A DegradableB"™-Tree with Periodic Data
Reorganization

ING-RAY CHEN*

Institute of Information Engineering, National Cheng Kung University, No. 1,
University Road, Tainan, Taiwan
Email: irchen@wsl1.iie.ncku.edu.tw

This paper develops a periodic data reorganization algorithm for theB"™-tree data structure in
concurrent environments, and identifies conditions under which the data reorganization should be
performed in order to minimize the response time per access operation.

Received October 3, 1994; revised January 17, 1995

1. INTRODUCTION B'"k_tree withk = 2. Note that nonleaf nodes only serve as
index nodes. The child pointers of a leaf node directly point
to records associated with the key values stored in the leaf
node.

A major drawback of the LY algorithm is that the solution

r the delete operation is the same as that of the update
operation, i.e. just updating the leaf node that contains the
key to be deleted without regard to whether the leaf node
will become underflowed or empty after the key is removed

The classi®"-tree data structure due to Lehman and Yao
[8] allows a higher level of concurrency than traditioBal-
trees [4] (calledB*-trees by Lehman and Yao) for reading,
updating, deletion and insertion concurrent operations by fo
introducing cross-linked pointers for nodes at the same
level. This unique design, henceforth referred to as the LY
algorithm, allows a read operation, which is fundamental to

other operations, to be processed without having to lock any ¢ - 4o 46 For example, in Figure 2 after deleting key

tree n_odes as it searches from top-down for a leaf nqde that\/alue 38 from the tree, the node that originally contains 38,
contains the key to be searched, thereby increasing the

d f traditior@i -t laorith i.e. node E, becomes underflowed (i.e. less than half-full)
egree of concurrency over traditiorial -ree algortnms and after further deleting key value 41 from the tree, it
which require read locks for read operations. The LY

lorith | the interf bet d and becomes empty. This simple solution for the deletion
algorithm resolves Ine interterence between a read an anoperation may needlessly waste space at the leaf node level.
insert operation by making use of the cross-linked

it That is. if d t find the Kev | d Furthermore, it is possible that the height of the tree may
pow;ers_.t 'ha ';('j S rtia ;ar cartmot n i € e}y"m ntc;] € become bigger than necessary because at the nonleaf levels
awnen It 1s guided by ? ree structure, it can foflow the only the insert operation can split internal nodes, while the
cross-linked pointer toa’s right neighbor nodeb to

i hina for the K K ing that due t delete operation never merges internal nodes. This
continue searching for the key, knowing that due 1o disadvantage can be described based on the concept of
concurrencya may be split into two nodes andb, by a

4 . data reorganizationThe LY algorithm can be viewed as an

concurrent mser_t ope_ratloq._ algorithm that performs ‘on-the-fly’ data reorganization for

The LY algorithm is efficient because a r_eader never update and insert operations only, but not for delete
locks any n(_)de; an update or a delete operaﬂon only IOCkSoperations which can introduce garbage nodes into the
one node (i.e. the I-eaf node. that Coma”?s the key to be data structure. Consequently, the performance can degrade
updated or deleted); gnd an insert operation locks at mostover time since garbage nodes are left unmaintained.
_three nodes at a time. Consequently, th? de_g_ree of Two possible approaches exist for overcoming this
interference among concurrent operanons IS MINIMUM. 4 awback. One approach is to devise on-the-fly algorithms
The LY algorithm is also ‘clean’ in the sense that the

deadlock-f ! b d iv by showing th tfor the delete operation so that it can lock as few nodes as
cadlock-ree property can be proved easily by showing tha possible and merge underflowed or remove empty nodes
concurrent insert operations—which are the only operations

when necessary. Unfortunately, such algorithms have not
that may lock more than one node—do not cause deadlocks y y J

Al waahtt q ‘ d 1o show that the PEEN reported in the literature for the""¥-tree data
ess straightiorward proot was used 10 Snow that e gy ,qpre, possibly due to complexity reasons. Other on-
functional requirements of all operations are satisfied [8].

