
A DegradableBlink-Tree with Periodic Data
Reorganization

I N G-RA Y CH E N*

Institute of Information Engineering, National Cheng Kung University, No. 1,
University Road, Tainan, Taiwan

Email: irchen@ws1.iie.ncku.edu.tw

This paper develops a periodic data reorganization algorithm for theBlink -tree data structure in
concurrent environments, and identifies conditions under which the data reorganization should be
performed in order to minimize the response time per access operation.

Received October 3, 1994; revised January 17, 1995

1. INTRODUCTION

The classicBlink-tree data structure due to Lehman and Yao
[8] allows a higher level of concurrency than traditionalB�-
trees [4] (calledB*-trees by Lehman and Yao) for reading,
updating, deletion and insertion concurrent operations by
introducing cross-linked pointers for nodes at the same
level. This unique design, henceforth referred to as the LY
algorithm, allows a read operation, which is fundamental to
other operations, to be processed without having to lock any
tree nodes as it searches from top-down for a leaf node that
contains the key to be searched, thereby increasing the
degree of concurrency over traditionalB�-tree algorithms
which require read locks for read operations. The LY
algorithm resolves the interference between a read and an
insert operation by making use of the cross-linked
pointers. That is, if a reader cannot find the key in node
a when it is guided by the tree structure, it can follow the
cross-linked pointer toa’s right neighbor nodeb to
continue searching for the key, knowing that due to
concurrencya may be split into two nodes,a and b, by a
concurrent insert operation.

The LY algorithm is efficient because a reader never
locks any node; an update or a delete operation only locks
one node (i.e. the leaf node that contains the key to be
updated or deleted); and an insert operation locks at most
three nodes at a time. Consequently, the degree of
interference among concurrent operations is minimum.
The LY algorithm is also ‘clean’ in the sense that the
deadlock-free property can be proved easily by showing that
concurrent insert operations—which are the only operations
that may lock more than one node—do not cause deadlocks.
A less straightforward proof was used to show that the
functional requirements of all operations are satisfied [8].

Figure 1 shows a possible node structure of ak-degree
Blink-tree in which each node has 2k keys, 2k� 1 child
pointers, a high key indicating the upper bound on the key
values that may be stored in the subtree rooted with the
node, and a cross-linked pointer pointing to the next

node at the same level (or pointing to null if the node is the
rightmost node on a level). Figure 2 shows an instance of the

Blink-tree withk � 2. Note that nonleaf nodes only serve as
index nodes. The child pointers of a leaf node directly point
to records associated with the key values stored in the leaf
node.

A major drawback of the LY algorithm is that the solution
for the delete operation is the same as that of the update
operation, i.e. just updating the leaf node that contains the
key to be deleted without regard to whether the leaf node
will become underflowed or empty after the key is removed
from the node. For example, in Figure 2 after deleting key
value 38 from the tree, the node that originally contains 38,
i.e. node E, becomes underflowed (i.e. less than half-full)
and after further deleting key value 41 from the tree, it
becomes empty. This simple solution for the deletion
operation may needlessly waste space at the leaf node level.
Furthermore, it is possible that the height of the tree may
become bigger than necessary because at the nonleaf levels
only the insert operation can split internal nodes, while the
delete operation never merges internal nodes. This
disadvantage can be described based on the concept of
data reorganization. The LY algorithm can be viewed as an
algorithm that performs ‘on-the-fly’ data reorganization for
update and insert operations only, but not for delete
operations which can introduce garbage nodes into the
data structure. Consequently, the performance can degrade
over time since garbage nodes are left unmaintained.

Two possible approaches exist for overcoming this
drawback. One approach is to devise on-the-fly algorithms
for the delete operation so that it can lock as few nodes as
possible and merge underflowed or remove empty nodes
when necessary. Unfortunately, such algorithms have not
been reported in the literature for theBlink-tree data
structure, possibly due to complexity reasons. Other on-
the-fly algorithms do exist in the literature for other variants
of B-trees (e.g. a new structure ofB-trees with lazy parent
split [9]). However, for these latter class of algorithms, read
locks have to be used for read operations in order to resolve
read-write access conflicts since cross-linked pointers are
not used in the structure as inBlink-trees. Therefore, we
expect that the degree of concurrency achievable by this
latter group of algorithms is lower than that achievable by

THE COM P UT E R JO URN AL, V OL. 38, NO. 3, 1995



the LY algorithm which requires no read locks for read
operations.

