
IEEE TRANSACTIONS ON NETWORK SERVICE AND MANAGEMENT, VOL. X, NO. X, MONTH, 2020 1

Vulnerability-Aware Resilient Networks:
Software Diversity-based Network Adaptation

Qisheng Zhang, Jin-Hee Cho, Senior Member, IEEE, Terrence J. Moore, Member, IEEE, Ing-Ray Chen, Member,
IEEE

Abstract—By leveraging the principle of software polyculture
to ensure security in a network, we propose a vulnerability-
based software diversity metric to determine how a network
topology can be adapted to minimize security vulnerability
while maintaining maximum network connectivity. Our proposed
metric estimates the software diversity of the node using the
vulnerabilities of software packages installed on nearby nodes
on attack paths reachable to the node. Our software diversity-
based adaptation (SDA) scheme employs the diversity of each
node for edge adaptations. These adaptations include the removal
of edges that expose high security vulnerability as well as the
potential addition of edges between certain nodes with low
vulnerabilities associated with them. To validate the proposed
SDA scheme, we conduct extensive experiments comparing our
approach with counterpart baseline schemes in real networks.
Our simulation results demonstrate that SDA outperforms these
existing counterparts. We discuss insights into these findings in
terms of the effectiveness and efficiency of the proposed SDA
scheme under three real network topologies with vastly different
network densities.

Index Terms—Software polyculture, software diversity, shuf-
fling, network resilience, network adaptation, epidemic attacks.

I. INTRODUCTION

A. Motivation

Inspired by the close relationship between the diversity of
species and the resilience of ecosystems [53], information and
software assurance research has evolved to include the concept
of software diversity for enhanced security [20, 21, 33, 34, 47].
Due to the dominant trend of software monoculture deploy-
ment for efficiency and effectiveness of service provisions, at-
tackers have been granted significant advantages in that acquir-
ing the intelligence needed to compromise a single software
vulnerability enables the capability of efficiently compromis-
ing other homogeneous system components, such as operating
systems, software packages, and/or hardware packages [56].
To deny this advantage, the concept of diversity has been
applied in the cybersecurity literature [31]. Randomization of
software features has been used to thwart cyber attacks by
increasing uncertainty towards a target system whose critical
information was known to an attacker previously. The concept
of moving target defense (MTD) [24, 42] has been proposed to
change the attack surface in order to increase uncertainty and
confusion for attackers and software diversity-based security
mechanisms have also been used as part of MTD techniques.

Qisheng Zhang, Jin-Hee Cho, and Ing-Ray Chen are with the Depart-
ment of Computer Science, Virginia Tech, Falls Church, VA, USA. Email:
{qishengz19, jicho, irchen}@vt.edu. Terrence J. Moore is with US Army Re-
search Laboratory, Adelphi, MD, USA. Email: terrence.j.moore.civ@mail.mil.

Research has shown that software diversity is closely related
to enhancing the immunization of a computer system that halts
multiple outbreaks of malware infections simultaneously oc-
curring with heterogeneous and sparse spreading patterns [46].
Hence, the rationale that software diversity reduces malware
spreading is quite well known and has been validated for
its effectiveness to some extent [20, 21]. This underlying
philosophy encompasses a simple principle: software poly-
culture enhances security [20]. Due to the accessibility to
the Internet, which enables the distribution of individualized
software and cloud computing with the computational power
to perform diversification, massive-scale software diversity is
becoming a realistic and practical approach to enhance secu-
rity [33]. In general, software diversity-based approaches have
already been applied in various domains, such as operating
systems [49], firewalls [40], intrusion detection systems [52],
and malware detectors [22]. In particular, a common example
of software diversity is the use of various kinds of operating
systems (OSs) as a MTD strategy, such as Linux-based OSs,
Microsoft Windows-based OSs, FreeBSD-based OSs, Apple
iOSs, Android OSs, or Apple macOSs in a given network [25].
Although the benefit of software diversity seems obvious, the
secure and transparent implementation of automatic software
diversity is highly challenging [34]. In addition, no prior
work has considered software diversity metrics as the basis
to adapt a network topology to balance network connectivity
and system security where each node’s software vulnerability
is incorporated into estimating each node’s software diversity.

In this work, we are interested in developing a software
diversity metric to measure a node’s software diversity based
on software vulnerabilities of intermediate nodes on attack
paths reachable to the node.

B. Research Problem

In this work, we develop a software diversity metric for
measuring a network topology in terms of minimizing security
vulnerabilities against epidemic attacks (e.g., malware/virus
spreading) while maintaining a sufficient level of network
connectivity to provide seamless service availability. The pro-
posed software diversity metric can be used to make decisions
related to which two nodes should be disconnected or con-
nected in order to construct an improved network topology
meeting these two goals, minimizing security vulnerability
and maximizing network connectivity. However, identifying
the optimal network topology requires an exponential solution
complexity [55]. In this work, we propose a heuristic method
called software diversity-based adaptation (SDA) to generate
a better network topology that is resilient against epidemic

2 IEEE TRANSACTIONS ON NETWORK SERVICE AND MANAGEMENT, VOL. X, NO. X, MONTH, 2020

attacks with a sufficiently high network connectivity where the
deployment cost is acceptable. We leverage percolation the-
ory [46], which has been used to describe the process or paths
of some liquid passing through a medium. We use site and
bond percolation from this theory to model and analyze attack
processes and defense or recovery processes. Site percolation
(i.e., removing a node) [46] is used to model an attacker’s
behavior in compromising another node, wherein the node
being percolated corresponds to the node being compromised
(infected) by the attacker. This leads to the disconnection of
all edges around the node to reflect its failure or its isolation
by an intrusion detection system (IDS). Bond percolation
is used to model the adaptation of edges between nodes
such that connected nodes with high security vulnerability
(e.g., two connected nodes have the same software package
installed or a neighbor node has high software vulnerability)
are disconnected while disconnected nodes with low or no
security vulnerability (e.g., two disconnected nodes using a
different software with low software vulnerability) can be
connected in a given network.

C. Key Contributions

We made the following key contributions in this work:
• This work is the first that takes a multidisciplinary approach

by considering both the computer science’s software di-
versity to enhance cybersecurity and percolation theoretic
network resilience techniques to study the effect of intercon-
nectivity on network connectivity under epidemic attacks.
To be specific, we develop network adaptation strategies
that determine whether to add or remove edges between
two nodes in a given network, aiming to minimize network
vulnerabilities against epidemic attacks while maintaining
maximum network connectivity. Given that each node is
installed with a set of software (we call it a ‘software pack-
age’), we investigate network resilience and vulnerability
depending on how a network topology is connected under
epidemic attackers who can exploit the vulnerabilities based
on their knowledge on software vulnerabilities.

• We develop a novel software diversity metric that mea-
sures a node’s software diversity level, representing both
the vulnerabilities of attack paths reachable to the node
and the network connectivity. To minimize computational
complexity in estimating the node’s software diversity based
on attack path vulnerability, we utilize the only the k-hop
local neighborhood of the node. This approach provides a
lightweight method to compute each node’s software diver-
sity. To prove the effectiveness of this software diversity
metric, we use it as the criterion to determine whether to
add or remove an edge between two nodes.

• Although most software diversity-based network topology
adaptations are studied by shuffling the types of software
packages [55, 56], our work takes one step further by
changing network topology, which is proven much more
effective than its software shuffling counterpart (e.g., graph
coloring) in reducing vulnerability to epidemic attacks while
maximizing the network connectivity. Further, we broaden
the concept of software diversity by both maintaining the
use of different software in adjacent nodes and minimizing

security vulnerability in each node’s ego network (i.e., local
network within k-hop), which has not been considered in the
state-of-the art. In addition, our proposed software diversity-
based network adaptations are lightweight showing accept-
able operational cost while achieving minimum security
vulnerability and maximum network connectivity, which
opens a door for the applicability in resource-constrained,
contested network environments.

