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We present and analyze a cost-based admission control algorithm for handling mixed workloads in
modern multimedia systems such as a digital library multimedia system that must provide access
services to heterogeneous objects stored in the library. The cost-based scheme considered in the
paper is based on the concept of ‘rewards’ and ‘penalties’ associated with requests of various media
object types. Instead of admitting object requests until resources are exhausted as a condition for
admission control, resources are reserved to requests of different media types dynamically based
on the cost-based scheme so that the system is capable of maximizing the total reward received by
the system in response to workload changes in the environment. We analyze the maximum queue
sizes for admitting discrete media requests to meet the imposed response-time constraints and for
improving the total reward received by the system by exploiting leftover resources from servicing
continuous media requests. A solution for the total reward obtainable is derived and validated via

simulation.
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1. INTRODUCTION

With the proliferation of Web technologies, digital library
multimedia objects are constantly being accessed by a
huge population online everyday. A digital library
typically consists of mixed-workload multimedia object
types, including video, audio, images and text (html files).
It is desirable to allow accesses to all these mixed object
types with certain performance guarantees. Video and
audio objects are different from image and text in that
they are continuous media, rather than discrete media.
Technologies for handling continuous media services have
been studied quite intensively in the past 10 years and
streaming video/audio broadband services reportedly will
become the next major frontier for online multimedia [1].

Less attention has been paid to how to service
mixed workload objects effectively for multimedia servers
designed to provide online digital library multimedia
services [2, 3, 4, 5]. The basic technical challenge
is how to provide performance guarantees to image/text
types of requests while at the same time satisfying the
real-time requirement of video/audio types of requests.
Since continuous media are resource demanding with
different data rates at different times due to compression,
techniques have been proposed to take advantage of the
‘leftover’ time after servicing video/audio requests to service

image/text requests. This effort includes the design and
evaluation of several disk scheduling algorithms to squeeze
in discrete data requests amid servicing continuous data
requests such that the response time for discrete data
requests is minimized without adversely affecting the quality
of service (QoS) requirement of video/audio requests [2, 3].
These algorithms are designed based on the assumption
that video/audio and image/text requests share the same set
of system resources with video/audio streaming services
always taking a higher priority over image/text data.
However, in Internet Web applications while continuous
video/audio streaming services are appealing, image/text
services account for more than 70% of the data bytes
accessed on the Web [6]. It is thus not justified to always give
resource-demanding video/audio object requests a higher
priority over image/text requests.

To address this issue, Shenoy and Vin [4] recently
proposed a two-level disk scheduling framework. At the
high level (level 1), a class-independent scheduler is used
to govern the allocation of disk bandwidth to various
application classes. At the low level (level 2), class-
specific schedulers are used to order the requests into a
common schedule queue for disk access. Among other
advantages, this approach can adapt to workload changes
by performing re-allocations of disk bandwidth dynamically
by using the class-independent scheduler at level 1, and
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can minimize the seek time and rotational latency overhead
during disk access and satisfy the QoS requirements of
various classes by using class-specific schedulers at level 2.
While the design of level 2 class-specific schedulers was
discussed in detail, no discussion was given on how
the class-independent scheduler at level 1 can adapt to
workload changes to reallocated disk bandwidth at run
time. In another work, To and Hamidzadeh [5] suggested
trading off continuous media (CM) throughput for discrete
media (DM) throughput by using the CM-to-DM throughput
redirection ratio as a performance metric. They suggested
ways of trading CM throughput with DM throughput.
One way is to use a buffer discounting technique (i.e. by
allocating more buffer space to each CM request) to serve
CM requests. This approach reduces the number of CM
requests admissible. More importantly, since each CM
request is allocated with more buffer space, optimal disk
reads (by reading an optimal amount of data per access) can
be performed to serve CM streams to minimize or eliminate
the rotational latency in a cycle. As a result, the disk server
can effectively exploit the bandwidth leftover in a cycle to
serve more DM requests, thus achieving a high CM-to-DM
throughput redirection ratio. A question that remains to
be answered, however, is how much bandwidth should be
redirected from CM to serve DM requests.

This paper proposes and analyzes a cost-based admission
control algorithm to address the issue of how many
resources should be allocated to service video/audio (CM)
and image/text (DM) requests. By means of reserving
separate resources to service CM and DM requests, the
algorithm explicitly determines the numbers of CM and DM
requests that can be admitted into the system without causing
resource overload. Our approach is to dynamically partition
system resources based on workload changes at run time
with the goal to maximize a ‘value’ metric (or to minimize
a cost metric) while at the same time ensuring that the
response time requirements of both types of object requests
are satisfied (at the expense of rejecting requests when the
system is overloaded). Image/text data requests can have
their own resources, without having to use the ‘leftover’
bandwidth after serving video/audio requests.

The basic idea is to assign a value/penalty pair to each
request type, indicating the reward that such a request will
bring to the system if it is serviced successfully and the
loss to the system if the request cannot be served (rejected)
due to lack of resources. Thus, resource partitioning is not
only based on the workload characteristics of various types
of mixed workloads but also based on the value/penalty
characteristics of requests. In the extreme case that the value
assigned to each video/audio request is very high compared
with that assigned to each image/text request, our algorithm
degenerates to the one with video/audio always having a
higher priority than that of image/text requests. Moreover,
the penalty parameter is optional. If it is set to zero, our
algorithm degenerates to the case where priority assignments
are derived from the ‘value’ parameter alone. The concept
of reward/penalty for multimedia servers was first discussed
by Chen et al. [7] in the context of admission control.

Lee and Sabata in their work [8] generalized the concept of
rewards to application-specific benefit functions and applied
it to admission control and QoS negotiation in multimedia
servers. Our work is the first to apply it to mixed-workload
multimedia servers.

The rest of the paper is organized as follows. Section 2
gives a background of round-based disk scheduling and
admission control algorithms for typical video servers.
Then the system model for a mixed-workload digital
library multimedia server is described. Section 3 describes
our cost-based admission control algorithm for servicing
mixed-workload digital library multimedia servers with
the objective of maximizing the total reward obtainable
by the system without violating the disk bandwidth and
response time requirements of requests. Section 4 presents
data analysis and simulation results for evaluating the
proposed admission control algorithm along with result
interpretations. Finally, Section 5 concludes the paper and
outlines some future research areas.

2. SYSTEM MODEL

2.1. Mixed workload types

We assume that a typical digital library multimedia system
will service three mixed workload types: video, image
and text. Video objects are of VBR1 types with audio
information incorporated as in MPEG. Images and texts
are separate into two workload types since bandwidth and
size requirements are vastly different for these two discrete
workload types. Integrated requests that access several
object types concurrently are not considered.