Another approach is to introduce one or more concurrent
maintenance processes [3, 6, 10, 11] to reorganize the tree
nodes at both the parent and leaf levels and clean up garbage
nodes created by delete operations at the leaf level. Sagiv [11]
has introduced such maintenance processes in his algorithm.
He modified the LY algorithm such that the insert, delete, and
maintenance operations (or processes) only need to lock 1, 1,
and 3 nodes, respectively, while the read operation still does
not need to lock any node at all. However, his algorithm
requires the use of time-stamps to keep track of when deleted
nodes can be garbage-collected, and also the use of a special
mechanism to restart a reader when the reader reaches a
wrong (garbage) node. As a result, the arguments used in the
proof for deadlock-free and functional properties in his
algorithm are more complicated and difficult to follow.
Furthermore, without a performance analysis, it is not clear
how much performance improvement can be obtained.

This paper investigatesperiodicreorganization [1, 2] as a
design alternative to overcome the drawback of the LY
algorithm on concurrentBlink-trees. Previously, we have
studied the performance and stability behavior of degrad-

able data structure queueing servers that serve operations
sequentially in a client-server computational model. Here,
we consider the use of periodic maintenance in a shared
data-space model. We make a sharedBlink-tree degradable
by (i) performing data reorganization only periodically
instead of concurrently; (ii) modifying the insert operation
in the LY algorithm so that during the maintenance-free
time intervals, the response time of the insert operation is
also minimum. The benefits of periodic data reorganization
are: (i) it has a very simple and clean solution when
compared with a concurrent maintenance solution or the
classic LY algorithm so that the design is easy to follow and
the proof of the deadlock-free and functional properties is
trivial; (ii) every non-read operation needs to lock only one
node so that the degree of concurrency is maximum during
the maintenance-free periods; (iii) the tree struc-ture is
reorganized periodically with all the garbage nodes
removed so that the problem of indefinite growth of the
tree space is avoided; (iv) the behavior of the tree can be
described by a model which allows the best time interval
between two successive periodic data reorganization
operations to be determined as a function of database
environment variables (e.g. the number of con-current

THE COM P UT E R JO URN AL, V OL. 38, NO. 3, 1995

246 I. -R. CH E N

FIGURE 1. Blink tree node structure.

FIGURE 2. An exampleBlink-tree withk � 2.



operations and probability of insert, etc.) such that the
performance of the resulting system can be ascertained.

The rest of the paper is organized as follows. Section 2
briefly reviews the LY algorithm, and discusses how we
modify the insert operation so that the response times for all
operations (i.e. insert, delete, update and read operations)
are virtually the same. Section 3 begins by posing an
optimization problem which we are trying to solve for
seeking the best time interval for performing periodic data
reorganization such that the system response time per
operation is minimum. It then addresses the performance
issue by constructing a Markov model for describing the
dynamical behavior of theBlink-tree under our algorithm.
Then, the solution for the best time interval between two
consecutive data reorganization operations is derived as a
function of database environment variables. Section 4
illustrates the proposed technique with an example system
in a con-current database environment and gives physical
interpretations of the result. Finally, Section 5 summarizes
the paper and outlines some future research areas.

2. A PERIODIC MAINTENANCE ALGORITHM
FOR Bl i n k -TREES

The read, update and delete operations in our algorithm for
theBlink-tree structure as shown in Figure 2 are the same as
those in the LY algorithm [8]. Specifically, the read
operation searches a key from the top of the tree without
locking any node. In cases a read operation in searching for
a key is led to a node, saya, by the tree structure but the
highest key value contained in nodea is smaller than the
search-key value, then the cross-linked pointer of nodea is
followed so that the search can continue from the right
neighbor of nodea. Eventually, a node with a range
covering the search-key value will be found from which the
reader can determine whether the search-key exists or not.
This provision handles the interference problem between
concurrent read and insert operations as the latter may split a
node into two nodes while the former is trying to find a key
in the node just being split. For example, if an insert

operation adds a key value of 50 into the tree shown in
Figure 2, thus causing node F to be split into nodes F and F0

(see Figure 3 or 4 for illustration) and if at this moment a
search operation is also led to node F trying to locate key
value 56 but just to find that the highest key value in node F
after split is 50, then the search operation will follow the
cross-linked pointer of F and continue the search in node F0.

