AI system incorporating imprecise computation and adopt-
ing the strict acceptability criterion as its functional
requirement. Naturally, if the system adopts another
acceptability criterion (say, theaccumulationcriterion) for
its functional requirement, the quality function expression
would be different since the underlying acceptability criteria
are different. For theaccumulationacceptability criterion, if
the threshold isXL, then

Q�N � � Pfaccumulated ISL levels experienced4XLg

�

X
1

n�0

Prfn imperfect outputs encountered over
N missionsg PrfX1 � . . .� Xn4XLg

�

X
1

n�0

eÿ�N ��N�

n

n!
G�n�

�XL� �2�

wheren is the total number of imperfect outputs which can
probabilistically occur inN missions, andG�n�

�x� denotes the
n-fold convolution ofG�x�, representing the probability that
the sum ofn imperfect solutions ofG��� is less thanx. It is
defined as

G�n�
�x� �

1 if n � 0

G�x� if n � 1
�x

0
G�nÿ1�

�xÿ y�dG�y� if n > 1

8

>
>
<

>
>
:

On the other hand, if theaccumulation within a mission
windowacceptability criterion is considered for which the
mission window ism (missions), it can be shown that

Q�N � � eÿ�N 1ÿ
P

1

n� 0
eÿ�m

��m�n

n! G�n�1�
���

ÿ �

�3�

3.3. Evaluation methodology

Our evaluation methodology has its origin from the
field of software reliability engineering for assessing the
system reliability of computer software. Under the
evaluation methodology, the system developed is
tested based on its operational profile [27], from
which testing results are collected so as to parameterize
(i.e. give parameter values to) a quality function
equation (such as Equation (1) derived based on the
strict acceptability criterion) to measure the quality
function of the system.

Two sets of testing data are required in order to
estimate the parameters of a quality function equation
such as Equation (1). These are�N1;N2; . . . ;Nr� (for
imperfect solutions) and�f1; f2; . . . ; fr� (for associated
ISLs), whereNi is the problem-solving request number
for which the i th imperfect solution is found; andfi is the
ISL of the i th imperfect solution. These testing data may
be obtained during the testing and debugging phase
through testing the AI system incorporating imprecise
computation with its anticipated problem-solving request
profile.

The maximum likelihood estimates (MLEs) [22] ofG���
and� can be derived as follows.

The probability density of imperfect solutions is

PDFhi�N � � �eÿ�N

Therefore, the maximum likelihood estimate of� can be
estimated as

^� �

r
Nr

�4�

where r is the total number of imperfect solutions
experienced during the testing period, andNr , defined as
before, is the problem-solving request number for which
the r th imperfect solution (i.e. itsISL> 0) is experienced.
For example, if (#5, #78, #256 #655 #1000) are a set of
five problem-solving requests for which imperfect solu-
tions are detected during the testing phase, then� is
calculated as 5/1000. In other words, the system can
experience an imperfect solution once in about every 200
problem-solving requests when the system is in its
operational phase.

A reasonable model forG�:� is the Beta(�; �) dis-
tribution1 with density

g�x� �
ÿ��� ��

ÿ���ÿ���
x�ÿ1

�1ÿ x��ÿ1 if 04 x41

0 otherwise

8

<

:

The maximum likelihood estimates of� and � can be
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obtained by numerically solving the following equations
using the ISL data set�f1; f2; :::; fr� collected during the
testing phase:

r
@ÿ��̂�

^��

@�̂

ÿ��̂�
^��

ÿ

r
@ÿ��̂�

@�̂

ÿ��̂�
�

X
r

i�1

log fi � 0

r
@ÿ��̂�

^��

@ ^�

ÿ��̂�
^��

ÿ

r
@ÿ� ^��

@ ^�

ÿ��̂�
�

X
r

i�1

log�1ÿ fi� � 0 �5�

where

@ÿ��̂�
^��

@�̂
�

�
1

0
�logx�x�̂�

^�ÿ1eÿxdx

After the MLEs of � and G��� are obtained as
described above, the quality function of a real-time AI
system based on imprecise computation and a pre-
specified acceptability criterion (e.g. such as Equation (1)
based on the strict acceptability criterion) can then be
quantified by using the testing data collected as a
function of the number of problem requests encountered
by the system.