2.2. Multimedia server

We assume a multimedia server with a disk array.
Video, image and text objects are stored as files on disk.
The basic transfer unit between the server and disk is
one data block stripped evenly over all disks in the disk
array. An object can span several data blocks, especially
for video objects. When servicing an image or a text
object request, as many disk blocks required to cover the
requested object are retrieved by the server. However, when
servicing a video object request via streaming, only as
many data blocks covering the playback time of a service
round duration are retrieved in each service round due to
the VBR property associated with video data. For video
requests, a dual buffering scheme is used. A disk buffer is
used to hold the data retrieved from the disk array, while a
network buffer is used to hold the data retrieved from the
previous round and pushes the data to the display device
locally or over the network to the remote client site. For
each admitted video streaming service, the server keeps
track of which part of the requested video object the user
is currently requesting and always retrieves as many data
blocks as necessary in a service round so as not to miss the

1Video streams normally exhibit variable bit rate (VBR) properties
since video data are normally compressed and stored on the server before
delivery.
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real-time continuity requirement. Since video objects are
VBR in nature, it is possible that a fraction of a data block
retrieved in the previous round may remain unconsumed in
the network buffer in the current round. We assume the
system has enough buffer space to handle video, image and
text requests. Thus, the limiting factor is the disk overload
in servicing requests of mixed types.

2.3. Disk scheduling

The system services requests in rounds with the service
round duration being TSR. It is based on the notion of cycle-
based disk scheduling wherein all requests are serviced on
a cycle by cycle basis. In general, image/text requests can
be serviced in one of two ways: they can be serviced after
video/audio requests are serviced in a service round, or
interleavingly with video requests so as to minimize the disk
seek time and/or rotational latency. Our approach falls under
the latter category. That is, in any service round, we use
the classic SCAN algorithm to order all video/text/image
requests to be processed in that round such that the disk
read/write heads only traverse the disk array in one direction
to retrieve all needed data for all requests to minimize the
seek time. The numbers of video, image, and text requests
to be processed in a single round, denoted by nV, nI and
nT respectively are to be controlled by our algorithm via
resource allocation. Thus, text and image requests under this
disk scheduling algorithm are considered being serviced in
batch, that is, nI image requests and nT text requests (if exist)
would be scheduled for service at the beginning of each
service round in a batch manner and would depart the system
at the end of the service round. The batch sizes for image and
text requests (i.e. nI and nT) depend on the amount of disk
bandwidth allocated to them by our algorithm.

We assume that the system maintains two FIFO queues,
one for image and one for text requests. The system can
reject requests for performance considerations or resource
reasons. The first nI requests at the front of the image queues
and the first nT requests at the front of the text queue (if exist)
are served in the current round in batch (using resources
allocated to them in the current round) while the remaining
ones plus any new requests arriving at the server can be
serviced in the next round and so on.

The arrival rates for video, image and text objects are λV,
λI and λT (requests/s) respectively. For the departure rate,
we assume that the average departure rate per video request
(after it is admitted) is µV (requests/s). Since image requests
are serviced in batch per round, the average ‘batch’ departure
rate for image/text is 1/TSR (batch/sec). Let µI represent this
parameter. It can be translated into a ‘request’ departure rate
of nI/TSR requests/s when the image queue contains at least
nI image requests during a service round. Similarly, let µT
be the batch departure rate for servicing text requests. By the
same token, µT = 1/TSR (batch/s).

2.4. Resource partitioning

Once objects are stored onto the disk array, the system has
knowledge about the size requirements and disk locations

of each object. Further, it has some knowledge about
the size distribution of all images and text objects for it
to determine statistically how many text/image requests
the system is able to service in one service round based
on disk bandwidth allocated without causing the disk to
be overloaded probabilistically. For video objects, we
assume that the system has a histogram of the distribution
of the size needed to satisfy the playback requirement.
This information is obtained via the bit trace of the video
object, e.g. Star Wars.

Our algorithm partitions the service round duration TSR
into three parts, i.e. video, image and text partitions, based
on the cost and workload characteristics associated with
video, image and text objects dynamically. Thus, with the
knowledge of the amount of resources allocated to each
object type, we can theoretically estimate the maximum
number of requests of a particular object type the server
can admit in a service round based on statistical admission
control. We use a typical seek time model [9] in which
the seek time plus the rotational latency are constant
for accessing a data block as the basis for theoretically
estimating the number of requests of each object type the
disk can serve simultaneously so that the disk overload
probability is less than 10−4. We also assume that the disk
transfer rate is a constant.

Finally, our algorithm applies a policy that if during a
service round, there exists some leftover residual time in the
video partition after video objects have been serviced, then
some image/text requests waiting in their queues not having
been serviced in that round (if any exists) can be scheduled
for service using the residual time. Note that this policy will
only increase the reward obtainable by the system since it
allows more image/text requests to be serviced.

2.5. Performance metric

The goal of our cost-based admission control algorithm is
to maximize the reward obtainable by the system without
compromising the quality of service requirements, viz.
bandwidth and response time requirements, of all requests.
Suppose that in per unit time, the system completes the
services of NV video requests, NI image requests and NT
text requests, while rejecting MV video requests, MI image
requests and MT text requests due to admission control.
Then, the ‘reward rate’ at which rewards are obtained by the
system is:

vVNV + vINI + vTNT − qVMV − qIMI − qTMT

where vV, vI and vT are the reward values earned by the
system after servicing a video, an image, and a text request
respectively and qV, qI and qT are the corresponding penalty
values taken away from the system after rejecting a request.
We consider the reward/penalty values being the ‘average’
values applying to a given request type (video, image or
text). In general, it is fair to say that video has the highest
values, followed by image and text objects. Although there
can be overlapping values among different types of objects,
these three different types of objects will likely be centered
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TABLE 1. Notation.

Symbol Meaning

TSR service round duration
λV collective video arrival rate
λI collective image arrival rate
λT collective text arrival rate
µV departure rate of a video request
µI batch departure rate of image requests
µT batch departure rate of text requests
vV reward associated with a video request
vI reward associated with an image request
vT reward associated with a text request
qV penalty associated with a video request
qI penalty associated with an image request
qT penalty associated with a text request
RV reward rate obtainable from servicing video requests
RI reward rate obtainable from servicing image requests
RT reward rate obtainable from servicing text requests
R total reward rate obtainable from servicing video/image/text requests
fV disk bandwidth allocated to video requests in a service round
fI disk bandwidth allocated to image requests in a service round
fT disk bandwidth allocated to text requests in a service round
(f ∗

V, f ∗
I , f ∗

T ) optimal (fV, fI, fT) for maximizing R
nV number of video requests to be serviced based on fV in a service round
nI number of image requests to be serviced based on fI in a service round
nT number of text requests to be serviced based on fT in a service round
(n∗

V, n∗
I , n∗

T) optimal (nV, nI, nT) for maximizing R
NV number of video requests that the system is able to service in a service

round if all disk bandwidth is allocated to service video requests only
NI number of image requests that the system is able to service in a service

round if all disk bandwidth is allocated to service image requests only
NT number of text requests that the system is able to service in a service

round if all disk bandwidth is allocated to service text requests only
KI × nI maximum queue size for admitting image requests
KT × nT maximum queue size for admitting text requests

in separate zones with distinct ‘average’ values. Table 1 lists
the notation used in the paper for easy reference.

3. ALGORITHM

We design our cost-based admission control algorithm with
the following steps:

(i) First, we derive a solution for the reward rate obtainable
by our algorithm as a function of model parameters
based on simple queueing arguments. This reward rate
derived represents a lower bound as it does not consider
utilizing the leftover bandwidth in the video partition to
serve additional image/text requests (i.e. over nI image
and nT text requests) in any cycle.