• We validate the outperformance of the proposed SDA strat-
egy by conducting a comprehensive comparative perfor-
mance analysis with the following six schemes (see Section
V-B): non-adaptation, random adaptation, graph-coloring,
and three variants of the proposed SDA strategies. We
analyze the effect of key design parameters such as network
density, attack density, and the number of software packages
available on four performance metrics (see Section V-A),
i.e., the size of the giant component, the fraction of un-
detected compromised nodes, software diversity levels, and
defense cost (i.e., shuffling plus network topology adaptation
costs). We validate the outperformance of our SDA scheme
in three real network topologies covering dense (high),
medium dense, and sparse (low) networks [36]. Further,
to profoundly understand the effect of various network
characteristics, we conduct sensitivity analysis under a ran-
dom graph using the Erdös-Rényi (ER) network model and
analyze the results. Due to space constraints, we placed
these results for the ER network in Sections C.2–C.3 of
the appendix file.

We will discuss the answers to the research questions in
Section VI and summarize our findings in Section VII.

We conducted preliminary work in [9] to evaluate the per-
formance of the software diversity-based network adaptation
algorithms. In this current effort, we substantially extended [9]
by providing the following additional contributions:
• We substantially enhanced the proposed software diversity

metric as shown in Eq. (4). We considered two types of
vulnerabilities to estimate a node’s software diversity: The
node’s vulnerability from the software package installed and
the k-hop attack paths reachable to the node. This allowed us
to capture an individual node’s software diversity in terms of
vulnerabilities at both the node-level and the network-level.

• We also introduced the software diversity ranking threshold
to allow more flexibility of identifying sufficient candidates
for edge adaptations compared to using the software diver-
sity threshold in [9].

• We substantially extended our simulation experiments by us-
ing three real world network topologies representing dense,
medium dense, and sparse networks and four different
metrics measuring both security and performance of a given
network. We also conducted extensive experiments for an in-
depth sensitivity analysis varying the values of key design
parameters.

II. BACKGROUND & RELATED WORK

This section provides an overview of related work and
background literature in terms of the percolation theory studied
for network resilience in Network Science and the software

ZHANG et al.: VULNERABILITY-AWARE RESILIENT NETWORKS: SOFTWARE DIVERSITY-BASED NETWORK ADAPTATION 3

diversity-based approaches studied for system security in
Computer Science.

Percolation Theoretic Network Resilience: Percolation
theory has been substantially used to investigate network
resilience (or robustness) in Network Science. Site percolation
and bond percolation are commonly used to select a node
or an edge to remove or add, to model the choice of nodes
to immunize in the context of epidemics on networks, such
as disease transmission, computer malware/virus spreading,
or behavior propagation (e.g., product adoption) [14, 46].
Recently, percolation theory was leveraged to develop software
diversity techniques particularly to solve a software assign-
ment problem [55, 56] because how nodes are connected mat-
ters in propagating malware infection while choosing nodes
or edges to add or remove is exactly following the concept of
site or bond percolation in percolation theory [46].

The origins of percolation theory come from the mathe-
matical formalization of statistical physics research on the
flow of liquid through a medium [19]. Percolation theory has
been substantially applied to networks to study connectivity,
robustness [5, 46], reliability [37], and epidemics [6, 44]. The
percolation process was studied in computer science under
the notion of “network resilience” [11, 45, 51], independent
of its development in the statistical physics literature. More
recent developments in the physics literature have profoundly
influenced studies in computer science. These contributions
have incorporated the recognition that networks are not derived
from a random structure, and failures of nodes, whether from
attacks or due to dependent cascades, are not uniformly ran-
dom [2]. Hence, significant interest has developed in removal
processes that model targeted attacks on the network using a
centrality metric. In the network science domain, the degree of
network resilience is commonly measured based on the size of
the giant component (i.e., the largest connected component in a
given network), which gives a clear sense of how the network
is connected with a portion of existing nodes even after a
certain number of nodes or edges are removed. Percolation
theory has been used to model various processes on networks
in the context of network failures or attacks, e.g., connectivity,
routing, and epidemic spreading [11, 45].

Software Diversity-based Cybersecurity: Many ap-
proaches have been explored to validate the usefulness of
software or network diversity to ensure network security. Chen
and May [7] investigated the usefulness of software diversity
to enhance security. Huang et al. [27, 28] solved a software
assignment problem by isolating nodes with the same software
to minimize the effect of epidemic worm attacks. Franz
[18] proposed an approach to introduce compiler-generated
software diversity for a large scale network, aiming to create
hurdles for attackers and eliminate any advantage of knowing
the vulnerabilities of a single software. Homescu et al. [23]
presented a large-scale automated software diversification to
mitigate the vulnerabilities exposed by software monoculture.
Yang et al. [55, 56] proposed a software diversity technique
to combat sensor worms by solving a software assignment
problem, given a limited number of software versions avail-
able. The authors used percolation theory to model the design
features of software diversity to defend against sensor worms.

Zhang et al. [58] developed a resilient, heterogeneous
networking-based system where a single solution was common
to increase interoperability. Recently, network diversity is
proposed as a security metric to measure network resilience
against zero-day attacks [57]. Inspired by the network diversity
metrics [57], Li et al. [39] further developed the network
model and diversity metric based on vulnerability similarity,
configuration constraints and multi-label hosts. Hosseini and
Azgomi [26] mathematically analyzed the malware propaga-
tion under a network with six different types of nodes in an
epidemic model. They proved a positive correlation between
network security and the degree of network diversity. Prieto
et al. [48] proposed an optimal software assignment algorithm
with multiple software packages to enhance network resilience
under attacks.

Although the above works discussed the concept of software
diversity to ensure system security, their aim is to solve a
software assignment problem by shuffling different types of
software packages among nodes without changing the network
topology. Unlike the software assignment approach, we aim to
generate an optimal network topology that is resilient against
epidemic attacks while maximizing network connectivity. The
proposed software diversity metric is designed for each node
to make a decision on whether to add or remove an edge
based on the vulnerabilities on the attack paths reachable to
the node [8, 30].

III. SYSTEM MODEL

This section discusses our system model in terms of the
network model, the node model, the attack model, and the
defense model.

A. Network Model

In this work, we assume that our proposed network adap-
tation strategies are applicable in networks with multiple
controllers that can govern a partition of nodes in the network.
Typical examples include a software-defined network (SDN)
where each node can be instructed by the one or more SDN
controllers it is assigned to [32], an edge computing Internet-
of-Things (IoT) system with some edge devices or nodes avail-
able to perform high computing tasks [38], a wireless sensor
network with multiple cluster headers [29], and a hierarchical
mobile ad hoc network with decentralized controllers in charge
of governing a subset of the nodes [10]. In a reconfigurable
network [12, 13, 16, 25, 35, 50, 59], regional controllers
(e.g., SDN controller(s), or any other network controller(s)
in general) can change the flow table in the programmable
switches to reconfigure a logical network topology.

Periodic information exchange between nodes and the re-
gional coordinators is required to ensure seamless operations
of the system. However, since each node’s software diversity
value, which is used to make a decision on edge adaptation
(i.e., adding/removing edges), is computed locally by each
node, a regional coordinator will only need to rank the
software diversity values of neighbor nodes around a target
node, and inform the target node of which edges to add or
remove based on the estimated ranks. Moreover, the ranking

4 IEEE TRANSACTIONS ON NETWORK SERVICE AND MANAGEMENT, VOL. X, NO. X, MONTH, 2020

operation of the neighbor nodes around a target node is only
periodically performed by a regional coordinator and will
not require high communication overhead for each node to
communicate with the regional coordinator.