4. EXAMPLE

This section shows an illustrative example. Consider a
real-time AI planning subsystem embedded within an
intelligent missile launching system that launches
missiles against anti-missile threats [19]. The aim of
the mission for each missile launched is to hit the
target without being shot down. From the view of the
missile, the sky (from some particular altitude looking
down) is a two-dimensionalx–y map with certain
locations marked with anti-missile threats and asso-
ciated intensities. As the missile’s altitude/location
changes as it moves toward the target, the correspond-
ing x–y map changes, thereby creating a map by map
three-dimensional search space through which the AI
program needs to find a best flying route for each
missile launched to accomplish its mission. We
consider the case that the AI program is implemented
with two versions based on imprecise computation.
Both versions must consider the physical constraints of
the missile dynamics, e.g. no backward, and sudden
vertical movements, etc. The first version uses an
optimal search algorithm calledA� [23] which, when
given sufficient time, can always find the best flying
route among all in terms of the smallest probability of
being shot down. It considers the whole search space as
it looks for the optimal route. The second version, on

the other hand, uses a suboptimal search algorithm
called RTA� [14] coupled with an any-time algorithm
[11]. Under the second version, the missile moves
toward the target in increment of horizontal distance
window (e.g. 50 kilometres) nearer to the target one at
a time such that within each distance window the
probability of being shot down is the minimum. (See
Figure 1 for an illustration of thex–y map window.) In
other words, the search space is only one distance
window at a time (at lower heights as it approaches the
target) instead of the whole distance spanning the
source and the target as having been done by the first
version. Furthermore, in order to guarantee a timely
response for the missile launching system to make a
decision to launch a missile at or before the deadlinetR,
the second version will use the straight-line route
between the end distance point planned so far and the
target point as its last part of the flying route whentR
expires. By this way, the second version will always find
some flying route to reach the target, although the
probability of being shot down against the anti-missile
threats is perhaps not the smallest.

We consider that whenever the missile launching
system is ready to launch a missile, it can obtain real-
time information regarding the anti-missile distributions
and intensities and also a deadlinetR, both of which vary
on a mission by mission basis depending on the real-time
situations. The worst case planning time of the first
version is determined a priori by testing it through a
simulated environment profile (consisting of the anti-
missile distributions and intensities, and target location
distributions). On the other hand, since the second
version always finds a flying route with any deadline
tR, no simulation experiment is necessary for the second
version. The missile launching system behaves as
follows: for a given tR, it selects the first version over
the second version if the worst case planning time of the
first version is shorter thantR given; otherwise, the
second version is chosen. In the latter case, if the second
version finds a route beforetR, the first version is
invoked using the remaining time; if a route is found by
the first version before time expires, the route found by
the first version replaces the one found by the second
version since it has a smaller probability of being shot
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FIGURE 1. An x–y map window marked with anti-missile threats and
intensities.



down. In any case, the route found is used by the
launching system to control the actual flying route of the
missile launched so as to minimum the possibility of
being shot down.

The designer now wishes to know what the quality
function of the system looks like with such a design
based on imprecise computation. This question is
equivalent to knowing whether the system can satisfy
both the timing (already satisfied via imprecise computa-
tion) and functional requirements. To find the answer, the
system implemented was tested through its simulated
operational profile (consisting of the environment profile
plus the distribution of tR) one mission at a time
and history data were collected which consisted of
�N1;N2; . . . ;Nr� (for imperfect solutions) as well as the
associated�f1; f2; . . . ; fr� (for ISLs), with fi > 0 denoting
the non-zero probability of being (detected and) shot
down by the anti-missile threats. The data were
subsequently used to compute the values of the model
parameters based on the method discussed in Section 3.3,
yielding � � 0:01; � � 1:0 and � � 20:0.