Figure 1 shows a possible node structure dé-degree the-fly algorithms do exist in the literature for other variants
i X ; g . of B-trees (e.g. a new structure Bftrees with lazy parent
B"K_tree in which each node hak Xeys, X+ 1 child (e.g yp

int hiah kev indicating th bound on the k split [9]). However, for these latter class of algorithms, read
pointers, a high keyindicating the upper bound on the Key . ¢ have to be used for read operations in order to resolve
values that may be stored in the subtree rooted with the

. . . read-write access conflicts since cross-linked pointers are
node, and a cross-linked pointer pointing to the next not used in the structure as B™-trees. Therefore, we
node at the same level (or pointing to null if the node is the expect that the degree of concurrency achievable by this
rightmost node on a level). Figure 2 shows an instance of theatter group of algorithms is lower than that achievable by

THE CoMPUTER JOURNAL, VoL. 38, No. 3, 1995

246 I.-R. GHEN

Internal Node Structure
[[5 [P %] [k] Pox| bk [cLpf—
2k+1 child pointers
2k keys
1 high key (HK)
1 cross-linked pointer (CLP)
Leaf Node Structure
(M5 [P [%2]"2] [“2«] Pak]mk [cLP—
leaf node
marker
data of k, dataof ky data of ky,

FIGURE 1. B™ tree node structure.

the LY algorithm which requires no read locks for read able data structure queueing servers that serve operations
operations. sequentially in a client-server computational model. Here,
Another approach is to introduce one or more concurrent we consider the use of periodic maintenance in a shared
maintenance processes [3, 6, 10, 11] to reorganize the treedata-space model. We make a shaBdtf-tree degradable
nodes at both the parent and leaf levels and clean up garbagéy (i) performing data reorganization only periodically
nodes created by delete operations at the leaf level. Sagiv [11]instead of concurrently; (ii) modifying the insert operation
has introduced such maintenance processes in his algorithmin the LY algorithm so that during the maintenance-free
He modified the LY algorithm such that the insert, delete, and time intervals, the response time of the insert operation is
maintenance operations (or processes) only need to lock 1, 1also minimum. The benefits of periodic data reorganization
and 3 nodes, respectively, while the read operation still doesare: (i) it has a very simple and clean solution when
not need to lock any node at all. However, his algorithm compared with a concurrent maintenance solution or the
requires the use of time-stamps to keep track of when deletedclassic LY algorithm so that the design is easy to follow and
nodes can be garbage-collected, and also the use of a specidhe proof of the deadlock-free and functional properties is
mechanism to restart a reader when the reader reaches #ivial; (ii) every non-read operation needs to lock only one
wrong (garbage) node. As a result, the arguments used in thenode so that the degree of concurrency is maximum during
proof for deadlock-free and functional properties in his the maintenance-free periods; (iii) the tree struc-ture is
algorithm are more complicated and difficult to follow. reorganized periodically with all the garbage nodes
Furthermore, without a performance analysis, it is not clear removed so that the problem of indefinite growth of the
how much performance improvement can be obtained. tree space is avoided; (iv) the behavior of the tree can be
This paper investigatgseriodicreorganization [1, 2] asa described by a model which allows the best time interval
design alternative to overcome the drawback of the LY between two successive periodic data reorganization
algorithm on concurrenB'™-trees. Previously, we have operations to be determined as a function of database
studied the performance and stability behavior of degrad- environment variables (e.g. the number of con-current

/

AP [[[20q—1—

B C D
.1 PN s e 20 .0 3 K2 20 2 3 L A B
S S [S W

E F G
(M3 T [T [o[> I8] 1], 5] 6 [\I56] > M8]
A TN NN \

key 56 key 58

key43] [ke 48| |kc 52] [}
info info

info info Imo I lino info

FIGURE 2. An exampleB"™-tree withk = 2.