The update (delete) operation calls the search operation
first to find the node containing the key to be updated
(deleted). Then, the node is locked, updated, and unlocked
(in that sequence).

The insert operation of our algorithm is different from its
counterpart in the LY algorithm. Instead of updating the
parent nodes in a bottom-up fashion in case a leaf node is
split into two, our algorithm leaves the task of data
reorganization to a maintenance operation which is
invoked periodically. As a result, the insert operation is
similar to an update or delete operation, i.e. it first calls the
search operation to find the node to insert the key; then, it
locks the leaf node to update the node; then, it unlocks the
node. The same procedure follows even if the leaf node
being inserted is full and therefore must split into two, in
which case the keys are distributed evenly between the node
being split and a newly-allocated node with the cross-linked
pointers properly updated before the node being split is
unlocked. Our modified algorithm eliminates the locking/
unlocking overhead of the internal nodes for all operations.
In other words, the only locking/unlocking overhead for all
non-read operations (i.e. update, delete or insert) is limited
to locking/unlocking a single node at the leaf level. The
reason that the internal nodes are not updated for insert
operations in our algorithm is that data reorganization is
performed periodically to not only remove empty and
underflowed nodes but also update internal nodes pointers
so that the amortized data reorganization cost per operation is
minim-ized, thus making updating internal nodes for insert
operations on-the-fly unnecessary and cost-ineffective.

Figures 3 and 4 illustrate the difference between the LY
and our algorithms in insertions. Figure 3 shows the tree
structure after inserting key value 50 into the tree shown in

247A D E GR AD ABL E Bl i n k-TRE E W I T H PE RI OD IC DAT A RE OR GANI Z AT I ON

THE COM P UT E R JO URN AL, V OL. 38, NO. 3, 1995

FIGURE 3. Tree structure after inserting 50 based on the LY algorithm.



Figure 2 under the LY algorithm, while Figure 4 is for the
same insert operation under our algorithm. In Figure 3,
parent nodes of node F are updated recursively in a bottom-
up fashion, i.e. node C is split into nodes C and C0 and node
A is also updated as a result of node C being split. In this
case, the insert operation must lock nodes F, C and A
(although not all at once) under the LY algorithm. In Figure
4, no parent nodes of node F are updated under our
algorithm and therefore only node F must be locked.

3. PERFORMANCE ASSESSMENT

We assume that the system allowsN transactions to access
the Blink-tree concurrently. Each transaction is an insert
operation with probabilityq. For ease of presentation, we
also assume that each transaction is a delete operation with
probability q and a read/update operation with probability
1{2q. In this formulation, the probability of insert is the
same as the probability of delete so that the system remains
in the steady state at time infinity. As will be seen later, the
last assumption is not needed in the analysis. Each
transaction acts independently and accesses a key
randomly. When a transaction is completed, another
transaction immediately takes its place so the number of
transactions in the system is alwaysN. We assume that the
database system hasM keys which represents the stable
database size in the steady state. We distinguish the
‘database size’ from the ‘tree size’ which is the number of
nodes (disk pages) used by the tree, covering both the
internal and leaf nodes. Our algorithm performs data
reorganization periodically and, after a data reorganization
operation is performed, all internal nodes are updated and
all garbage leaf nodes (i.e. nodes that are underflowed or
empty due to delete operations) are collected such that each
node is two-thirds full.

Conceptually, we say that theBlink-tree immediately after
a data reorganization is in itsstrongstate [10] because the
performance of theBlink-tree is the highest at that point. As
more operations are serviced following a strong state, the
Blink-tree gradually migrates to aweakstate because more
nodes are being split and more internal nodes are not being

updated and, consequently, the performance of theBlink-tree
deteriorates because each operation has to travel through
more leaf nodes in theBlink-tree in order to access a key. The
performance of theBlink-tree continues to deteriorate until a
data reorganization operation is performed to bring the data
structure to its strong state again. In the paper, we will use
the term ‘maintenance’ interchangeably with the term ‘data
reorganization’.