(ii) Second, we apply the reward rate function derived
to build a lookup table so as to perform bandwidth
allocation dynamically at run time in response to
workload changes to maximize the reward rate
obtainable by the system. The lookup table contains

an estimation of the reward rate value the system will
obtain under a workload condition, as well as the best
bandwidth allocation under which the reward rate value
will be maximized.

(iii) Finally, while the bandwidth allocated to service image
requests would only allow nI image requests to be
serviced in a service round without disk overload, we
admit up to KI × nI image requests, KI ≥ 1, as long
as KI × TSR does not exceed the maximum allowable
response time per image request. For example, if
TSR = 1 s and the maximum allowable response time
per image request is 2 s, then KI would be 2. We admit
text requests in a similar way. This admission control
policy ensures that the response time requirement of
image/text requests is met. Further, by admitting more
image/text requests into the system, we can utilize left-
over bandwidth from the video partition in a service du-
ration to serve additional image/text requests to further
improve the total reward rate obtainable by the system.
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FIGURE 1. M/M/nV/nV model for the partition that serves video requests.

3.1. Formulation

Consider that the disk bandwidth is allocated to video,
image, text requests by the ratios of fV, fI and fT
respectively such that fV + fI + fT = 1 (normalized
with respect to the total disk bandwidth). That is, in a
service round of length TSR, the amounts of time the disk
used to service video, image, and text requests are fVTSR,
fITSR and fTTSR respectively. We first apply statistical
admission control to compute how many requests of class
type i the system is able to handle concurrently so that the
probability of disk overload is below a threshold probability
(say 10−4), given that fiTSR is allocated to execute class
type i in each service cycle [9]. Thus, the allocation of
fVTSR, fITSR and fTTSR, to service video, image, and text
requests respectively translates into the maximum number
of requests that the system can handle concurrently, i.e. nV,
nI and nT for video, image and text requests respectively.
Let (nV, nI, nT) denote the set that corresponds to a disk
bandwidth allocation set (fV, fI, fT).

Now consider a queueing system model in which the
system strictly only admits requests of a given class type by
using the bandwidth allocated to that class type only. When a
region of a particular class type is full, the system will
reject requests of that type. From the discussion earlier, we
know that the system can admit at most nV video requests,
nI image requests and nT text requests without causing disk
overload. The system behaves like managing three separate
partitions, one for each media object type as follows.

The first partition serving only video requests behaves like
a M/M/nV/nV queue2 since each admitted video request
acts as if a separate server has been reserved to serve it
(via bandwidth reservation) until it departs. The arrival rate
of video requests is λV and the departure rate of each video
request is µV. Figure 1 shows an M/M/nV/nV queue for
modeling the video partition. The probability that only j

video slots out of the allocated nV slots are being occupied,

2The notation M/M/n/n means that (i) the arrival process is a Poisson
process having the Markovian property with the interarrival time being
exponentially distributed; (ii) the departure process is also a Poisson process
having the Markovian property with the service time being exponentially
distributed; (iii) there are n servers; (iv) there are n slots. Thus, treating
the video partition as a M/M/nV/nV queue assumes that the interarrival
times of video requests are exponentially distributed with rate λV and the
service time per video request is also exponentially distributed with rate
µV. If these assumptions are not true, a more general queueing system may
be used. For example, if the service time is generally distributed, we can
use a M/G/nV/nV queue instead. The same way of calculating the reward
rate would still apply.

PV(j), 0 ≤ j ≤ nV, is well known in queueing theory and
is given by:

PV(j) =
1

j !
(

λV

µV

)j

1 +
nV∑
k=1

1

k!
(

λV

µV

)k
.

Here we note that with probability PV(j), only j slots
are occupied by video requests (with the other nV − j slots
not used) and the departure of each of the j video requests
will bring a reward of vV to the system. The rate at which
one of the j video requests departs the system is jµV since
each video request departs independently of one another
with a departure rate of µV. Consequently, with probability
PV(j) the reward rate gained due to request departures is
jµVvV. The expected reward rate gained is the sum of
jµVvVPV(j), 1 ≤ j ≤ nV. Alternatively, when the system
rejects a video request arrival because all nV slots are filled,
the system is penalized by qV. Since the rejection rate is
λVPV(nV), the reward rate lost due to request rejections is
λVqVPV(nV). Summarizing the above, let RV denote the
reward rate obtainable from the video partition. Then we
have:

RV =
( nV∑

j=1

jµV × vV × PV(j)

)
− λVqV × PV(nV). (1)

The second partition serving only image requests can be
modeled by a M/M/1[nI]/KI×nI queue since up to nI image
requests can be serviced in a single batch by the system in
a service round.3 We use the notation 1[nI] to indicate that
a group of up to nI image requests can be serviced in batch
in one service round. The arrival rate to this queue is λI
and the batch departure rate is µI. Here, KI × nI stands
for the size of the image queue (a design parameter) with
KI ≥ 1. Figure 2 shows a M/M/1[nI]/2 × nI queueing
system for modeling the image partition for the case KI = 2.
The choice of KI depends on a trade-off between a lower
rejection rate (and hence a higher reward rate obtainable)
and a higher response time. As KI increases, the rejection
rate decreases (since the queue size is larger) at the expense

3The queueing system for image second partition is only an
approximation since the batch time for processing nI image requests is
exactly TSR, not exponentially distributed with the mean time at TSR.
Nevertheless, we show later by simulation that the reward value obtained
is insensitive to this approximation.
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FIGURE 2. M/M/1[nI]/2nI model for the partition that serves image requests.

of a higher response time.4 When KI = 1, the probability
that j image requests are in the system, PI(j), 0 ≤ j ≤ nI,
is given by (see Appendix A for the derivation):

PI(j) =




µI

λI

(
λI

λI + µI

)j+1

if 0 ≤ j < nI − 1

(
λI

λI + µI

)nI

if j = nI.

(2)

When KI = 2, PI(j), 0 ≤ j ≤ 2 × nI, is given by
(see Appendix B for the derivation):

PI(j)=




[ (
µI

λI

)(
λI + µI

λI

)2nI−1−j

−
(

µI

λI

)

×
(

λI+µI

λI

)nI−2−j(
λI + (nI−j)µI

λI

)]
PI(2nI)

if 0 ≤ j ≤ nI − 1

(
µI

λI

)(
λI + µI

λI

)2nI−1−j

PI(2nI) (3)

if nI ≤ j ≤ 2nI − 1

1(
λI + µI

λI

)2nI

− nI

(
µI

λI

) (
λI + µI

λI

)nI−1

if j = 2nI.