A temporal network is an undirected network for which the
topology evolution (or change) occurs due to node failures or
nodes being compromised by attackers. In addition, the net-
work may change its topology when adaptation strategies are
performed by connecting between two nodes or disconnecting
all the edges associated with compromised nodes to mitigate
the spread of infection over the network. We use an index to
label a node (e.g„ node i) and characterize its attributes as
described in Section III-B.

An edge between nodes can be on and off depending on
the dynamics caused by node failures, node recovery, or edge
adaptations (i.e., an edge can be added or removed). We
maintain an adjacency matrix A in order to keep track of
direct or indirect connectivities (i.e., edges) between nodes
where aij = 1 indicates there exists an edge between nodes i
and j while aij = 0 indicates that no edge exists.

In order for each node to efficiently estimate its software
diversity by considering the vulnerabilities of attack paths
reachable to the node, it only considers neighboring nodes
within k-hop distance from itself. This k-hop local network is
used for each node to estimate its software diversity value by
considering the vulnerabilities of attack paths within its local
network.

Although we utilize a sufficiently small value of k (e.g., 1
or 2), it does not underestimate the vulnerabilities of possible
attack paths because using smaller k means that an attacker is
nearby within the local network. For example, if an attacker
wants to compromise a particular target node, it may try
multiple attack paths where each attack path has a set of
intermediate nodes. When the attack path is long, it means
the vulnerability of the target node is low as the attacker
needs to compromise all the intermediate nodes in order to
finally compromise the target node. However, when the path
length is small, it does not necessarily decrease the attack path
vulnerability because the attacker is close to the target node.

We assume that software packages installed in each node
and the associated vulnerabilities information are given to the
regional coordinator in the initial network deployment period.
In addition, we assume that each node is also well informed
about the software vulnerability information associated with
the software packages installed in the neighboring nodes in
its k-hop local network. We assume that the changes of
network topology are mainly made by node failures or network
adaptations in this work.

Adding or removing an edge between two nodes requires
secure communications between them. Even if they are within
wireless range of each other but don’t share a secret key
for secure communications, they are not logically connected.
In this work, generating an optimal network topology which
is resilient against epidemic attacks with maximum network
connectivity is based on a logical network topology.

B. Node Model
Each node i is characterized by its attributes as follows:

• Node i’s status on whether it is active or not (i.e., has
sufficient energy and responsiveness regardless of being
compromised or not), denoted by nai, indicating whether
it is alive (= 1) or not (= 0), respectively;

• Node i’s status on whether the node is compromised (= 1)
by an epidemic attack or not (= 0), denoted by nci;

• Node i’s software package installed, representing the diver-
sified package or the version of the same software providing
the same functionality. In this work, we adopt the well-
known software diversification approach called N -version
programming [3, 4]. This concept means that a software has
multiple independent implementations. While these different
implementations of the software can still provide the same
functionalities, since the implementations are different they
naturally have different bugs or vulnerabilities. Following
this concept, we model the node’s software package in-
stalled, denoted by si, with a limited number of software
packages available, Ns, so that si is an integer, ranged
in [1, Ns]. The node’s software package type stays the
same during the adaptation process and our SDA algorithm
aims to answer how to adjust edges between two nodes to
minimize security vulnerability while maximizing network
connectivity. However, a regional coordinator should have
knowledge of the software package information of the nodes
under its region during the deployment phase;

• Node i’s degree of software diversity, sdi, whose physical
meaning is how different node i’s software package is from
its neighbors. The computation of node i’s software diversity
are described in Eq. (4); and

• Node i’s software vulnerability (svi) is the same as the
software vulnerability of the software package (comprising
multiple software products) installed in node i. The software
vulnerability of software package s, denoted by vuls, is
estimated by:

vuls = 1−
∏
k∈S

(1− vk), (1)

where S refers to a set of software products in software
package s, k refers to the kth software product in S, and vk
is vulnerability of the kth software product estimated based
on CVSS scores divided by the maximum CVSS value (i.e.,
10). vuls is calculated as above because software package
s is vulnerable when any single software product contained
within is vulnerable. Suppose node i is installed with soft-
ware package si. Then, node i’s software vulnerability (svi)
is equal to the software vulnerability of software package
si (vulsi).

Based on the above five attributes, node i is characterized by:

node(i) = [nai, nci, si, sdi, svi]. (2)

If attacker j targets vulnerable node i (i.e., a node that has
not been compromised before), which is one of its direct
neighbors, the probability that node j infects node i, denoted
by βji, is estimated based on the probability that node j can
exploit the vulnerability of node i’s software package, si. We

ZHANG et al.: VULNERABILITY-AWARE RESILIENT NETWORKS: SOFTWARE DIVERSITY-BASED NETWORK ADAPTATION 5

estimate this probability based on node i’s vulnerability to
node j, estimated by [20]:

βji =

{
1 if σj(si) > 0;
svi otherwise,

(3)

where σj is a vector of software packages attacker j has
learned about their security vulnerabilities. For example, at-
tacker j knows the vulnerabilities of software packages 1
and 3 among 5 packages available. It is denoted by σj =
[1, 0, 1, 0, 0]. In this case, the sum of σj indicates the total
number of software packages for which attacker j knows the
security vulnerabilities and so can exploit. Note that it is a
dynamic value learned after node j compromises node i via
reconnaissance even if their installed software packages are
different, i.e., si ̸= sj . Here svi refers to the vulnerability
of software package si, which can be estimated based on the
degree of a Common Vulnerabilities and Exposures (CVE)
with a Common Vulnerability Scoring System (CVSS) severity
score [1, 17].

C. Attack Model

This work deals with two stages of attack behaviors: An
outside attacker before the node is compromised and an inside
attacker after the node is compromised but undetected.

(1) Node Compromise by Epidemic Attacks: We consider
the so called epidemic attack which describes an attacker’s
infection behavior based on an epidemic model, called the
SIR (Susceptible-Infected-Removed) model [46]. That is, an
outside attacker can compromise the nodes directly connected
to itself, its direct neighbors, without access rights to their
settings or files. Typical example scenarios include the spread
of malwares or viruses. Botnets can spread malwares or
viruses via mobile devices. A mobile device can misuse a
mobile malware, such as a Trojan horse, thus acting as a
botclient to receive commands and controls from a remote
server [43]. Further, worm-like attacks are popular in wireless
sensor networks where the sensor worm attacker sends a
message to exploit the software vulnerability in order to cause
a crash or take control of sensor nodes [55, 56]. Attacker
j can compromise its direct neighbor i when node i uses
a software package that attacker j can exploit because the
attacker knows the vulnerability of the software package.
This case happens when si is the same as sj or attacker j
learned si’s vulnerability in the past (i.e., σj(si) > 0). When
attacker j is installed with a particular software package, sj ,
we assume that attacker j knows the vulnerability of its own
software package, sj . Attacker j can learn the vulnerabilities
of other software packages although it needs to commit more
time and resources to obtain the information of their security
vulnerabilities. Node i’s vulnerability by attacker j based
on these two cases is reflected in Eq. (3). When node i is
compromised, node i’s status is changed from ‘susceptible’ to
‘infected’ indicating that node i is now an attacker. Then, node
i can infect other nodes and learn their software vulnerabilities,
which are unknown to it. The attack procedures are described
in Algorithm 8 of the appendix file.

TABLE I
KEY NOTATIONS AND THEIR MEANINGS

Notation Meaning
nai Node status for active (= 1) or failed (= 0)
nci Node status for compromised (= 1) or legitimate (= 0)
si Software package installed in node i
sdi Software diversity value of node i
svi Software vulnerability of node i
vuls Software vulnerability of software package s
σj A vector of software packages attacker j learned about

their security vulnerabilities
βji Probability that node j compromises node i
AP Attack path
api A set of attack paths available to node i

apvkij Vulnerability of an attack path j to node i, given the
maximum hop distance k

SDA
diff(i, j) Software diversity difference introduced by adding an

edge between nodes i and j

SDR
diff(i, j) Software diversity difference introduced by removing an

edge between nodes i and j

(2) Malicious Behavior of Compromised Nodes Undetected
by the IDS: Even if an intrusion detection system (IDS) is
assumed to be placed in this work (see Section III-D below), an
attacker may not be detected by the IDS and the inside attacker
can perform malicious behaviors such as packet dropping
attacks (e.g., gray or black hole attacks), data exfiltration
attacks, or denial-of-service (DoS) attacks to compromise the
security goals in terms of loss of confidentiality, integrity, and
availability [15, 54].