THE CoMPUTER JOURNAL, VoL. 38, No. 3, 1995

A DecrapABLE B'"K-TREE wiTH PERIODIC DATA REORGANIZATION 247

operations and probability of insert, etc.) such that the operation adds a key value of 50 into the tree shown in
performance of the resulting system can be ascertained. Figure 2, thus causing node F to be split into nodes F and F
The rest of the paper is organized as follows. Section 2 (see Figure 3 or 4 for illustration) and if at this moment a
briefly reviews the LY algorithm, and discusses how we search operation is also led to node F trying to locate key
modify the insert operation so that the response times for all value 56 but just to find that the highest key value in node F
operations (i.e. insert, delete, update and read operationshfter split is 50, then the search operation will follow the
are virtually the same. Section 3 begins by posing an cross-linked pointer of F and continue the search in ndde F
optimization problem which we are trying to solve for The update (delete) operation calls the search operation
seeking the best time interval for performing periodic data first to find the node containing the key to be updated
reorganization such that the system response time per(deleted). Then, the node is locked, updated, and unlocked
operation is minimum. It then addresses the performance (in that sequence).
issue by constructing a Markov model for describing the The insert operation of our algorithm is different from its
dynamical behavior of th&"™-tree under our algorithm. counterpart in the LY algorithm. Instead of updating the
Then, the solution for the best time interval between two parent nodes in a bottom-up fashion in case a leaf node is
consecutive data reorganization operations is derived as asplit into two, our algorithm leaves the task of data
function of database environment variables. Section 4 reorganization to a maintenance operation which is
illustrates the proposed technique with an example systeminvoked periodically. As a result, the insert operation is
in a con-current database environment and gives physicalsimilar to an update or delete operation, i.e. it first calls the
interpretations of the result. Finally, Section 5 summarizes search operation to find the node to insert the key; then, it
the paper and outlines some future research areas. locks the leaf node to update the node; then, it unlocks the
node. The same procedure follows even if the leaf node
being inserted is full and therefore must split into two, in
which case the keys are distributed evenly between the node
being split and a newly-allocated node with the cross-linked
The read, update and delete operations in our algorithm for pointers properly updated before the node being split is
the B'™-tree structure as shown in Figure 2 are the same asunlocked. Our modified algorithm eliminates the locking/
those in the LY algorithm [8]. Specifically, the read unlocking overhead of the internal nodes for all operations.
operation searches a key from the top of the tree without In other words, the only locking/unlocking overhead for all
locking any node. In cases a read operation in searching fornon-read operations (i.e. update, delete or insert) is limited
a key is led to a node, sag; by the tree structure but the to locking/unlocking a single node at the leaf level. The
highest key value contained in nodeis smaller than the reason that the internal nodes are not updated for insert
search-key value, then the cross-linked pointer of rode operations in our algorithm is that data reorganization is
followed so that the search can continue from the right performed periodically to not only remove empty and
neighbor of nodea. Eventually, a node with a range underflowed nodes but also update internal nodes pointers
covering the search-key value will be found from which the so that the amortized data reorganization cost per tperia
reader can determine whether the search-key exists or notminim-ized, thus making updating internal nodes for insert
This provision handles the interference problem between operations on-the-fly unnecessary and cost-ineffective.
concurrent read and insert operations as the latter may splita Figures 3 and 4 illustrate the difference between the LY
node into two nodes while the former is trying to find a key and our algorithms in insertions. Figure 3 shows the tree
in the node just being split. For example, if an insert structure after inserting key value 50 into the tree shown in

/Aiy l56l<a

2. APERIODIC MAINTENANCE ALGORITHM
FOR B'"“.TREES

| A T E S 1691\1791\ | I821;1—>l\188]\11501\
S W W
E F - G
B 10 s L1 1 PR B 1501 P T S T T T TS ST
N \
||no43l [m 048| |Il'l050] lklfosz l(l'leos6 5:058

FIGURE 3. Tree structure after inserting 50 based on the LY algorithm.

THE CoMPUTER JOURNAL, VoL. 38, No. 3, 1995

248 I.-R. GHEN

/

AT [[20—+

: s

A 0 sl V10 00 20 2 L0 O . s
R o |
G

E F ‘ F
- [[M]4] | 48] \\ISOI\\I‘ [[50] ”T"lMI52]i [l I T [1 ISGI_T*IMI58I\\I~-

key 50 key 52| [key 56 key 58
mnio nio nio mnio

ke 43| |ke 48]
info info

FIGURE 4. Tree structure after inserting 50 based on our algorithm.