The calculation of the reward rate from the image partition,
RI, is a bit different from that for the video partition because
image requests are served in batch and the image queue
size has been extended to KInI. Here we first note that
when the number of image requests occupying the KInI slots
in the image queue, say j , is less than nI, all j requests
will be serviced in one service round since the system is
able to service nI image requests in batch. In this case the
request departure rate is jµI and the reward rate gained is
jµIvI. When j is greater than or equal to nI, however,

4If TSR = 1 s, then KI should be either 1 or 2 so that the maximum
response time for an image request does not exceed 2 s, which is about
what a user can tolerate in typical applications.

only nI requests will be serviced in one service round and
the remaining j − nI would be served in the next service
round. In this case, the request departure rate is nIµI and the
reward rate gained is nIµIvI. Consequently, with probability
PI(j) the reward rate gained due to request departures is
jµVvV if j < nI and nIµVvV otherwise. The expected
reward rate gained due to request departures is the sum of
these reward rates weighted on their respective probabilities
PI(j), 1 ≤ j ≤ nI. Again, when the system rejects an image
request arrival because all KInI slots are filled, the system
is penalized by qI. As the rejection rate is λIPI(KInI),
the reward rate lost due to rejections of image requests
is λIqIPI(KInI). Summarizing the above, the reward rate
obtainable from the image partition, RI, is calculated as:

RI =
( nI−1∑

j=1

jµI × vI × PI(j)

)

+
( KInI∑

j=nI

nIµI × vI × PI(j)

)
− λIqI × PI(KInI).

(4)

The third partition serving only text requests behaves like
a M/M/1[nT]/KT × nT queue where nT is the number of
text slots reserved for text requests and KT × nT is again
a design parameter standing for the queue size for holding
text requests. The arrival rate is λT and the batch departure
rate is µT. Following the discussion above, the reward rate
contribution from the text partition, RT, is calculated as:

RT =
( nT−1∑

j=1

jµT × vT × PT(j)

)

+
( KTnT∑

j=nT

nTµT×vT×PT(j)

)
− λTqT×PT(KTnT).

(5)

While a video request is served continuously on a cycle
by cycle basis until it departs, an image or a text request
completes its service immediately when it is serviced in
a single cycle. Thus, the video departure rate µV per
request can be estimated a priori at static time, depending
on the application domain (e.g. a video user will spend
minutes for viewing a news clip and hours for viewing
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a movie). Alternatively, the ‘batch’ service rate for image
(text) requests can be parameterized as:

µI = 1

TSR
and µT = 1

TSR

due to the fact that a batch of nI image requests (nT text
requests) will be serviced in one service cycle.

Let R denote the system reward rate, defined as the reward
amount received by the system per time unit. Then,

R = RV + RI + RT. (6)

When KI = 2 and KT = 2, R is given by:

R =
nV∑
i=1

iµV × vV ×
1

i!
(

λV

µV

)i

1 +
nV∑
j=1

1

j !
(

λV

µV

)j

+
nI∑

i=1

iµI × vI ×
[(

µI

λI

) (
λI + µI

λI

)2nI−1−j

−
(

µI

λI

) (
λI + µI

λI

)nI−2−j (
λI + (nI − j)µI

λI

) ]

×
[(

λI + µI

λI

)2nI

− nI

(
µI

λI

) (
λI + µI

λI

)nI−1 ]−1

+
2nI−1∑
i=nI

nIµI × vI ×
[(

µI

λI

)(
λI + µI

λI
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(
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λT
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λT
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λT + µT

λT
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µT

λT
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λT + µT

λT
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+ nTµT × vT ×
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λT + µT

λT
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µT

λT

)

×
(
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λT
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1
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(

λV
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)nV
]

×
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1
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(

λV
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[(

λI + µI
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(
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)nT−1]−1

.

(7)

For the case when KI or KT is greater than 2, no
closed-form solution exists. However, one can use existing
performance analysis tools such as SPNP [10] to define and
evaluate a queueing model similar to Figure 2 (e.g. with the
last state being 4n when KI = 4) to numerically compute RI
and RT based on Equations (4) and (5).

When given a set of model parameter values of λV,
µV, λI, µI, λT, µT, vV, qV, vI, qI, vT and qT, one can
determine the best partition (nV, nI, nT), say (n∗

V, n∗
I , n

∗
T),

that will maximize the reward rate. To search for the optimal
set (n∗

V, n∗
I , n

∗
T), we formulate the search problem as an

optimization problem as follows. Let Nk be the maximum
number of requests of type k that the system is able to admit
statistically when all the time duration TSR is allocated to
service requests of class k only. Thus, there will be three
parameters, i.e. NV, NI and NT for video, image and text
request types respectively which we can compute at static
time. Then the optimal set (n∗

V, n∗
I , n

∗
T) is the one that

maximizes R (using Equation (7)) subject to the condition
that ⌊

NT

NV
× nV

⌋
+

⌊
NT

NI
× nI

⌋
+ nT = NT. (8)

Condition (8) above is required to ensure that individual
bandwidth resources allocated to the video, image and text
partitions sum to the total disk bandwidth available. Here we
normalize the total disk bandwidth with respect to the
bandwidth required to service one text request, thus treating
the system as containing a total of NT text slots in a service
duration. Since a video slot and an image slot require on
average NT/NV and NT/NI text slots respectively, a valid
(nV, nI, nT) combination must satisfy Condition (8) above
so the total number of text slots is equal to NT.

The number of possible cases of (nV, nI, nT) from which
the optimal set (n∗

V, n∗
I , n

∗
T) can be found is upper bounded

by the number of ways of dividing NT into three sets subject
to Condition (8) above. Thus the time complexity involved
in enumerating and applying Equation (7) and Condition (8)
is O(N2

T). Once we find the best (n∗
V, n∗

I , n
∗
T) set for each

arrival rate set (λV, λI, λT), we can then build a lookup
table recording their relationship, along with the reward rate
obtainable.

In cases when N2
T is a large number, the exhaustive

algorithm of time complexity O(N2
T) to find the best

(n∗
V, n∗

I , n
∗
T) set may still be computationally expensive.

We consider a nearest neighbor search algorithm as an
alternative to further reduce the time complexity to O(NT).
This approach yields a near-optimal solution with results
fairly close to those obtained by exhaustive search. The idea
is to first fix one value among nV, nI and nT, after which
we fix one of the remaining two. We adopt the following
simple heuristic: the object type among all with the largest
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product of arrival rate and reward value is selected first and
the one with the second largest product is selected next.
The rationale is that an object type selected this way
will likely generate a larger reward than others, so it is
more important to fix a proper value for this object type.
Consider the case that nT is selected first. Then instead
of trying every possible combination of (nV, nI, nT), only
nT varies first to take on all possible values in the range
(0, NT) one at a time. During an iteration while nT is tested
at a particular value, the remaining NT − nT text slots are
allocated to nV and nI in proportion to the arrival rate and
reward value products, i.e.

nV =
⌊

NT − nT

NT/NV

⌋
× λVNV

λVNV + λINI

and

nI =
⌊

NT − nT

NT/NI

⌋
× λINI

λVNV + λINI
.

The best reward value yielded in these NT + 1 iterations
with nT value varying from 0 to NT will fix nT in this case.
Suppose nI is selected next. Then, given that nT is already
fixed, nI will vary in the range of (0, �(NT −nT)/(NT/NI)�)
while nV will take the residue to see if the reward can be
further improved. Overall, the nearest neighbor algorithm
requires at most NT+1 iterations to fix nT and at most NI+1
iterations to fix nI (and consequently nV too). If the text
object is not selected first, the number of iterations would
be even less. In general, the nearest neighbor algorithm for
searching for a near optimal solution will be of complexity
O(NT).