D. Defense Model

We assume that a system is equipped with an IDS, which
detects infected (i.e., compromised) nodes. When an infected
node is detected by the IDS, we denote the detection proba-
bility with γ representing the removal probability in the SIR
model. The response to the detected node will be performed
by disconnecting all the edges connected to the detected
attacker, which corresponds to removing the node from the
system based on the concept of site percolation. Note that
the development of an IDS is beyond the scope of this work.
We simply consider the IDS characterized by a false negative
probability 1− γ.

IV. SOFTWARE DIVERSITY BASED ADAPTATION
ALGORITHM DESIGN

In this section, we describe our proposed software diversity
based adaptation (SDA) algorithm design in detail. SDA uses
software diversity as a key determinant to select edges to
percolate (i.e., add or remove) for mitigating the spreading
of compromised nodes by attackers and also to maximize the
network connectivity for network resilience.

A. Software Diversity Metric

A node’s vulnerability is commonly computed based on
the software package installed [20, 21]. However, if the node
is connected with many other nodes that are directly or
indirectly connected, its potential vulnerability is not simply
restricted by the vulnerability of its software package. We
use a broader concept of node vulnerability by incorporating

6 IEEE TRANSACTIONS ON NETWORK SERVICE AND MANAGEMENT, VOL. X, NO. X, MONTH, 2020

the vulnerabilities of attack paths reachable to each node. To
better capture the relationship between node vulnerability and
network topology, we utilize an attack path AP an attacker
can take to successfully compromise a target node. That is,
in order to compromise the target node, the attacker needs
to compromise all intermediate nodes on the attack path.
Hence, we estimate each node’s software diversity value as the
probability that a node is robust against vulnerabilities from
attack paths AP s reachable to the node.

To this end, we consider the shortest paths (i.e., maximum
k-hop distance paths) between boundary nodes (i.e., nodes in
the boundary of a target node’s local network) to a target
node as attack paths. In addition, to reduce the complexity
of measuring each node’s software diversity, we use a limited
number of attack paths, denoted by l, where each path has at
most k-hop distance. Target node i’s software diversity based
on l attack paths within k-hop distance from node i, denoted
by sdi(k, l), is defined by:

sdi(k, l) :=

l∏
j∈api

(1− apvkij), (4)

where api is a set of attack paths available to node i
ranked based on their highest vulnerability and apvkij is the
vulnerability of the attack path j to node i with maximum
hop distance k. In order to consider the maximum number of
nodes associated with the attack paths, we consider disjointed
attack paths (i.e., the j’s in api) from the boundary nodes to
node i.

B. Software Diversity based Bond Percolation for Network
Adaptation

The design objective of SDA is to decide which edges to
add or remove in order to maximize the size of the giant
component (i.e., the largest network cluster in a network) for
maintaining network connectivity and to minimize the fraction
of nodes being compromised due to epidemic attacks with
minimum defense cost defined in Section V-A.

We have two tasks to determine which edges to remove or
add as follows:

1) Estimate the gain or loss as a result of removing or adding
an edge. This is determined from the difference between
a node’s current software diversity value and its expected
software diversity value if the edge adaptation is made
between nodes i and j. To determine if adding an edge
between nodes i and j is beneficial, we compute the
software diversity (SD) difference by comparing the SD
before and after edge adaptations between nodes i and j:

SDA
diff(i, j) = (sdi − sd′i) + (sdj − sd′j), (5)

where, for conciseness, sdi = sdi(k, l) and sdj =
sdj(k, l), which are defined in Eq. (4). sd′i and sd′j are the
expected software diversity values of nodes i and j after
an edge is added. The most promising candidate edge to
be added should be an edge with the lowest SDA

diff(i, j).
The expected software diversity value of node i after
addition of an edge with node j is simply obtained by

sd′i = sdi(1− svi · pvj), (6)

Algorithm 1 Software Diversity-based Adaptation (SDA)
1: N ← The total number of nodes in a network
2: DN ← A vector containing the number of removed edges per

node
3: A← An adjacency matrix for a given network with element aij

for i, j = 1, . . . , N
4: S ← A vector of software packages installed over nodes with

element si for i = 1, . . . , N
5: SV ← A vector of the vulnerabilities associated with software

packages
6: k ← A hop distance given in a node’s local network
7: l← A maximum number of attack paths considered for estimat-

ing a node’s software diversity
8: ρ← A threshold referring to the fraction of edges to be removed

when ρ < 0 and added when ρ > 0
9: A′ ← An adjacency matrix after edges are adapted in Step 1

10: A′′ ← An adjacency matrix after edges are adapted in Step 2
11:
12: A′′ = SDA(DN,A,S,SV, k, l, ρ)
13:
14: Step 1: A′ = SDBA(DN,A,S)) ▷ Remove

edges between two nodes with the same software package based
on Algorithm 1 of the appendix file).

15:
16: Step 2: Add or remove edges locally based on the ranks of

the software diversity differences estimated in Eqs. (5) and (7)
(Algorithms 4 and 5 of the appendix file)

17: SD ← A vector of software diversity where each element,
sdi(k, l), refers to node i’s software diversity value when at most
l number of attack paths are considered where each attack path
has at most k-hop length.

18: PV← A vector of estimated maximal attack path vulnerabilities
associated with each node. ▷ Algorithm 2 of the appendix file.

19: candidate← A set of edge candidates ▷ Algorithms 4 and 5
of the appendix file.

20: Tlocal, T global = setEAB(DN,A′, ρ) ▷ Set edge adaptation
budget based on Algorithm 3 of the appendix file.

21: if ρ > 0 then
22: candidate = GEAC(A′,SD,SV,S,PV,Tlocal)
23: ▷ Algorithm 4 in the appendix file.
24: else
25: candidate = GERC(A′,SD,SV,S,PV,Tlocal)
26: ▷ Algorithm 5 in the appendix file.
27: end if
28: A′′ = AdaptNT(A′, candidate,Tlocal, T global, ρ)
29: ▷ Algorithm 6 in the appendix file.
30: return A′′

where svi is the software vulnerability of the software
package installed in node i (i.e., si) and pvj is the
estimated attack path vulnerability apv of an attack path
from node j to a boundary node in node j’s local
network. That is, svipvj is the estimation of attack path
vulnerability apv of an attack path from node i to a
boundary node in node i’s local network through node j.
sd′j is similarly obtained. To determine if removing the
edge between nodes i and j is beneficial, we compute
the software diversity difference by:

SDR
diff(i, j) = (sd′i − sdi) + (sd′j − sdj), (7)

where now sd′i is computed by:

sd′i = sdi/(1− svi · pvj). (8)

Here the division by (1−svipvj) represents the extent of
reducing the vulnerability by removing an edge between

ZHANG et al.: VULNERABILITY-AWARE RESILIENT NETWORKS: SOFTWARE DIVERSITY-BASED NETWORK ADAPTATION 7

(a) Software diversity estimation of node i (b) Edge adaptations based on software diversity differences

Fig. 1. Example of the software diversity-based adaptation strategies: (a) The estimation of node i’s software diversity value; and (b) The edge adaptation
based on the software diversity difference in Eqs. (5) and (7).

nodes i and j based on Eq. (4). sd′j is similarly obtained.
The most promising candidate edge to be removed should
be an edge with the highest SDR

diff(i, j). See Algorithm 4
(Generates Edge Addition Candidates or GEAC) and
Algorithm 5 (Generates Edge Removal Candidates or
GERC) of the appendix file for details on how we
generate edge candidates for edge addition and removal,
respectively.