Figure 2 under the LY algorithm, while Figure 4 is for the updated and, consequently, the performance oBtfi&-tree
same insert operation under our algorithm. In Figure 3, deteriorates because each operation has to travel through
parent nodes of node F are updated recursively in a bottom-more leaf nodes in th"™-tree in order to access a key. The
up fashion, i.e. node C is split into nodes C arica@d node performance of th&'™-tree continues to deteriorate until a
A is also updated as a result of node C being split. In this data reorganization operation is performed to bring the data
case, the insert operation must lock nodes F, C and A structure to its strong state again. In the paper, we will use
(although not all at once) under the LY algorithm. In Figure the term ‘maintenance’ interchangeably with the term ‘data
4, no parent nodes of node F are updated under ourreorganization’. A
algorithm and therefore only node F must be locked. The migration of theB'™-tree from a stronger state to a
weaker state can be characterized by the growth of the tree
size. We call the tree size after a periodic maintenance as the
stable tree sizat which theB" -tree is at its strongest state.
We assume that the system alloWgransactions to access Then, we can measure the performance degradation of the
the B™-tree concurrently. Each transaction is an insert B"™-tree by the increase of its tree size dynamically. We
operation with probabilityg. For ease of presentation, we call the difference between the tree size at any time
also assume that each transaction is a delete operation wittfollowing a maintenance operation and the stable tree size as
probability g and a read/update operation with probability the ‘degradation level’ of theB"*-tree. Naturally, the
1-2q. In this formulation, the probability of insert is the higher the degradation, the lower the performance.
same as the probability of delete so that the system remainsEventually, a maintenance operation has to be performed
in the steady state at time infinity. As will be seen later, the to reorganize the tree so that the degradation level is zero
last assumption is not needed in the analysis. Eachagain. With this concept, the modeling point of interest is to
transaction acts independently and accesses a keydetermine the degradation levélat which a maintenance
randomly. When a transaction is completed, another operation should be performed so that the average response
transaction immediately takes its place so the number oftime per operation is mini-mum. Note that in this
transactions in the system is always We assume that the formulation, the time period in which the degradation
database system hag keys which represents the stable level increases from 0 td corresponds to the time interval
database size in the steady state. We distinguish thebetween two successive maintenance operations. Before a
‘database size’ from the ‘tree size’ which is the number of maintenance operation is performed, all active database
nodes (disk pages) used by the tree, covering both theoperations are allowed to complete, but during maintenance
internal and leaf nodes. Our algorithm performs data no new database operations can acces8iffetree.
reorganization periodically and, after a data reorganization The service times of operations are, of course, affected by
operation is performed, all internal nodes are updated andthe degradation level of the tree because as the degradation
all garbage leaf nodes (i.e. nodes that are underflowed orlevel increases each operation will have to traverse more
empty due to delete operations) are collected such that eachnodes at the leaf level to access a key. We model the real
node is two-thirds full. time (not the CPU time) elapsed to complete a search
Conceptually, we say that tR"-tree immediately after ~ operation when the degradation leveljiby an exponen-
a data reorganization is in ittrongstate [10] because the tially distributed random variable with an averageTofj)
performance of th&™-tree is the highest at that point. As time units. Similarly;T,(j) for an update operatiofy(j) for
more operations are serviced following a strong state, the a delete operation; arifi(j) for an insert operation. Then,
B'""k_tree gradually migrates to\@eakstate because more the rates at which search, update, delete, and insert
nodes are being split and more internal nodes are not beingoperations are serviced at degradation Igvate given by

3. PERFORMANCE ASSESSMENT

THE CoMPUTER JOURNAL, VoL. 38, No. 3, 1995

A DecrapABLE B'"K-TREE wiTH PERIODIC DATA REORGANIZATION

249

tm (d)

FIGURE 5. A performance model for periodic data reorganizatiorBdPf-tree.

() =21/Te(), pa() = 1/Tu(Q), pai) = 1/Tq(i), and
ui(i) = 1/T;(j), respectively. These model parameters can

be estimated from measurement data as we will illustrate in

the Section 4.
Now we are interested in knowing how fast the

degradation level is increased so that we may determine

the optimal interval between two successive periodic
maintenance operations. There Are€oncurrent operations
(transactions) in the system in whichN are insert
operations on average. Consequentiu;(j) is the rate

at which insert operations are completed. pg) denote
the probability that an insert operation splits a node at the
leaf node when the degradation levej.idhen, the rate at
which insert operations split nodes, or, equivalently, the rate
at which the degradation level increases, when the
degradation level i, is given byA(j) = No; (j)ps(j)-

Assume that the maintenance time for performing the
data reorganization when the degradation levpidslso an
exponentially distributed random variable with an average
of Tn(j) time units or a rate ofun(j) = 1/Tn(j). The
behavior of theB"™-tree with respect to the increase of the
degradation level can be described by a Markov model

shown in Figure 5 where the number in a circle represents

the degradation level which increases from 0, 1¢=1, tod

at which point a maintenance is invoked to bring the

degradation back to 0 again. The following defines the

notation used in the paper:

d: the optimal degradation level at which a main-
tenance of th&"™-tree should be performed so that
the average response time per operation is
minimum.
the probability of an insert operation; it is also the
probability of a delete operation.
total number of concurrent operations (or transac-
tions) accessing thB"™-tree.