The migration of theBlink-tree from a stronger state to a
weaker state can be characterized by the growth of the tree
size. We call the tree size after a periodic maintenance as the
stable tree sizeat which theBlink-tree is at its strongest state.
Then, we can measure the performance degradation of the
Blink-tree by the increase of its tree size dynamically. We
call the difference between the tree size at any time
following a maintenance operation and the stable tree size as
the ‘degradation level’ of theBlink-tree. Naturally, the
higher the degradation, the lower the performance.
Eventually, a maintenance operation has to be performed
to reorganize the tree so that the degradation level is zero
again. With this concept, the modeling point of interest is to
determine the degradation leveld at which a maintenance
operation should be performed so that the average response
time per operation is mini-mum. Note that in this
formulation, the time period in which the degradation
level increases from 0 tod corresponds to the time interval
between two successive maintenance operations. Before a
maintenance operation is performed, all active database
operations are allowed to complete, but during maintenance
no new database operations can access theBlink-tree.

The service times of operations are, of course, affected by
the degradation level of the tree because as the degradation
level increases each operation will have to traverse more
nodes at the leaf level to access a key. We model the real
time (not the CPU time) elapsed to complete a search
operation when the degradation level isj by an exponen-
tially distributed random variable with an average ofTr�j�
time units. Similarly,Tu�j� for an update operation;Td�j� for
a delete operation; andTi�j� for an insert operation. Then,
the rates at which search, update, delete, and insert
operations are serviced at degradation levelj are given by

THE COM P UT E R JO URN AL, V OL. 38, NO. 3, 1995

248 I. -R. CH E N

FIGURE 4. Tree structure after inserting 50 based on our algorithm.



�r�j� � 1=Tr�j�, �u�j� � 1=Tu�j�, �d�j� � 1=Td�j�, and
�i�j� � 1=Ti�j�, respectively. These model parameters can
be estimated from measurement data as we will illustrate in
the Section 4.

Now we are interested in knowing how fast the
degradation level is increased so that we may determine
the optimal interval between two successive periodic
maintenance operations. There areN concurrent operations
(transactions) in the system in whichqN are insert
operations on average. Consequently,qN�i�j� is the rate
at which insert operations are completed. Letps�j� denote
the probability that an insert operation splits a node at the
leaf node when the degradation level isj. Then, the rate at
which insert operations split nodes, or, equivalently, the rate
at which the degradation level increases, when the
degradation level isj, is given by��j� � Nq�i�j�ps�j�.

Assume that the maintenance time for performing the
data reorganization when the degradation level isj is also an
exponentially distributed random variable with an average
of Tm�j� time units or a rate of�m�j� � 1=Tm�j�. The
behavior of theBlink-tree with respect to the increase of the
degradation level can be described by a Markov model
shown in Figure 5 where the number in a circle represents
the degradation level which increases from 0, 1, ...,d–1, tod
at which point a maintenance is invoked to bring the
degradation back to 0 again. The following defines the
notation used in the paper:

d: the optimal degradation level at which a main-
tenance of theBlink-tree should be performed so that
the average response time per operation is
minimum.

q: the probability of an insert operation; it is also the
probability of a delete operation.

N: total number of concurrent operations (or transac-
tions) accessing theBlink-tree.

�r�j�: 1=Tr�j�, the servicerate of a read operation when
the degradation level of theBlink-tree isj.

�u�j�: 1=Tu�j�, the service rate of an update operation
when the degradation level of theBlink-tree isj.

�d�j�: 1=Td�j�, theservicerate of a delete operation when
the degradation level of theBlink-tree isj.

�i�j�: 1=Ti�j�, theservicerate of an insert operation when
the degradation level of theBlink-tree isj.

�m� j�: 1=Tm�j�, the maintenancerate of a maintenance
operation when the degradation level of theBlink-
tree isj.

ps�j�: the probability that an insert operation will cause a
node to be split into two when the degradation level
of the Blink-tree isj.