2) Estimate how many edges each node can adapt, i.e.,
remove or add. Based on the rationale that high centrality
nodes (e.g., high degree) may expose high vulnerability in
terms of security and network connectivity, we minimize
the difference between the maximum degree and mini-
mum degree by adding more edges to nodes with lower
degree while deleting edges to the nodes with higher
degree. Based on this principle, we develop a heuristic
method to estimate how many edges should be adapted
per node. See Algorithm 3 (Set Edge Adaptations Budget
or SetEAB) of the appendix file for detail.

Algorithm 1 details our proposed software diversity-based
adaptation (SDA) algorithm. In Step 1, it executes SDBA (see
Algorithm 1 of Appendix A) to remove edges between two
nodes with the same software package. Then, it makes the
decision to add or remove edges locally based on the ranking
of software diversity differences estimated in Step 2 using
Eqs. (5) and (7), with the objective to best satisfy both security
vulnerability and network connectivity requirements. It first
sets up the edge adaptation budget based on Algorithm 3 in
Appendix A. Then, the SDA generates edge adaptation can-
didates based on the ranking of software diversity differences
(see Algorithms 4 and 5 of Appendix A). As the last step, the
SDA adapts the network topology based on edge adaptation
candidates and network topology constraints (see Algorithm 6
of Appendix A).

Removing an attack path may increase a chance for at-
tackers to use other attack paths. However, this can make
the average vulnerability of existing attack paths significantly
plummet because the attack paths are not easily exploitable
by the attacker. In addition, we choose adjusting edges (re-

moving or adding) to achieve both security and performance
goals instead of using firewalls because networks could face
significant performance degradation with high security level
firewalls [41].

Fig. 1 illustrates the SDA algorithm execution with an
example network where distinct software packages are marked
with distinct colors. Fig. 1 (a) illustrates how node i estimates
its software diversity value when k = l = 2. Fig. 1 (b)
illustrates how node i determines whether to add or remove
edges based on the software diversity differences, SDA

diff and
SDR

diff , based on Eqs. (5) and (7), respectively.

C. Practical Operations of the SDA Algorithm

Several practical real-world examples of network topol-
ogy adaptation (by reconfiguration) are given below. In an
SDN, since its key merit is flexible manageability that can
separate data plane from control plane, an SDN controller
has been commonly used to reconfigure a logical network
topology in its flow table so that packets can be forwarded
based on routing instructions given from the SDN controller
at node levels [25]. Generating virtual network topologies,
called “virtual topology design”, in optical networks is well-
known to optimize service provision [16, 59]. In wireless
sensor networks, network topology reconfiguration has been
frequently considered for accurate estimates of sensed data by
sensors where a gateway provides each node its next node to
which a packet is forwarded [13, 35]. Moreover, by opening
sectionalizing and closing tie switches of the network, power
distribution systems perform efficient and effective network
reconfigurations to minimize their power loss [12, 50].

An example of day-to-day operations can include network
configurations, parameter updates, and maintenance operations
upon attacks or outages when the proposed SDA algorithm
is applied in a given network. Since there is a potential for
service degradation while SDA is actively being applied, there
is a tradeoff between the frequency of implementation of SDA
thereby enhancing network survivability and the service per-
formance of the system. We currently envision an infrequent
active implementation to limit any effect on network service

8 IEEE TRANSACTIONS ON NETWORK SERVICE AND MANAGEMENT, VOL. X, NO. X, MONTH, 2020

during the execution of the adaptations. These operations can
be performed based on the following procedures: (1) Network
Configurations: A network needs to be configured with the
key design parameters that the SDA algorithm requires. For
instance, we need to configure the values of key parameters
(see Table II) affected by the network density and system
constraints of the current state of the network. (2) Parameter
Updates: As network and environmental conditions may vary
due to network topology changes (e.g., node mobility or
failure) or attacks, each node needs to calculate its software
diversity value based on the change and dynamics periodically.
We assume that each node’s software diversity value will be
updated upon an event or time interval; (3) Maintenance: Each
node will inform its software diversity value to the regional
coordinator periodically. We assume that all network configu-
ration information is backed up and can provide redundancy
to maintain reliability and resilience. Under some situations
caused by power outage, operational failures, or successful
internal and external attacks, the backup information of the
network configuration will be used. Since each node performs
periodic calculation of its software diversity value based on
the changed network conditions and relays this value to the
regional coordinator, no additional overhead will be generated.

V. EXPERIMENTAL SETUP

In this section, we describe the performance metrics, the
counterpart baseline schemes against which our proposed SDA
algorithm (i.e., Algorithm 1) is compared for performance
comparison, and the simulation environment setup for perfor-
mance evaluation.

A. Performance Metrics

We use the following performance metrics:
• Software diversity (SD): This metric measures the mean

software diversity for all nodes in a network. Since node i’s
software diversity, i.e., sdi, is computed based on Eq. (4),
the mean software diversity for all nodes in the network is
obtained by:

SD =

∑N
i=1 sdi
N

. (9)

Recall that k is used to determine node i’s local network
and thus is the maximum possible hop distance from node
i to all other neighboring nodes in its local network. Higher
software diversity is more desirable to ensure high system
security.

• Size of the giant component (Sg): This metric captures
the degree of network connectivity composed of non-
compromised (uninfected), active nodes in a network. Sg

is computed by:

Sg =
Ng

N
, (10)

where N is the total number of nodes in the network and
Ng is the number of nodes in the giant component. Higher
Sg is more desirable, implying higher network resilience in
the presence of epidemic attacks.

• Fraction of compromised nodes (Pc): This metric mea-
sures the fraction of the number of compromised nodes due

to epidemic attacks over the total number of nodes in a
network. This includes both currently infected (not detected
by the IDS) and removed (previously infected and detected
by the IDS) nodes. Pc is computed by:

Pc =
Nc

N
, (11)

where Nc represents the total number of compromised
nodes after epidemic attacks on a network (i.e., the original
network under No-Adaptation and an adapted network under
all adaptation schemes). See Section V-B for a listing of
counterpart baseline schemes against which our proposed
SDA algorithm is compared for a comparative performance
analysis.

• Defense cost (Dc): This metric measures the defense cost
associated with the following defense strategies employed
by an adaptation scheme: (1) edge adaptations (i.e., adding
or removing edges) to isolate detected attackers (or compro-
mised nodes) by the IDS; (2) edge adaptations to maximize
software diversity by each node based on the value of
the software diversity metric in Eq. (4); and (3) shuffling
operations based on the fraction of nodes whose software
package is randomly shuffled over the total number of nodes.
Dc is computed by:

Dc =
sum(|A−B|)
sum(A+B)

+
NSF

N
(12)

In the first term, the numerator refers to the differences of
edges between the adjacency matrix of an original network
B and that of an adjusted network A after edges adaptations
are made. The denominator is the sum of the addition of
the two matrices. In the second term, NSF is the number of
nodes whose software packages are shuffled and N is the
total number of nodes. Note that when a node’s software
package is shuffled but stays with its original software
package, it is excluded from counting toward NSF . This
shuffling cost is estimated only when shuffling a software
package is used such as random graph coloring, which is
compared against our proposed SDA scheme in our work.
Lower defense cost is more desirable.

B. Counterpart Baseline Schemes for Performance Compari-
son

In this work, we compare the performance of our proposed
SDA scheme against No-adaptation (No-A), Random adap-
tation (Random-A), and Random graph coloring (Random-
Graph-C) counterpart baseline schemes for a comparative
performance analysis.