3.2. Dynamic admission control

Our algorithm makes use of the lookup table at run time.
First, it uses the table as a basis to dynamically adapt to
workload changes by performing bandwidth reallocations to
serve video, image and text requests. It does so by changing
to another (n∗

V, n∗
I , n

∗
T) value set periodically based on

the monitored input arrival rates detected from the last
monitoring period. The monitoring period needs to be fine
tuned. It can be determined by the service provider based
on anticipated busy/slow switch hours at which a change of
arrival rates is likely; it can also be preset by analyzing user
profiles collected over a long period of time. Note that a
change of the (n∗

V, n∗
I , n

∗
T) set corresponds to a change of

bandwidth allocation (f ∗
V, f ∗

I , f ∗
T ).

Second, the (n∗
V, n∗

I , n
∗
T) value set used in the current

monitoring period is used as the basis for performing
admission control. For CM objects (video), the system will
admit at most n∗

V video requests so that the bandwidth and
delay requirements of video requests are satisfied. For DM
objects (image and text), we use the response time as the
guiding criterion to allow possibly more than n∗

I image
and n∗

T text requests to be admitted. We first note that n∗
I

image and n∗
T text requests will be processed in each service

duration TSR based on our algorithm. Therefore, if we set the
image (text) queue size to be KIn

∗
I (KTn∗

T respectively) then
the worst case response time for an image (a text) request

will be KITSR (KTTSR respectively). This provides a bound
on the worst case response time for each image/text request,
as well as a condition for a sanity check to determine if a
switch to another (n∗

V, n∗
I , n

∗
T) value set should be performed

dynamically. After KI and KT are determined this way, the
system can admit up to KIn

∗
I image and KTn∗

T text requests,
with the bandwidth and response time requirements of these
admitted DM requests satisfied. Allowing more image and
text requests to be admitted into their respective queues
over sizes nI and nT respectively will only improve the
reward rate obtainable since it decreases the probability of
these discrete media requests being rejected immediately on
arrival (and thus decreases the probability of penalties being
assessed due to rejections).

Lastly, we further exploit the leftover bandwidth from
the video partition to serve additional image/text requests.
In any service round, we use the classic SCAN algorithm to
order all requests such that the disk read/write heads only
traverse the disk in one direction to retrieve all needed data
for all video/image/text requests to minimize the seek time.
We also maintain a common schedule queue dynamically
formed on a cycle by cycle basis filled with n∗

V video
requests, n∗

I image requests and n∗
T text requests. If we

discover that in any cycle the total time to service all the
requests is smaller than TSR, then additional image and text
requests at the front of their queues (if available) can also
be moved into the common schedule queue for execution in
the current cycle. The ratio by which image to text requests
will be put into the common schedule queue is based on
f ∗

I /f ∗
T . That is, with probability f ∗

I /(f ∗
I + f ∗

T ) an image
request is selected to be put into the common queue and
with probability f ∗

T /(f ∗
I + f ∗

T ) a text request is selected.
The transfer of image or text requests from their waiting
queues to the common schedule queue stops when adding
another request will make the total service time exceed TSR.

4. ANALYSIS AND SIMULATION VALIDATION

We have conducted detailed numerical analysis and
simulation validation of a digital library multimedia server
to demonstrate the effectiveness of our approach. The disk
subsystem selected is a disk array with four disks with an
average seek time of 11 ms, a rotational latency of 5.5 ms,
and a collective read/write rate µ = 33.3 MBps. We set TSR
as 1 s5 and set the block size D equal to four sectors, i.e. 2K
bytes stripped evenly across the four disks in the disk array
with the sector size 512 bytes. This disk organization well
justifies our assumption that an entire image/text object can
be processed in a single cycle.

The size of an image object is assumed to be uniformly
distributed in [10 kB, 500 kB] while that of a text object is
uniformly distributed in [1 kB, 50 kB]. The sizes of image
and text objects requested are randomly generated from their
respective ranges. For the video clips, we take a trace
file of the movie Star Wars which consists of 7200 groups

5Other TSR values were also used with the results exhibiting a similar
trend and thus they are not reported. For a classic tradeoff analysis between
the magnitude of TSR versus the memory requirement, and the number of
requests admissible, see [9].
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of pictures (GOPs) each covering 0.5 s of playback time.
Each GOP consists of 12 frames (I, P and B frames) arranged
in a fixed sequence with their sizes varying from one GOP
to another GOP. Different video clips are simulated by going
to different starting GOPs in the trace file. When starting a
simulation run, the disk array is filled with images, texts and
video clips until it is 90% full. The location of each image,
text and video clip is recorded in a file allocation table.
During a service round, all requests being served are ordered
based on the SCAN algorithm [11] in the common schedule
queue. The seek time, rotational latency and read time of
each request are computed depending on the last read/write
head position, the size of object retrieved (this depends on
how many blocks are to be retrieved in the current cycle),
and the disk location (sector and track numbers) of the
starting data block that contains the object. This allows
the service time to serve requests in the common schedule
queue to be computed and compared with the duration of
the service round, as described in Section 3.2.

With the simulation environment parameters determined,
we first compute the values of NV off-line by using a classic
statistical admission control using the object size distribution
information described above so that the probability of disk
overload does not exceed 10−4. By using the average
seek time of 11 ms, rotational latency of 5.5 ms and the
read/write rate µ = 33 MBps, it turned out that NV =
53, that is, 53 video requests can be serviced per cycle so
that the probability of disk overload is less than 10−4; we
then performed a similar procedure for image requests only,
which yields NI = 37, meaning 37 image requests can
be processed per second by the disk without causing disk
overload statistically. Lastly, we obtained NT = 57.

Since video requests are served across cycles until they
depart, while image and text requests are served only in a
single cycle and depart, this means that the system is able
to sustain an image request rate λI (λT) of approximately
NI (NT) arrivals per TSR, i.e. 37 image (correspondingly 57
text) arrivals per second. To create a high-traffic situation,
we consider λV (the arrival rate of video requests) in the
range of [10, 100] arrivals/min, λI in the range of [100, 2000]
arrivals/min, and λT in the range of [100, 2000] arrivals/min.
Below we analyze the effects of these arrival rates, along
with other variables including µV (departure rate of video
requests), vV, vI, vT, qV, qI and qT (reward/penalty values)
on the performance of cost-based reservation algorithms.

4.1. Comparison basis: video-first and greedy
algorithms

Our algorithm is compared with two algorithms:

(i) Video-First: the video-first algorithm always gives
the highest priority to video requests (an example of
which can be found in [5]). Under this algorithm,
all resources are allocated to video requests with the
leftover bandwidth being used to serve image and
text requests. Specifically, (nV, nI, nT) = (NV, 0, 0).
To provide a fair comparison with the reservation
algorithm, we allow image and text requests to be

admitted into the system with queue size limits of
KIn

∗
I and KTn∗

T, respectively, where n∗
I and n∗

T are the
optimal values determined by the reservation algorithm
based on Equation (7) and Condition (8). If in any cycle
there is leftover bandwidth available, image and text
requested waiting in the queues will be served based on
the ratio of f ∗

I /f ∗
T as discussed in Section 3.2. A new

image (text) request arriving at the system when its
queue is full will be rejected.