��j�: qN�i�j�ps�j�—the split rate of leaf-level nodes
when the degradation level of theBlink-tree isj.

P�j�: the steady state probability that the degradation
level of theBlink-tree isj.

By balancing flow into and out of each statej, 04 j4d,
in Figure 5, we can obtaind independent global balance
equations [5]. Solving these equations yields the steady state
probability that the degradation level of theBlink-tree is j,
i.e., P�j�, as

P�j� �

��0�
��j�

P�0� if 04 j < d

��0�
�m�d�

P�0� if j � d

8

>
>
<

>
>
:

�1�

Using
X

d

j�0

P�j� � 1, we get:

P�0� �
1

��0�
�m�d�

�

X
d{1

j�0

��0�
��j�

and therefore

P�j� �

��0�
��j�

��0�
�m�d�

�

X
d{1

j�0

��0�
��j�

for 04 j < d: �2�

Based on the expression forP�j� and assume that the
probabilities of insert, delete, update and read operations
are, say,q, q, 1{2q

2 and1{2q
2 , respectively, we can compute the

throughput of theBlink-tree,X , as

X �

X
dÿ1

j�0

P�j�
�

qN�i�j� � qN�d�j�

�

1{2q
2

N�u�j� �
1{2q

2
N�r�j�

�

�3�

By Little’s Law [7], the average response time per
operation (transaction) is given as

R � NX �4�

Note that the computation ofX above excludes the case
when the degradation level isd because the system is not
doing useful work (i.e. servicing operations) during a
maintenance period.

4. CASE STUDY

As a utility of the performance analysis given in the last
section, we consider a detailed case study below.
Consider a Blink-tree being used as an internal data
structure to handle a rapidly changing database system
for which each key’s information is contained in a disk
page pointed to by a leaf node in theBlink-tree. Suppose
that they areM � 1000 keys being randomly accessed in

249A D E GR AD ABL E Bl i n k-TRE E W I T H PE RI OD IC DAT A RE OR GANI Z AT I ON

THE COM P UT E R JO URN AL, V OL. 38, NO. 3, 1995

FIGURE 5. A performance model for periodic data reorganization onBlink-tree.



the system and the number of transactions concurrently
accessing the database system isN � 3 which is just an
arbitrary choice. Each transaction independently and
continuously performs a delete-key operation with
probability q, an insert-key operation with probability
of also q (so that the number of keys remains the same
in the steady state), a read-key operation with probability
of 1{2q

2 and an update-key operation also with probability
of 1{2q

2 . The Blink-tree is to be maintained based on our
periodic algorithm described in Section 2. The questions
are (i) what would be the optimal maintenance period in
terms of d and q? (ii) what would be the system
throughput and response time under the optimal
condition? To answer these questions, we illustrate
below how we obtain the values of (i.e. parameterize)
model parameters.

Table 1 shows the dynamic data of theBlink-tree as
a function of the degradation level of the tree under
the operational environment described above. These
data are collected by running a single transaction
process accessing theBlink-tree initially at j � 0.
During the data collection period, the degradation
level of the Blink-tree was allowed to increase as a
result of insert operations that split the leaf nodes of
the tree. Copies of theBlink-tree file were saved on
disk at various degradation level checkpoints, i.e., at
j � 2; 4; 8; . . . ; 1024. The data collection period was
ended when the degradation levelj had reached a
specified target degradation level (atj � 1024). Since
each such copy saved reflects theBlink-tree at a
particular j value, we measuredTr�j�, Ti�j� (which is
the same asTd�j� and Tu�j� in our algorithm), Tm�j�,
and ps�j� statistically by simulating operations to access
the corresponding Blink-tree copy. Specifically, to
obtain Ti�j�, we simulated a sufficient number of read
operations with random keys to access theBlink-tree
copy saved earlier for that particularj value and
obtained the average number of read pages per read
operation, nr�j�, from which the value of Ti�j� is
computed. Note that an insert operation which causes a
leaf node to be split actually writes two nodes. This
special case is considered when��j�, which deals with
such insert operations, is computed.