Our SDA scheme uses the software diversity-based metric
in Eq. (4) to select an edge to remove or add based on the
concept of bond percolation, as discussed in Section II. To be
specific, SDA first removes all edges between two connected
nodes with the same software package as shown in Step 1 of
Algorithm 1 (i.e., executing Algorithm 1 in the appendix file).
Then SDA decides a set of edges to be added or removed
given ρ (the percentage of edges to be added if ρ > 0 or to
be removed if ρ < 0) as shown in Step 2 of Algorithm 1. The

ZHANG et al.: VULNERABILITY-AWARE RESILIENT NETWORKS: SOFTWARE DIVERSITY-BASED NETWORK ADAPTATION 9

effect of ρ on performance will be analyzed in Section V-C3 to
identify the optimal ρ value that can best balance security and
network connectivity. We experiment with various ρ values
in the range of [−1, 1] where −1 means removing all edges
(such that no edges exist in the network) and 1 means fully
restoring edges removed from Step 1. For example, SDA with
ρ = 1 means fully restoring edges lost from Step 1 while SDA
with ρ = 0 refers to only executing Step 1 (removing edges
between two nodes with the same software package). SDA
with ρ = 0.6 means only restoring 60% of the edges lost in
Step 1 while SDA with ρ = −0.6 means removing 60% of
edges in the network after Step 1. What edges to remove or
add (see Step 2 of Algorithm 1) significantly affects network
security and resilience.

Below we briefly discuss the three counterpart baseline
schemes to be compared against our proposed SDA schemes:

• No-adaptation (No-A): This represents the case in which
no adaptation is applied, thus showing the effect of attacks
on the performance of the original network. However, we
allow an IDS to detect attackers. When the IDS detects
compromised nodes with probability γ, all edges connected
to the detected attacker will be disconnected in order to
isolate the attackers, ultimately resulting in mitigating the
spread of compromised nodes in the network. Therefore,
when No-A is used, the adaptation cost can be high because
the number of edges disconnected is affected by the network
topology, which is one of the key factors impacting the
degree of network vulnerability.

• Random adaptation (Random-A): This scheme first re-
moves an edge between two nodes with the same software
package (i.e., executing Algorithm 1 in the appendix file)
and then randomly adds edges between nodes with a differ-
ent software package (see Algorithm 7 in the appendix file).
In this scheme, we add the same number of edges lost due
to the execution of Step 1.

• Random graph coloring (Random-Graph-C): This
scheme uses a simple rule for each node to shuffle its
software package with the least common software package
without changing any network topology. As a special case,
when a node has many neighbors, it may choose the
least common software package of those used among its
neighbors. It may occur that a node shuffles to its original
software package. In such a case, when the shuffled software
package is the same as the original software package, we
do not count it toward the shuffling cost in Eq. (12). We
treat this scheme as an adaptation scheme because it also
involves changing a configuration of its software by using
a different implementation although it does not make any
change to the network topology.

The pseudocode for SDA is presented in Algorithm 1 and
that for Random-A is described in Algorithm 7 of the appendix
file. In our experiment, we compare the performance of No-A,
Random-A, Random-Graph-C, and three variants of SDA with
three different thresholds ρ in terms of the 4 performance met-
rics discussed in Section V-A. We treat Random-A, Random-
Graph-C, and the SDA schemes as adaptation schemes while
No-A is treated as a baseline scheme without adaptation.

TABLE II
KEY DESIGN PARAMETERS, THEIR MEANINGS, AND THEIR DEFAULT

VALUES.
Param. Meaning Value
N Total number of nodes in a network 1000
p Connection probability between pairs of nodes

in a ER network
0.025

γ Intrusion detection probability 0.95
k The upper bound of hops considered in calcu-

lating software diversity SDi
k,l

[1,2]

l The upper bound of # of paths considered in
calculating software diversity SDi

k,l

1

nr Number of simulation runs 100
Ns Number of software packages available [3,7]
Pa Percentage of attackers in a network [10,30]
ρ Threshold of fraction of edges adapted [−1, 1]

SV

A vector of vulnerabilities associated with soft-
ware packages which are selected based on the
uniform distribution with the range in (0, 0.5]
(i.e., U(0, 0.5]). For the maximum 7 different
software packages, the SV of the correspond-
ing vulnerabilities are used.



0.41
0.35
0.48
0.22
0.16
0.19
0.12



T

C. Environment Setup

1) Parameters and Data Collection: Table II summarizes
the key parameters, their meanings, and their default values
used in this work. We use the average of the performance
measures collected based on 100 simulation runs. In the
experiment, we examine the effect of the following key design
parameters on performance: (1) attack density (i.e., percent-
age of attackers); and (2) the number of software packages
available. For the ER network, we also study the effect of the
network connection probability on performance in Section C.3
of the appendix file.

2) Network Topology Datasets: We setup 4 different undi-
rected networks to evaluate the proposed work: (1) a sparse
network from an observation of the Internet at the autonomous
systems level [36]; (2) a medium dense network derived from
an Enron email network [36]; (3) a dense Facebook ego net-
work [36]; and (4) an Erdös-Rényi (ER) random network [46].
The network topologies and their degree distributions are
shown in Figs. 1 and 2 of the appendix file. Except for
the medium dense network, we use the original network
topologies. For the medium dense network, in order to derive
a network of comparable size with the other networks (the
Enron email network has 36,692 nodes and 183,831 edges)
we generate the medium dense network with 985 nodes and
7,994 edges using the following procedure: (i) Rank all nodes
in the Enron email network by degree in descending order; (ii)
identify the medium dense network as the largest connected
component of the induced subgraph consisting of nodes with
ranks from 501 to 1500.

3) Optimal Parameter Settings Used for SDA: Fraction of
edges to be adapted (ρ): We have conducted a sensitivity
analysis of ρ for the SDA scheme in terms of maximizing
the size of the giant component (Sg) for network resilience
without overly increasing the fraction of compromised nodes
(Pc) for network security. As shown in Fig. 2, the optimal
ρ for the SDA scheme with respect to Sg and Pc in dense,
medium dense, and sparse networks have been identified as
ρ = −0.6, ρ = −0.4 and ρ = 1, respectively. Due to space

10 IEEE TRANSACTIONS ON NETWORK SERVICE AND MANAGEMENT, VOL. X, NO. X, MONTH, 2020

(a) Dense Network (b) Medium Network (c) Sparse Network

Fig. 2. Effect of ρ (fraction of edges to be adapted) on performance of SDA in terms of the size of the giant component (Sg) and the fraction of compromised
nodes (Pc). The optimal ρ for the SDA scheme with respect to Sg and Pc in dense, medium dense, and sparse networks are identified as ρ = −0.6, ρ = −0.4
and ρ = 1, respectively.

constraints, we have conducted the sensitivity analysis of ρ for
the ER random network in Appendix C.2 of the appendix file,
from which we have observed the optimal ρ with respect to Sg

and Pc for the ER random network is −0.6. In summary, the
optimal values of ρ are observed at −0.6, −0.4, 1, and −0.6
for dense, medium dense, sparse, and ER random networks,
respectively.
The number of maximum attack paths (l) and the max-
imum hop distance in each attack path (k): The network
type (i.e., dense, medium dense, sparse, or ER random) affects
node density which in turn can affect the optimal setting of l
and k under which SDA can best achieve both security (i.e.,
a low fraction of compromised nodes) and network resilience
(i.e., a large size of the giant component). We have conducted
a sensitivity analysis of l or k on the performance of the SDA
scheme in all four types of networks. Due to space constraints,
we put the sensitivity analysis of l and k on performance of
SDA in Sections D and E of the appendix file. In summary,
for dense, medium dense, and ER random networks, we have
selected k = 1 and l = 1 to calculate software diversity
sdi(k, l) for each node in the network because we have
observed no significant performance improvement with k > 1
and l > 1. For the sparse network, we have not observed high
sensitivity when l > 1. However, for k, we have observed that
SDA performs the best when k = 2 with ρ = 1. Thus, we
have selected k = 2 and l = 1 for the sparse network.