(ii) Greedy: the greedy algorithm allocates disk bandwidth
to each object type in proportion to the product of
its reward and arrival rate so that an object type
with a higher ‘reward arrival rate’ will get more disk
bandwidth. Specifically,

nV = vVλVNV

vVλV + vIλI + vTλT
(9)

nI = vIλINI

vVλV + vIλI + vTλT
(10)

and

nT = vTλTNT

vVλV + vIλI + vTλT
. (11)

4.2. Analysis

In this section, we apply Equation (7) and Condition (8)
to compare the lower-bound reward rates6 obtainable
and the corresponding (nV, nI, nT) sets by our proposed
reservation algorithm versus those by the video-first and
greedy algorithms. We also analyze the sensitivity of
model parameters upon the reward rate obtainable. Recall
that our algorithm determines the (nV, nI, nT) set either
exactly by exhaustive search (with time complexity O(T 2

N))
or approximately with nearest neighbor search (with time
complexity O(TN)). The greedy algorithm determines the
(nV, nI, nT) set based on Equations (9)–(11). For the video-
first algorithm, (nV, nI, nT) = (NV, 0, 0).

Table 2 shows lower-bound reward rates obtained by
our optimal algorithm in column 4 and the corresponding
optimal (nV, nI, nT) sets in column 5 under several
combinations of object arrival rates for a case in which
µV = 1, KI = 2 and KT = 2, and video requests are
considered more important than other object types such that
the reward and penalty values of video object types are
higher than others, i.e. vV = 20, vI = 5, vT = 2, qV = 10,
qI = 2 and qT = 1. For comparison, Table 2 also lists the
lower-bound reward rates obtained by the nearest neighbor
algorithm in column 6 and the corresponding (nV, nI, nT)

sets in column 7. By comparing the reward rates obtained
in column 4 (exhaustive search) with those in column 6
(nearest neighbor search), we see that the approximate
solutions obtained based on the nearest neighbor (nnb)
search technique with time complexity O(NT) are fairly
accurate against exact solutions obtained via exhaustive
search with time complexity O(N2

T).

6Recall that Equation (7) gives the lower bound of the reward rate
obtainable since it does not model the leftover disk bandwidth from the
video partition to serve pending image and text requests.
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TABLE 2. Reward rates obtainable and (nV, nI, nT) calculated.

Optimal Optimal nnb nnb Greedy Greedy vf
λV λI λT reward (nV, nI, nT) reward (nV, nI, nT) reward (nV, nI, nT) reward

10 100 100 14.9 (25, 12, 11) 14.9 (27, 9, 14) 14.4 (12, 21, 11) −3
10 400 400 48.7 (14, 16, 17) 48.7 (14, 16, 17) 46.0 (4, 25, 14) −23
10 800 800 83.2 (0, 22, 23) 82.7 (1, 21, 23) 78.6 (2, 26, 14) −50
10 1200 1200 99.7 (0, 24, 20) 99.6 (0, 22, 23) 93.5 (1, 26, 15) −76
10 1600 1600 97.8 (0, 24, 20) 97.3 (0, 22, 23) 91.0 (1, 26, 15) −103
10 2000 2000 85.2 (0, 24, 20) 85.2 (0, 24, 20) 78.4 (1, 26, 15) −130

50 100 100 22.7 (44, 4, 3) 22.7 (44, 4, 3) 18.1 (31, 11, 6) 8
50 400 400 46.4 (24, 13, 11) 46.4 (24, 13, 11) 43.5 (14, 19, 12) −11
50 800 800 76.6 (1, 22, 22) 75.2 (5, 19, 22) 72.3 (8, 22, 14) −38
50 1200 1200 93.1 (0, 24, 20) 92.5 (0, 23, 21) 80.2 (6, 24, 13) −65
50 1600 1600 91.2 (0, 24, 20) 90.0 (0, 23, 21) 79.1 (4, 24, 15) −91
50 2000 2000 78.6 (0, 24, 20) 75.4 (0, 27, 15) 65.5 (4, 25, 14) −118

100 100 100 15.7 (44, 4, 3) 15.7 (44, 4, 3) 13.9 (39, 7, 4) 2
100 400 400 38.4 (27, 11, 11) 38.2 (25, 12, 11) 37.5 (22, 15, 10) −17
100 800 800 68.3 (1, 22, 22) 65.9 (3, 18, 26) 60.0 (14, 19, 12) −44
100 1200 1200 84.7 (0, 24, 20) 84.6 (0, 22, 23) 66.6 (10, 21, 13) −70
100 1600 1600 82.8 (0, 24, 20) 81.6 (0, 23, 21) 62.2 (8, 22, 14) −97
100 2000 2000 70.2 (0, 24, 20) 67.1 (0, 27, 15) 49.6 (7, 23, 14) −124

vV = 20, vI = 5, vT = 2, qV = 10, qI = 2 and qT = 1.

Also shown in Table 2 are lower-bound reward rates
obtainable and the corresponding (nV, nI, nT) sets from the
greedy algorithm in columns 8 and 9, and lower-bound
reward rates obtainable from the video-first (vf) algorithm in
column 10. Here we observe that by comparing the optimal
reward rates obtainable by our reservation algorithm in
columns 4 (exact) and 6 (approximate) with those obtainable
by the greedy and video-first algorithms in columns 8
and 10, our reservation algorithm significantly outperforms
both the greedy and video-first algorithms over a wide
range of request arrival rates. In particular, for the video-
first algorithm, we see that the lower-bound reward rate
obtainable can even be a negative value (representing loss)
due to improper allocations of resources to video requests
exclusively.

Below we analyze the effects of arrival rates (λV, λI
and λT), per-video request departure rate (µV) and
reward/penalty values (vV, qV, vI, qI, vT and qT) on the
reward rate obtainable. Figure 3 shows the sensitivity of
arrival rates on the reward rate obtainable by our proposed
reservation algorithm with the reward/penalty values and the
per-video departure rate set at vV = 20, vI = 5, vT = 2,
qV = 10, qI = 2, qT = 1 and µV = 1. Here the
X-coordinate is the video request arrival rate λV varying in
the range of 10–100 while the Y -coordinate is the reward
rate. Each data point in the diagram is a lower-bound reward
rate obtainable by the reservation algorithm. Five curves are
shown with varying discrete object arrival rates. For ease of
presentation, the image request arrival rate is set to be the
same as the text arrival rate. We see that when the system is
relatively lightly loaded by image and text requests (as in
the bottom two curves), the system’s reward increases as
the video request rate increases. However, when the video

FIGURE 3. Sensitivity of request arrival rates upon reward rate
obtainable.

arrival rate exceeds a threshold such that the system becomes
more heavily loaded, the reward rate then decreases as the
video arrival rate increases. In contrast, when the system
is heavily loaded by image and text requests (as in the top
two curves), the system’s obtainable reward decreases as the
video request rate increases due to more and more requests
being rejected.
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FIGURE 4. Sensitivity of per-video departure rate upon reward
rate.

FIGURE 5. Sensitivity of per-video reward value vV upon reward
rate.