1/T.(j), the servicerate of a read operation when
the degradation level of tH@"™-tree is;.

1/Tu(j), the servicerate of an update operation
when the degradation level of tR"™-tree is;.
1/T4(j), theservicerate of a delete operation when
the degradation level of the"™-tree isj.

1/Ti(j), theservicerate of an insert operation when
the degradation level of th@"™-tree is;.

: 1/Tw(j), the maintenancerate of a maintenance
operation when the degradation level of BEX-
tree isj.
the probability that an insert operation will cause a
node to be split into two when the degradation level
of the B"™-tree isj.
aNi(j)ps(j)—the split rate of leaf-level nodes
when the degradation level of tiRd"™-tree is;.

P(j): the steady state probability that the degradation

level of theB"™-tree is;.

By balancing flow into and out of each stqt® < j < d,
in Figure 5, we can obtaid independent global balance
equations [5]. Solving these equations yields the steady state
probability that the degradation level of tB™¥-tree isj,
i.e.,P(j), as

oo ifo<j<d
P-4 &
d () PO) if j=d
Using > P(j) = 1, we get:
j=0 1
P(0) =)—¢(J)
m(d) ;_J
and therefore
AQ)
P(j) = (JC)H o for 0<j < d. (2)
d * JZA_

Based on the expression féj) and assume that the
probabilities of insert, delete, update and read operations
are, sayg, g, X Zq and1 2 , respectively, we can compute the
throughput of thes 'k treeX as

X = ZP () (AN) + aNpg)

3)
+%2qN (J)+%Nur(n)

By Little’'s Law [7], the average response time per
operation (transaction) is given as

R=NX (4)
Note that the computation of above excludes the case
when the degradation level & because the system is not

doing useful work (i.e. servicing operations) during a
maintenance period.

4. CASE STUDY

As a utility of the performance analysis given in the last
section, we consider a detailed case study below.
Consider aB"™-tree being used as an internal data
structure to handle a rapidly changing database system
for which each key’s information is contained in a disk
page pointed to by a leaf node in tid"¥-tree. Suppose
that they areM = 1000 keys being randomly accessed in

THE COMPUTER JOURNAL,

VoL. 38,

No. 3, 1995

250 I.-R. GHEN

the system and the number of transactions concurrently Ti(j) = time for reading a disk page n,(j)
accessing the database systenNis= 3 which is just an . -)

arbitrary choice. Each transaction independently and +time for writing a disk pagex 1 (5)
continuously performs a delete-key operation with + time for locking a node

probability g, an insert-key operation with probability
of also q (so that the number of keys remains the same i)) .
in the steady state), a read-key operation with probability where we note that unlike reading a disk page, the multiply

of 29 and an update-key operation also with probability unit for writing, locking, or unlocking is one because each

of l—TZZq The B'"™_tree is to be maintained based on our Non-read operation in our algorithm only writes, locks and

. 1 k
periodic algorithm described in Section 2. The questions Unlocks one node (1 disk page) of tA“-tree. We used the

are (i) what would be the optimal maintenance period in S&Me estimate foF,(j) anETd(j)_Si”C? an update or a delete
terms of d and g? (i) what would be the system OPeration accesses tB&™tree in a similar way as an insert