Ti�j� � time for reading a disk page� nr�j�

� time for writing a disk page� 1

� time for locking a node

� time for unlocking a node.

�5�

where we note that unlike reading a disk page, the multiply
unit for writing, locking, or unlocking is one because each
non-read operation in our algorithm only writes, locks and
unlocks one node (1 disk page) of theBlink-tree. We used the
same estimate forTu�j� andTd�j� since an update or a delete
operation accesses theBlink-tree in a similar way as an insert
operation.

Three critical points should be mentioned at this time.
First, unlikeps�j� andTm�j�whose values are not affected by
N (the number of concurrent transactions),Tr�j�, Ti�j�, Td�j�
andTu�j� are, by definition, a function ofN so as to include
the effect of context-switch due to concurrent processing.
Specifically, Ti�j� � N � T�

i �j� (and similarly for others)
whereT�

i �j� is the average insertion time when there is only
one transaction in the system;T�

i �j� can be computed by first
measuring the times needed for reading, writing, locking
and unlocking a disk page on the target machine by a single
transaction process without context-switch, and then
utilizing Equation 5. The data in Table 1 forT�

r �j� and
T�

i �j� were obtained by following this computational
procedure, i.e. we first measured the times required for
reading, writing, locking and unlocking a disk page (the last
two operations each involve a message passing) as
0:000195, 0:000686, 0:000066 and 0:000066 CPU sec-
onds, respectively, by running a measurement program
alone on the target machine (a SUN SPARC10 work-
station); then,T�

r �j� and T�

i �j� at different j values were
computed based on Equation 5. The second critical point
that should be noted is that sinceTi�j� � N � T�

i �j�, ��j�,
defined asqNps�j�=Ti�j�, can be computed asqps�j�=T�

i �j� to
account for the context-switch overhead associated with
runningN concurrent transactions in the system. The third
critical point is that all parameters listed in Table 1 can be
easilyrecomputed. For example, whenq or N changes, we
can recompute��j�0s easily without having to collect
another set of data again. The last point facilitates ‘what
if’ types of performance assessment on the projectedBlink-

THE COM P UT E R JO URN AL, V OL. 38, NO. 3, 1995

250 I. -R. CH E N

TABLE 1. Blink-tree data as a function of degradation levelj.

j T�

r �j� T�

i �j� T�

m�j� ps�j� ��j� at q� 0:4

0 0.002395 0.003213 0.434874 0.439000 45.041810
100 0.002644 0.003462 0.951877 0.192500 18.561723
200 0.002875 0.003693 1.542469 0.136000 12.423185
300 0.003093 0.003911 2.166713 0.109281 9.508783
400 0.003315 0.004133 2.825810 0.080375 6.670834
500 0.003538 0.004356 3.484906 0.051469 4.083275
600 0.003769 0.004587 4.332100 0.048172 3.653965
700 0.004002 0.004820 5.204944 0.048367 3.513726
800 0.004235 0.005053 6.077787 0.048563 3.384860
900 0.004467 0.005285 6.950631 0.048758 3.266037

1000 0.004700 0.005518 7.823475 0.048953 3.156128



tree data structures with periodic data reorganization
technique.

Table 1 shows thatps�j� decreases whileTi�j�, Tr�j�
and Tm�j� all increase as the degradation levelj
increases. This is expected because asj increases, more
and more leaf nodes are being split which are likely to
be less than two-thirds full and more and more internal
nodes are not updated in the tree. As a result, the split
probability (ps�j�� becomes smaller and smaller and the
access time per operation (Tr�j� or Ti�j�) becomes higher
and higher asj increases.

After the values of model parameters are obtained this
way, the system throughputX and the average response
time per operationR at different d values (at which a
periodic maintenance operation is performed) are
computed based on Equations 2, 3 and 4. The results
are summarized in Figure 6 which gives the system
throughput (number of operations completed per second)
as a function ofd and q, and in Figure 7, which gives
the response time per operation, also as a function ofd
and q. These performance assessment results indicate that
for the system described in the case study the
maintenance operation should be invoked once when
the degradation level of the system has accumulated to
128 or 256 (since the last maintenance operation has
performed) so that the system throughput is optimized,
almost for all q values.