Although network connectivity during the edge adaptation
process is highly sensitive to the network density (i.e., the
number of edges), a network can be either more or less
vulnerable to the epidemic attacks than another network even
when both have the same density due to differences in the
topology. Since our proposed SDA algorithm has both the
removing-only phase and the recovery phase that can adapt
edges based on software diversity, it can meet the goals
of maximizing network connectivity and minimizing security
vulnerability in the network.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the experimental results for
a comparative performance analysis of the proposed SDA
scheme against the counterpart baseline schemes and provide
physical interpretations of the results. In our experiment, we
compare 6 schemes: (1) Non-adaptation (No-A); (2) Random
adaptation (Random-A); (3) Random graph coloring (Random-
Graph-C); (4) SDA with ρ = 0; (5) SDA with ρ = 1; and

(6) SDA with optimal ρ. See Section V-B for more detail on
how each scheme is implemented. The 6th scheme "SDA with
optimal ρ" is network-type dependent. As discussed earlier in
Section V-C3, the optimal values of ρ are observed at −0.6,
−0.4, 1, and −0.6 for dense, medium dense, sparse, and ER
random networks, respectively.

Initially a set of attackers is randomly and uniformly dis-
tributed to the network based on the percentage of attackers
parameter Pa and all such attackers perform epidemic attacks
as described in Section III-C. See Algorithm 8 of the appendix
file for detail on how the attackers perform epidemic attacks.
Below we only report the experimental results under dense,
medium dense, and sparse networks. The experimental results
under the ER random network are reported in Section C.3 of
the appendix file due to space constraints.

A. Comparative Performance Analysis under a Dense Network

1) Effect of Varying the Fraction of Initial Attacks (Pa):
Fig. 3 shows the effect of varying the attack density (Pa) on
the performance of the six schemes in terms of the four metrics
in Section V-A under the dense network, whose network
topology and degree distribution are shown in Fig. 1 (a) of
the appendix file. We observe that increasing the percentage of
attackers (Pa) decreases software diversity (SD) and the size
of the giant component (Sg) while increasing the percentage
of compromised nodes (Pc) and the defense cost (Dc). We
note that when more nodes are compromised, the defense cost
would also increase since it requires more site percolation
based adaptations to be performed when compromised nodes
are detected by the IDS (i.e., for disconnecting all edges of a
detected, compromised node).

The overall performance order with respect to Pc (represent-
ing network security) and Sg (representing network connec-
tivity and resilience) is observed as: SDA with optimal ρ (set
at −0.6) ≥ SDA with ρ = 0 ≥ Random-Graph-C ≈ No-A ≥
SDA with ρ = 1 ≥ Random-A. It is apparent that the network
density of a given network significantly affects both security
and performance since SDA with ρ = −0.6 and SDA with
ρ = 0 have relatively fewer edges after adaptation and perform
better than the other schemes in terms of Pc, Sg and SD (i.e.,
the average software diversity level), as shown in Figs. 3 (a)-
(c).

In Fig. 3 (d), SDA with optimal ρ (set at −0.6) also shows
significant resilience with relatively low defense cost (Dc) as

ZHANG et al.: VULNERABILITY-AWARE RESILIENT NETWORKS: SOFTWARE DIVERSITY-BASED NETWORK ADAPTATION 11

(a) Fraction of compromised nodes (Pc) (b) Size of the giant component (Sg) (c) Software diversity (SD) (d) Defense cost (Dc)

Fig. 3. Effect of varying the fraction of attackers (Pa) under a dense network.

(a) Fraction of compromised nodes (Pc)(b) Size of the giant component (Sg) (c) Software diversity (SD) (d) Defense cost (Dc)

Fig. 4. Effect of the number of software packages (Ns) under a dense network.

(a) Fraction of compromised nodes (Pc)(b) Size of the giant component (Sg) (c) Software diversity (SD) (d) Defense cost (Dc)

Fig. 5. Effect of varying the fraction of attackers (Pa) under a medium network.

(a) Fraction of compromised nodes (Pc)(b) Size of the giant component (Sg) (c) Software diversity (SD) (d) Defense cost (Dc)

Fig. 6. Effect of the number of software packages (Ns) under a medium network.

Pa increases. The overall performance order for the other five
schemes in Dc is: Random-Graph-C ≥ Random-A ≥ SDA
with ρ = 1 ≥ SDA with ρ = 0 ≥ No-A. Not only do the
SDA schemes outperform the counterpart baseline schemes in
Pc, Sg , and SD, but also the defense cost of SDA schemes
are significantly lower than that of Random-Graph-C and are
comparable with Random-A (e.g., compared to SDA with

optimal ρ = −0.6) and No-A (e.g., compared to SDA with
ρ = 0). This is a significant merit as SDA-based schemes
outperform the counterpart baseline schemes with relatively
low defense cost.

2) Effect of Varying the Number of Software Packages
(Ns): Fig. 4 shows the effect of varying the number of
software packages available (Ns) on the performance of the

12 IEEE TRANSACTIONS ON NETWORK SERVICE AND MANAGEMENT, VOL. X, NO. X, MONTH, 2020

six schemes with respect to the metrics defined in Section V-A
under the dense network. We observe that increasing the
number of software packages available (Ns) increases software
diversity (SD) and the size of the giant component (Sg) while
decreasing the percentage of compromised nodes (Pc) and
the defense cost (Dc). Note that based on the concept of
N -version programming, the number of software packages
(Ns) here refers to the number of versions being implemented
for the same piece of software. Hence, as Ns increases, the
software diversity strength increases, resulting in a decrease
of the percentage of nodes being compromised due to attacks,
an increase of the network connectivity, and a decrease of the
defense cost because less nodes are being compromised.

The overall performance order in Pc, Sg , and SD is very
similar to what we observed in Fig. 3, with SDA with optimal
ρ = −0.6 outperforming all other schemes. For Dc, SDA with
optimal ρ = −0.6 generates a defense cost comparable to that
generated by Random-A and in-between those generated by
No-A (lowest cost) and Random-Graph-C (highest cost).

B. Comparative Performance Analysis Under a Medium Net-
work

1) Effect of Varying the Fraction of Initial Attacks (Pa):
Fig. 5 demonstrates the effect of varying the percentage
of initial attacks on metrics defined in Section V-A under
the medium network, whose network topology and degree
distribution are shown in Fig.1 (b) of the appendix file. Similar
to Fig. 3, Fig. 5 also shows that increasing the percentage of
attackers (Pa) decreases software diversity (SD) and the size
of the giant component (Sg) while increasing the percentage
of compromised nodes (Pc) and the defense cost (Dc).

The overall performance order in terms of Pc (representing
network security) and Sg (representing network connectivity
and resilience) is: SDA with optimal ρ = −0.4 ≥ SDA with
ρ = 0 ≥ SDA with ρ = 1 ≈ Random-A ≥ Random-Graph-
C ≈ No-A. In terms of SD (software diversity), a similar
performance order is observed except that Random-Graph-
C has a higher SD than No-A. These results demonstrate
that SDA schemes clearly are more effective than traditional
software shuffling schemes that do not change the network
topology (e.g., Random-Graph-C). For the defense cost (Dc),
the overall performance order (the lower cost the better) is:
Random-Graph-C ≥ SDA with optimal ρ = −0.4 ≥ Random-
A ≈ SDA with ρ = 1 ≥ SDA with ρ = 0 ≥ No-A.
Again these results support the claim that SDA-based schemes
incur relatively low cost, while outperforming all counterpart
baseline schemes in Pc, Sg , and SD.

2) Effect of Varying the Number of Software Packages
(Ns): Fig. 6 shows the effect of Ns on performance under
the medium network. We again observe that increasing the
number of software packages available (Ns) increases software
diversity (SD) and the size of the giant component (Sg) while
decreasing the percentage of compromised nodes (Pc) and
the defense cost (Dc). The overall performance order is the
same as that in Figs. 5, with SDA with optimal ρ = −0.4
outperforming all other schemes in terms of SD, Sg , and Pc

and performing comparably to Random-A in terms of Dc.