throughput and response time under the optimal OPeration. _ _ o
condition? To answer these questions, we illustrate Three critical points should be mentioned at this time.
below how we obtain the values of (i.e. parameterize) First, unlikepy(j) andTn(j) whose values are not affected by
model parameters. N (the number of concurrent transactiong)j), T;i(j), Ta(j)
Table 1 shows the dynamic data of tBd™-tree as andT,(j) are, by definition, a function dfl so as to include
a function of the degradation level of the tree under the effect of context-switch due to concurrent processing.
the operational environment described above. TheseSpeCiﬁC*al_ly: Ti(j)) =N xTi(j) (and similarly for others)
data are collected by running a single transaction whereT; (j) is the average insertion time when there is only
process accessing th&a"k_tree initially at j = 0. one transaction in the systefiyi(j) can be computed by first
During the data collection period, the degradation measuring the times needed for reading, writing, locking
level of the B -tree was allowed to increase as a and unlocking a disk page on the target machine by a single
result of insert operations that split the leaf nodes of ransaction process without (_:ontext-swnch,* and then
the tree. Copies of the"™-tree file were saved on Utilizing Equation 5. The data in Table 1 fdi(j) and
disk at various degradation level checkpoints, i.e., at 1i () were obtained by following this computational
j=248,...,1024. The data collection period was procedure, i.e. we first measured the times required for
ended when the degradation level had reached a reading, wri'Fing,Iocking gnd unlocking a disk page (the last
specified target degradation level (pt 1024). Since WO operations each involve a message passing) as
each such copy saved reflects ti@i™-tree at a 0.000195, 0000686, 0000066 and MO0066 CPU sec-
particular j value, we measured,(j), T,(j) (which is onds, respectively, by running a measurement program
the same asTy(j) and T,(j) in our algorithm), Tn(j), alone c?n the t*arget ma(*:hme (a_ SUN SPARClO work-
and py(j) statistically by simulating operations to access Station); then,T;(j) and Ti'(j) at differentj values were
the corresponding B"™-tree copy. Specifically, to computed based on Equation 5. The second critical point
obtain T;(j), we simulated a sufficient number of read that should be noted is that sindg(j) = N x T; (J),*)_\(J),
operations with random keys to access tBE™-tree defined agiNpy(j)/Ti(j), can be computed ag(j)/Ti (j) to
copy saved earlier for that particulaj value and account for the context-switch overhead associated with

obtained the average number of read pages per readUnningN concurrent transactions in the system. The third
operation, n,(j), from which the value ofT,(j) is critical point is that all parameters listed in Table 1 can be
computed. Note that an insert operation which causes a€asilyrecomputedFor example, wheg or N changes, we
leaf node to be split actually writes two nodes. This Can recomputeA(j)’s easily without having to collect

special case is considered whafj), which deals with another set of data again. The last point facilitates ‘what
such insert operations, is computed. if’ types of performance assessment on the proje&&Y-

-+ time for unlocking a node.

TABLE 1. B"™tree data as a function of degradation lejel

j T: () T4 () Tali) ps(i) AG) at g =04
0 0.002395 0.003213 0.434874 0.439000 45.041810
100 0.002644 0.003462 0.951877 0.192500 18.561723
200 0.002875 0.003693 1.542469 0.136000 12.423185
300 0.003093 0.003911 2.166713 0.109281 9.508783
400 0.003315 0.004133 2.825810 0.080375 6.670834
500 0.003538 0.004356 3.484906 0.051469 4.083275
600 0.003769 0.004587 4.332100 0.048172 3.653965
700 0.004002 0.004820 5.204944 0.048367 3.513726
800 0.004235 0.005053 6.077787 0.048563 3.384860
900 0.004467 0.005285 6.950631 0.048758 3.266037
1000 0.004700 0.005518 7.823475 0.048953 3.156128

THE CoMPUTER JOURNAL, VoL. 38, No. 3, 1995

A DecrapABLE B'"K-TREE wiTH PERIODIC DATA REORGANIZATION 251

X (operations/second) R (seconds)
X
0O |)
300 o |
o XX 2 0.025 - Lok
R 0.020 -
200 o o0 L e
R 0015 - 0 4=05e o
5 R * =04 -
O# * q=04 4=03
R x q=03 Y o,
0o L R e + ¢=02 .
g R + ¢=02 0010 o g=01
- : o ¢=0.1 (]IV__ :
o W=]
yoe 0.005 2 4 85 16 35 61 138 26 soTh
1 1] 1 1 1 1 1 L 1 N] 1 2 4 8 16 32 64 128 256 512 19;

1 2 4 8 16 32 64 128 256 512 1%4
FIGURE 7. Response tim® as a function ofi andaq.
FIGURE 6. ThroughputX as a function ofl andg.

) o ~_invocations of the maintenance operation is actually
tree data structures with periodic data reorganization jifferent whenq is different. The system will take a
technique. . o _ longer time to reactd = 128 at a smallery value and
Table 1 shows thap(j) decreases whilef;(j), T;(j) conversely a shorter time at a highervalue because
and Tp(j) all increase as the degradation level getermines how fast leaf nodes are split due to insert
increases. This is expected becausg ascreases, more gperations which occur with probabilitg. Therefore,
and more leaf nodgs are being split which are I|_kely to Figures 6 and 7 actually show that for differepwalues,
be less than two-thirds full and more and more internal {he optimal periodic maintenance intervals are different,

nodes are not updated in the tree. As a result, the splitiy aqgition to the fact that the system throughput and
probability (s(j)) becomes smaller and smaller and the (egponse time are also different.

access time per operatiof, (j) or T;(j)) becomes higher
and higher ag increases.