As the quality function of the system must reflect the
imposed functional requirement demanded by the system,
the system designer tests three acceptability criteria
deemed appropriate for the system under evaluation.
Figure 2 shows the evaluation result in which the quality
function is expressed as a function of the number of
missions (missiles launched by the launching system) for
two acceptability criteria: strict with � � 0:5 and
accumulation with XL � 1:0. It can be seen that the
acceptability criterion selected affects the quality of
service delivered by the system. The quality function of
the system with the accumulation criterion withXL � 1:0
deteriorates quickly after an upper bound of 1000 is
exceeded. If the system designer believes that the
accumulation criterion with XL � 1:0 is the right
choice, it is better that the system will only launch
1000 missiles or less to the same target area or the
functionality of the system is in great risk. If we assume
that missiles are launched to the same target area in one
batch job, then the system can satisfy its imposed

functional requirement (with probability near 1) with the
batch size less than 1000.

On the other hand, if the system designer believes
that the strict criterion with the tolerance threshold
� � 0:5 should be adopted, then the functionality
steadily deteriorates as the system launches more and
more missiles. The probability that the system can
satisfy its functional requirement in this case drops to
0.9 after launching 750 missiles. This result is reason-
able because the strict criterion requires that every
missile launched must have its probability of being
shot down to be less than 0:5 or the system is
considered as having violated its functional require-
ment. Figure 2 also shows the cross-over point (at
around 2000) beyond which the strict criterion is better
than the accumulation criterion in terms of meeting the
functional requirement.

Figure 3 shows the quality function of the system
with the accumulation within a mission window
criterion for which the system’s tolerance to imperfect
results is modelled by a mission windowm. The
smaller the value ofm, the better the system’s ability
to tolerate occasional bad results. At one extreme,
where m� 1, a system with the accumulation within a
window criterion behaves just like a system with the
accumulation criterion alone because the system fails as
soon as the accumulated ISLs exceedXL � 1. At the
other extreme,m� 0 represents that the system is able
to tolerate bad results instantaneously, in which case
the quality function is always 1. For anym value
between these two extremes, asm increases the value
of the quality function decreases for the same number
of missions, because a largerm implies a higher
probability that the accumulated ISLs in the mission
window m may exceedXL, thereby making the system
more vulnerable to imperfect solutions. Note thatm is
to be specified by the system designer. For this
example, Figure 3 suggests that whenm� 500 or 600
the system’s functional requirement can be satisfied
with a high probability (close to 1) for up to 10 000
missiles launched.

The quality function curves obtained in Figures 2
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FIGURE 2. Quality function of the missile launching system with strict
and accumulation criteria.

FIGURE 3. Quality function of the missile launching system with the
accumulation within a mission window criterion.



and 3 thus provide the system designer a firm idea
about how the functionality of the system is
compromised as a result of adopting imprecise
computation to trade off solution quality for guaran-
teed response time. It is important to note that the
quality function curve varies as the acceptability
criterion chosen by the system designer varies. For
example, if the threshold� value is 0.75, the whole
curve under the strict criterion in Figure 2 will move
up toward 1. If the system designer is not satisfied
with the shape of the curve, he or she will have to
redesign and re-evaluate the AI programs for one or
even all versions because it is of little value for the
system to satisfy the timing requirement at the entire
expense of the functional requirement.

5. SUMMARY

Imprecise computation is a technique suitable for real-
time systems for which a response must be generated
within a real-time deadline or catastrophe may result. In
this paper, we discussed how imprecise computation can
be applied to implementing AI programs embedded
within real-time systems. We proposed the notion of
acceptability criteria for functionality to quantify the
trade-off between the sacrifice in solution quality and
the guarantee in response time. For a chosen accept-
ability criterion as deemed appropriate for the system
under evaluation, we developed a method for quantify-
ing the system’s functional requirement, expressed in
terms of the probability of satisfying the acceptability
criterion as a function of the number of missions
serviced by the system during its lifetime. Analytical
expressions for this system quality function with various
acceptability criteria were derived and a detailed
example was shown to demonstrate the utility of the
result. The methodology developed in the paper is
invaluable for system designers who wish to apply
imprecise computation to building real-time AI systems;
it allows the system designer to evaluate whether an
implemented system can indeed satisfy both the timing
and functional requirements of the system.

A possible future research area is to apply the method
to the design, development and evaluation of real-time
rule-based programs embedded in process-control
systems.
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