There are two interpretations of the results. First, the
response time per operation increases asq increases
because at a higherq value, non-read operations occur
more frequently than read operations but take more time
to complete. Second, although the result shows that the
maintenance operation should be performed when the
degradation level is accumulated to 128 or 256 to
optimize the system performancefor almost all q values,
the elapsed time interval between two consecutive

invocations of the maintenance operation is actually
different when q is different. The system will take a
longer time to reachd � 128 at a smallerq value and
conversely a shorter time at a higherq value becauseq
determines how fast leaf nodes are split due to insert
operations which occur with probabilityq. Therefore,
Figures 6 and 7 actually show that for differentq values,
the optimal periodic maintenance intervals are different,
in addition to the fact that the system throughput and
response time are also different.

5. SUMMARY

In this paper, we have introduced the concept of periodic
maintenance for improving the performance ofBlink-trees
by developing a new algorithm that modifies the insert
operation of the classic LY algorithm so that all
operations take about the same time to complete without
having to maintain the internal nodes of theBlink-tree on-
the-fly, thus leaving the maintenance work to a
maintenance process which is invoked only periodically
at optimizing intervals such that the amortized main-
tenance overhead per operation is minimized. A perfor-
mance analysis was given and exemplified with a practical
case study to determine the best maintenance interval
between two consecutive invocations of the maintenance
operation for optimizing the system performance. Such
analysis technique is believed generally applicable to
other database environments.

Some possible future research areas include (i) compar-
ing the performance ofBlink-trees with periodic main-
tenance and with concurrent maintenance and identifying
conditions under which periodic maintenance is better than
concurrent maintenance and vice versa; (ii) performing a
similar analysis but considering other performance metrics
such as space utilization or a mixed performance metric
considering both space and time.

251A D E GR AD ABL E Bl i n k-TRE E W I T H PE RI OD IC DAT A RE OR GANI Z AT I ON

THE COM P UT E R JO URN AL, V OL. 38, NO. 3, 1995

FIGURE 6. ThroughputX as a function ofd andq.
FIGURE 7. Response timeR as a function ofd andq.



REFERENCES

[1] Bastani, F.B., Chen, I.R. and Hilal, W. (1991) A model for
the stability analysis of maintenance strategies for linear list.
Comp. J., 34, 80–87.

[2] Chen, I.R. and Banawan, S.A. (1992) A reduced Markov
model for the performance analysis of data structure servers
with periodic maintenance.Comp. J., 35, A363–A368.

[3] Chen, I.R. and Banawan,S.A. (1993) Modeling and analysis
of concurrent maintenance policies for data structures using
pointers.IEEE Trans. Soft. Eng.,19, 902–911.

[4] Comer, D. (1979) The ubiquitous B-tree.Comp. Surveys,11,
121–137.

[5] Kleinrock, L. (1975)Queueing Systems, Vol. 1: Theory, John
Wiley, Chichester, pp. 155–156.

[6] Kung, H.T. and Lehman, P.L. (1980) Concurrent manipula-
tion of binary search tress.ACM Trans. Database Systems,5,
354–382.

[7] Lazowska, E.D., Zahorjan, J., Graham, G.S. and Sevcik,
K.C. (1984) Quantitative System Performance: Computer
System Analysis Using Queueing Network Models.Prentice
Hall, NJ.

[8] Lehman, P.L. and Yao, S.B. (1981) Efficient locking for
concurrent operations on B-trees.ACM Trans. Database
Systems,6, 650–670.

[9] Manolopoulos, Y. (1994) B-trees with lazy parent split.
Information Sci., 79, 73–88.

[10] Moitra, A., Iyengar, S.S., Bastani, F.B. and Yen, I.L. (1988)
Multilevel data structures: models and performance.IEEE
Trans. Soft. Eng.,14, 858–867.

[11] Sagiv, Y. (1986) Concurrent operations on B*-trees with
overtaking.J. Comp. Sys. Sci., 33, 275–296.

THE COM P UT E R JO URN AL, V OL. 38, NO. 3, 1995

252 I. -R. CH E N