After the values of model parameters are obtained this
way, the system throughpot and the average response In this paper, we have introduced the concept of periodic
time per operatiorR at differentd values (at which a maintenance for improving the performanceBf*-trees
periodic maintenance operation is performed) are by developing a new algorithm that modifies the insert
computed based on Equations 2, 3 and 4. The resultsoperation of the classic LY algorithm so that all
are summarized in Figure 6 which gives the system operations take about the same time to complete without
throughput (number of operations completed per second)having to maintain the internal nodes of tB&X-tree on-
as a function ofd and g, and in Figure 7, which gives the-fly, thus leaving the maintenance work to a
the response time per operation, also as a functiod of maintenance process which is invoked only periodically
andg. These performance assessment results indicate thatt optimizing intervals such that the amortized main-
for the system described in the case study the tenance overhead per operation is minimized. A perfor-
maintenance operation should be invoked once whenmance analysis was given and exemplified with a practical
the degradation level of the system has accumulated tocase study to determine the best maintenance interval
128 or 256 (since the last maintenance operation hasbetween two consecutive invocations of the maintenance
performed) so that the system throughput is optimized, operation for optimizing the system performance. Such

5. SUMMARY

almost forall q values. analysis technique is believed generally applicable to
There are two interpretations of the results. First, the other database environments.
response time per operation increases cpsncreases Some possible future research areas include (i) compar-

because at a highey value, non-read operations occur ing the performance oB'™-trees with periodic main-
more frequently than read operations but take more time tenance and with concurrent maintenance and identifying
to complete. Second, although the result shows that theconditions under which periodic maintenance is better than
maintenance operation should be performed when theconcurrent maintenance and vice versa; (ii) performing a
degradation level is accumulated to 128 or 256 to similar analysis but considering other performance metrics
optimize the system performander almost all g values such as space utilization or a mixed performance metric
the elapsed time interval between two consecutive considering both space and time.

THE CoMPUTER JOURNAL, VoL. 38, No. 3, 1995

252

I.-R. GHEN

REFERENCES

(1]

(2]

(3]

(4]
(5]
(6]

Bastani, F.B., Chen, |.R. and Hilal, W. (1991) A model for
the stability analysis of maintenance strategies for linear list.
Comp. J, 34, 80-87.

Chen, I.LR. and Banawan, S.A. (1992) A reduced Markov
model for the performance analysis of data structure servers
with periodic maintenance&Comp. J, 35, A363—-A368.

Chen, I.R. and Banawan,S.A. (1993) Modeling and analysis
of concurrent maintenance policies for data structures using
pointers.IEEE Trans. Soft. Eng19, 902-911.

Comer, D. (1979) The ubiquitous B-tre@omp. Surveyq,1,
121-137.

Kleinrock, L. (1975)Queueing Systems, Vol. 1: Theaighn
Wiley, Chichester, pp. 155-156.

Kung, H.T. and Lehman, P.L. (1980) Concurrent manipula-
tion of binary search tres&CM Trans. Database Systerbs,
354-382.

(7]

(8]

(9]
[10]

[11]

Lazowska, E.D., Zahorjan, J., Graham, G.S. and Sevcik,
K.C. (1984) Quantitative System Performance: Computer
System Analysis Using Queueing Network Modeientice
Hall, NJ.

Lehman, P.L. and Yao, S.B. (1981) Efficient locking for
concurrent operations on B-treeBCM Trans. Database
Systemss, 650—670.

Manolopoulos, Y. (1994) B-trees with lazy parent split.
Information Sci. 79, 73—-88.

Moitra, A., lyengar, S.S., Bastani, F.B. and Yen, I.L. (1988)
Multilevel data structures: models and performan&EE
Trans. Soft. Eng.]4, 858-867.

Sagiv, Y. (1986) Concurrent operations on B*-trees with
overtaking.J. Comp. Sys. S¢i33, 275-296.

THE COMPUTER JOURNAL,

VoL. 38,

No. 3, 1995