Figure 4 shows the sensitivity of the per-video departure
rate (µV) upon the lower-bound reward rate obtainable under
the same set of reward/penalty values, with µV = 1 being
the base case for comparison (the middle curve). Here we
present the case in which λI = λT = 400 as other arrival-
rate cases exhibit the same trend. We observe that as the
per-video departure rate increases (toward the upper curves),
the reward rate obtainable increases until the video arrival
rate exceeds a threshold beyond which the system is heavily
loaded and must reject requests to avoid system overload.
Alternatively, when the per-video departure rate decreases
(toward the bottom curves), each video request will stay in
the system for a relatively long period of time. In this case,
the system tends to admit fewer video requests (i.e. smaller
nV) since the reward rate obtainable from the video partition
is low. As a result, as the video arrival rate increases (toward
the right of the X-coordinate), the system tends to reject
video requests, thus lowering the total reward rate obtainable
due to penalties applied.

Figure 5 shows the sensitivity of the per-video reward
value (vV) upon the reward rate obtainable. There are
five curves with varying vV values shown in the figure for

the case in which λI = λT = 400, vI = 5, vT = 2,
qV = 10, qI = 2, qT = 1 and µV = 1. The base
case for comparison is the second bottom curve at which
vV = 20. Here we observe that as vV increases (toward the
upper curves), the total reward rate obtainable also increases
because each video request departure will bring a higher
value to the system. Moreover, as the per-video reward value
increases, the system tends to admit more video requests
in the video partition. Consequently, the system is able to
accommodate a higher video request rate. This is reflected
by the fact that as the per-video reward value increases, the
threshold video request rate beyond which the reward rate
decreases (because of system overload) is shifted toward a
higher value. A similar trend is also observed as we analyze
the sensitivity of the reward value of discrete object requests
(image or text) on the reward rate obtainable.

4.3. Simulation results

In Section 4.2, we compared the reservation algorithm
with both the video-first and greedy algorithms without
considering the effect of leftover bandwidth from the video
partition to serve pending image and text requests. Thus the
comparison was on the lower-bound reward rates obtainable
by these algorithms. In this section, we compare these
algorithms by means of a detailed simulation study that
models the use of leftover bandwidth from the video
partition to serve additional image/text requests.

For the purpose of validating analytical results, we choose
the six cases listed in the middle rows of Table 2, with the
first three cases representing light-load situations and the
last three cases representing heavy-load situations. Figure 6
shows the reward rate R obtained by our reservation
algorithm (theory and via simulation) versus that obtained
by the video-first and greedy algorithms (via simulation).
While the system is under a (nV, nI, nT) set, it admits and
rejects users, as well as scheduling requests, in accordance
with the dynamic admission control algorithm described in
Section 3.2, which considers the use of leftover bandwidth
to serve pending image and text requests. Each reward rate
obtained from simulation is within 95% confidence interval
with 10% confidence accuracy by utilizing the batch mean
analysis method. For comparison purposes, we also show
the theoretical reward rate obtained from Equation (7).

Here we first observe that when the system operates under
our cost-based admission control algorithm, the reward rates
reported via simulation are close to the predicted lower-
bound reward rates obtainable when the system is lightly
loaded (the first two cases) since all requests regardless of
object types can be served satisfactorily. However, when
the system is more heavily loaded (the next three cases), we
see that the reward rate obtained by our dynamic reservation
algorithm is higher than that calculated from Equation (7).
This is so because the theoretical reward rate is based on
the assumption of no cross-over among video/image/text
partitions, while in the simulation we allow the leftover
bandwidth from the video partition to be used by pending
image/text requests, the effect of which is more pronounced
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FIGURE 6. Comparing reward rate R.

under heavy-load conditions. That is, under heavy-load
conditions, it is more likely that there will always be pending
image/text requests waiting to be served in the image/text
queues. Finally when the system is very heavily loaded
(case 6), the predicted lower-bound reward rate obtainable
is close to that obtained from the simulation again because
in this case the high arrival rates of DM requests make the
image and text queues virtually full all the time consuming
all the resources in the system, i.e. the system reaches its
limit in this case and the theoretical lower-bound reward
rate is close to the highest achievable reward rate by the
system.

Next we observe that in the first two cases, the
reward rates under our reservation algorithm and video-
first algorithm are virtually the same. This is because the
arrival rates in the first two cases represent lightly loaded
situations, so the system is able to accommodate most users
anyway. However, as the system becomes more heavily
loaded, the disk array begins to experience overload and
requests are rejected more often. In this case, our reservation
algorithm outperforms the video-first algorithm in terms
of the reward rate obtained by the system since it can
more judiciously allocate resources to requests for different
object types with the goal of optimizing the overall system
reward, instead of always allocating resources to video users
first. The same trend is also observed as we compare the
reservation algorithm with the greedy algorithm, i.e. when
the system is heavily loaded, the system reward rate obtained
by the reservation algorithm is consistently greater than that
obtained by the greedy algorithm by a margin of 10–15%.
Here we should mention that the reward rate obtained is
‘value per unit time’ so a difference of 10–15% is considered
significant.

Figure 7 compares the average response time per DM
request (image or text) obtained by the reservation algorithm
versus those by the video-first and greedy algorithms
under the same set of testing conditions as in Figure 6.

FIGURE 7. Comparing response time per DM request.

Only the response times of admitted DM requests are
measured in the simulation. Similar to Figure 6, we
see that when the system is relatively lightly loaded, the
response time difference between our reservation algorithm
and the video-first algorithm is small. However, as the
system becomes more heavily loaded, since our reservation
algorithm specifically reserves resources to serve image and
text requests, the difference in response time per DM request
becomes more significant (between 1 and 5 s).

We also observe that the greedy algorithm compares
favorably with the reservation algorithm in the first two cases
under which the system is lightly loaded and ‘excessive’
resources are allocated to serve DM requests by the greedy
algorithm. As a result, all DM requests admitted essentially
would be served within a single service round. This is
in contrast to the reservation algorithm which exercises a
tighter control over resources allocated to serve DM requests
in these cases with the objective of maximizing the reward
rate of the system. Consequently, some DM objects admitted
may have to wait one more service round before being
serviced. The waste of resources by the greedy algorithm
in cases 1 and 2 benefits DM requests in terms of improved
response time per DM request. For cases 4–6 in which
resources allocated to DM requests are meager compared
with the reservation algorithm, we see that the reservation
algorithm compares favorably with the greedy algorithm
without compromising the response time per DM request
performance metric.

Figure 8 breaks down the usage of the system in servicing
video, image and text requests, i.e. proportions of the time
it services video, image and text requests. Also shown are
the same three utilization values obtained by the video-first
algorithm. The diagram does not show the greedy algorithm
to avoid cluttering since it exhibits the same trend as the
reservation algorithm. Here we see that the utilization to
serve video requests is high all the time in the video-first
algorithm when compared with the reservation algorithm.
Correspondingly, in the video-first algorithm the utilizations
to serve image and text requests are much lower since in
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FIGURE 8. Comparing utilization of various object request types.

FIGURE 9. Comparing rejection rates of various object request
types.

the video-first algorithm, video requests will consume the
resources first with the leftover (if any) being consumed by
image and text requests. In cases where image/text arrival
rates are high, the low utilization to serve image/text requests
therefore contributes to the very low reward rate obtained by
the video-first algorithm.

Finally, Figure 9 shows the rejection rates (number of
requests rejected per second) of video and text requests
versus those by the video-first and greedy algorithms.
The diagram only shows text requests (representing the
DM requests) versus video requests (representing the CM
requests) to avoid cluttering as image requests exhibit the
same trend as text requests. When the system is heavily
loaded, we see that our reservation algorithm significantly
rejects fewer text requests compared with both the video-
first and greedy algorithms. This is achieved by rejecting
more video requests, i.e. the video rejection rate is 50

(per min) for the reservation algorithm compared with the
video rejection rate of nearly 0 in the video-first algorithm
and 41 in the greedy algorithm in the last case. This is
to be compared with, say, the text rejection rate of 960
(per min) in the reservation algorithm versus 1500 in the
video-only algorithm and 1260 in the greedy algorithm.
The lower rejection rates of image and text requests when the
system is heavily loaded contribute to the higher reward rate
obtained by the reservation algorithm since fewer penalties
are applied due to fewer image/text clients being rejected.

5. CONCLUSION

In this paper, we have proposed, analyzed and validated
a priority-based, resource-reservation admission control
algorithm to address the issue of how much resource should
be allocated to service video/audio (CM) and image/text
(DM) requests for handling mixed workloads in modern
multimedia systems such as a digital library multimedia
server that must provide access services to heterogeneous
objects stored in the library. The priority considered in
the paper is defined in terms of ‘rewards’ and ‘penalties’
associated with requests of various object types. Instead of
arbitrarily admitting object requests until resources are
exhausted as a condition for admission control, we allocate
the resources to requests a priori based on this priority-
based scheme so as to maximize the total reward received
by the system. The algorithm derives from queueing theory
and can be applied at run time to dynamically adjust the
resource reservations to objects of various types to adapt
to environmental changes such as the changing arrival
rates of object requests. We compared our reservation
algorithm with the video-first and greedy admission control
algorithms analytically and via simulation and demonstrated
that our algorithm can significantly improve the reward
value obtained by the system without sacrificing other
performance metrics such as the response time per DM
request and system utilization.

There are a few future research areas including (i) in-
vestigating other applicable priority schemes not based on
‘rewards’ and ‘penalties’; (ii) investigating if such cost-
based admission control algorithms discussed in the paper
can yield even higher reward rates in non-conventional disk
scheduling systems such as those not based on scheduling
cycles (i.e. not servicing requests in rounds).
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APPENDIX A. DERIVATION OF P(J ) FOR
M/M/1[N]/N

For notational convenience, we will use Pj to represent the
probability that the system is in state j . Also, we drop the
subscript from the number of slots n, the arrival rate λ and
the group departure rate µ.

First we apply global balance to the n + 1 states in
the M/M/1[n]/n system to obtain the following linear
equations:

0 = µ(P1 + P2 + . . . + Pn) − λP0

0 = λP0 − (µ + λ)P1

0 = λP1 − (µ + λ)P2

. . . = . . .

0 = λPn−2 − (µ + λ)Pn−1

0 = λPn−1 − µPn.

This gives the relation that for 0 ≤ i < n

Pi = µ

λ

(
λ + µ

λ

)n−1−i

Pn.

Since
∑n

i=0 Pi = 1, the above relation gives us:

µ

λ

[(
λ + µ

λ

)n−1

+
(

λ + µ

λ

)n−2

+ . . .

. . . +
(

λ + µ

λ

)2

+
(

λ + µ

λ

)1

+ 1

]
Pn + Pn = 1.

Applying the formula that

1 + x + x2 + . . . + xn−1 = xn − 1

x − 1

the above relation becomes[(
λ + µ

λ

)n

− 1

]
Pn + Pn = 1.

Thus,

Pi =




µ

λ

(
λ

λ + µ

)i+1

if 0 ≤ i < n − 1

(
λ

λ + µ

)n

if i = n.

APPENDIX B. DERIVATION OF P(J ) FOR
M/M/1[N]/2N

For the M/M/1[n]/2n system, there are 2n + 1 states in
the system (see Figure 2). Applying global balance to these
states, we have:

0 = µ(P1 + P2 + . . . + Pn) − λP0

0 = λP0 + µPn+1 − (µ + λ)P1

0 = λP1 + µPn+2 − (µ + λ)P2

. . . = . . .

0 = λPn−2 + µP2n−1 − (µ + λ)Pn−1

0 = λPn−1 + µP2n − (µ + λ)Pn

0 = λPn − (µ + λ)Pn+1

0 = λPn+1 − (µ + λ)Pn+2

. . . = . . .

0 = λP2n−1 − µP2n.

By rearranging terms, we obtain the following relations
between Pi and P2n, 0 ≤ i ≤ 2n:

Pi =




[(µ

λ

)(
λ + µ

λ

)2n−1−i

−
(µ

λ

)(
λ + µ

λ

)n−2−i

×
(

λ + (n − i)µ

λ

) ]
P2n if 0 ≤ i ≤ n − 1

(µ

λ

)(
λ + µ

λ

)2n−1−i

P2n if n ≤ i ≤ 2n − 1

P2n if i = 2n.

Since
∑2n

i=0 Pi = 1, substituting the expressions for Pi from
above, we have:

1

P2n

= µ

λ

[
1 + . . . +

(
λ + µ

λ

)2n−1
]

− µ

λ

[
1 + λ + 2µ

λ

+
(

λ + µ

λ

) (
λ + 3µ

λ

)
+ . . . +

(
λ + µ

λ

)n−2

×
(

λ + nµ

λ

)]
+ 1. (B1)
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Let

A = 1 + λ + 2µ

λ
+

(
λ + µ

λ

) (
λ + 3µ

λ

)
+ . . .

. . . +
(

λ + µ

λ

)n−2 (
λ + nµ

λ

)
. (B2)

Then,

λ + µ

λ
A = λ + µ

λ
+

(
λ + µ

λ

)
λ + 2µ

λ
+

(
λ + µ

λ

)2

×
(

λ + 3µ

λ

)
+ . . . +

(
λ + µ

λ

)n−1

×
(

λ + nµ

λ

)
. (B3)

Subtracting Equation (B3) from Equation (B2), we have:

−µ

λ
A = 1 + µ

λ

[
1 +

(
λ + µ

λ

)
+ . . . +

(
λ + µ

λ

)n−2 ]

−
(

λ + µ

λ

)n−1 (
λ + nµ

λ

)
. (B4)

The expression for A hence is given by:

A = n

(
λ + µ

λ

)n−1

. (B5)

Substituting the expression of A above into Equation (B1),
we obtain

P2n =
[(

λ + µ

λ

)2n

− n
(µ

λ

)(
λ + µ

λ

)n−1 ]−1

.

Hence, the solution for Pi follows:

Pi =




[(µ

λ

)(
λ + µ

λ

)2n−1−i

−
(µ

λ

)(
λ + µ

λ

)n−2−i

×
(

λ + (n − i)µ

λ

) ]
P2n if 0 ≤ i ≤ n − 1

(µ

λ

)(
λ + µ

λ

)2n−1−i

P2n if n ≤ i ≤ 2n − 1

[(
λ + µ

λ

)2n

− n
(µ

λ

)(
λ + µ

λ

)n−1 ]−1

if i = 2n.
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