By comparing Fig. 6 (for the medium dense network) with
Fig. 4 (for the dense network), we also observe that SDA with
optimal ρ is more effective in the dense network. We attribute
this to node density. That is, SDA is more effective when there
are many connections between nodes in the network allowing
SDA to effectively decide which edges to add or remove to
effectively maximize software diversity (SD) and the size of
the giant component (Sg) thereby minimizing the percentage
of compromised nodes (Pc).

C. Comparative Performance Analysis Under a Sparse Net-
work

1) Effect of Varying the Fraction of Initial Attacks (Pa):
Fig. 7 shows the effect of varying the initial attack density (Pa)
on the performance of the five schemes with respect to the 4
performance metrics discussed in Section V-A under the sparse
network, whose network topology and degree distribution are
shown in Fig. 1 (c) of the appendix file. Unlike in the cases
of the medium and dense networks, the SDA with optimal ρ
scheme in the sparse network is the same as the SDA with
ρ = 1 scheme which restores all edges from the lost edges
in Step 1 (i.e., ρ = 1). Therefore, we only show comparative
experimental results of the five schemes.

In the sparse network, the degrees of most nodes are very
small, implying that nodes are minimally connected where
most nodes only have 1-3 neighbors at most. This means
that the network itself is relatively much less vulnerable to
epidemic attacks because the attackers inherently cannot reach
many nodes to compromise due to network sparsity. On the
other hand, this means that when there is a higher percentage
of attackers, the damage upon an attack success (i.e., failing
or compromising a node) is more detrimental by resulting in
a much smaller size of the giant component representing a
significantly lower network resilience (or availability), which
introduces a great hindrance to providing continuous services
due to a lack of paths available from a source to a destination.
This trend can be clearly observed with the sharp decrease
in the size of the giant component (Sg) under high attack
density (i.e., Pa = 0.24), when compared to the corresponding
results under the medium network (i.e., Fig. 5 (b)). A more
interesting result is that the overall performance trend does
not follow the previous results shown under the dense network
(i.e., Fig. 3) and medium network (i.e., Fig. 5) which have a
sufficiently larger number of edges than the sparse network.
The performance order in Sg is: SDA with optimal ρ = 1 ≥
Random-A ≥ Random-Graph-C ≈ No-A ≥ SDA with ρ = 0.
Since the original network itself is sparsely connected, SDA
with ρ = 0 is not as effective as shown in our previous results
for Sg under the dense network (see Fig. 3) and medium
network (see Fig. 5). SDA with optimal ρ = 1 with all edges
restored from the lost edges in Step 1 performs the best in
Sg . This result is reasonable because the sparse network does
not need to disconnect more edges because it is already sparse
enough and significantly less vulnerable to epidemic attacks.

The overall performance with respect to Pc is very similar
among all five schemes, with slightly better results in the
two SDA schemes. Similarly to the result shown for the

ZHANG et al.: VULNERABILITY-AWARE RESILIENT NETWORKS: SOFTWARE DIVERSITY-BASED NETWORK ADAPTATION 13

(a) Fraction of compromised nodes (Pc)(b) Size of the giant component (Sg) (c) Software diversity (SD) (d) Defense cost (Dc)

Fig. 7. Effect of varying the fraction of attackers (Pa) under a sparse network.

(a) Fraction of compromised nodes (Pc) (b) Size of the giant component (Sg) (c) Software diversity (SD) (d) Defense cost (Dc)

Fig. 8. Effect of the number of software packages (Ns) under a sparse network.

dense network, Random-Graph-C exhibits the same level of
performance as No-A in Pc and Sg , but with a higher software
diversity (SD). This indicates the advantage of topology-aware
adaptation in a sparse network. For the defense cost (Dc)
the performance order is: Random-Graph-C ≥ Random-A ≥
SDA with optimal ρ = 1 ≥ SDA with ρ = 0 ≥ No-A. It
is interesting to observe that all SDA-based schemes incur
a lower defense cost than Random-A and Random-Graph-C
possibly due to fewer compromised nodes in the system and
thus less frequent IDS interventions.

2) Effect of Varying the Number of Software Packages (Ns):
Fig. 8 shows the effect of varying the number of software pack-
ages available (Ns) on the performance of the five schemes
under the sparse network. As expected, as Ns increases, SD
(software diversity) increases and Dc (defense cost) decreases.
As Ns increases, Sg (size of the giant component) also
increases for all schemes except for the SDA with optimal
ρ = 1 scheme. The reason is that when ρ = 1, SDA will
restore all edges removed in Step 1 (see Step 1 in Algorithm 1).
When Ns is higher, fewer edges will be removed in Step 1
because of a smaller probability that two neighbor nodes will
have the same software package. Consequently, when Ns is
higher, the very same smaller number of edges will be added
back in Step 2 (see Step 2 in Algorithm 1), thus resulting in
the size of the giant component in the shuffled topology not
necessarily larger than the one when Ns is lower.

By comparing Fig. 8 (for the sparse network) with Fig. 6
(for the medium dense network) and Fig. 4 (for the dense
network), we notice that SDA with optimal ρ is most effective
in the dense network. We conclude that our proposed SDA
algorithm is most effective in a dense network under which
SDA can effectively decide which edges among many to add
or remove to effectively maximize software diversity (SD) and

the size of the giant component (Sg) as well as minimizing
the percentage of compromised nodes (Pc).

VII. CONCLUSIONS

A. Summary

In this section, we summarize the contributions of this work:

• We proposed a software diversity metric based on vulnera-
bilities of attack paths reachable to each node. We called
this scheme ‘software diversity-based adaptation’ (SDA)
and used it to adapt edges to generate a resilient network
topology that can minimize security vulnerability while
maximizing network resilience (or connectivity) to provide
seamless services under epidemic attacks.

• We conducted extensive simulation experiments in order
to demonstrate the performance of the proposed SDA
scheme compared against other existing counterpart baseline
schemes (i.e., random adaptation, random graph coloring,
and no adaptation). Via extensive simulation experiments,
we found our proposed SDA scheme outperforms coun-
terpart baseline schemes in terms of the fraction of com-
promised nodes by epidemic attacks, the size of the giant
component, and the level of software diversity. In addition,
we analyzed the defense cost associated with each scheme
and proved the proposed SDA scheme incurs comparable
defense cost over existing counterparts.

• We also identified the optimal setting for executing SDA
to meet the imposed performance goals. This allows each
node to efficiently compute its software diversity value
and use it for adapting edges to maximize its software
diversity, leading to minimizing security vulnerability while
maximizing network connectivity.

14 IEEE TRANSACTIONS ON NETWORK SERVICE AND MANAGEMENT, VOL. X, NO. X, MONTH, 2020

• We conducted an extensive simulation study with four
different real networks in order to investigate the effect
of network density on the optimal setting of SDA under
which it can best achieve the dual goals of security (i.e.,
minimum vulnerability) and performance (i.e., maximum
network connectivity).

• We effectively incorporated the techniques of percola-
tion theory in the network science domain into software
diversity-based security analysis in the computer science
domain. To be specific, in terms of the computer science
perspective, the proposed software diversity metric used
attack path vulnerabilities, which are derived based on
software vulnerabilities of the intermediate nodes on the
attack paths. On the other hand, in terms of the network
science perspective, this work also adopted percolation
theory to examine the effect of software diversity-based edge
adaptation on network resilience measured by the size of the
giant component. Based on the rationale that network in-
terconnectivity can increase both network vulnerability and
network connectivity [5], this work addressed the tradeoff
relationship in the context of cybersecurity, which has not
been addressed in the literature.

B. Key Findings

From our extensive simulation experiments, we obtained the
following key findings:
• Overall under epidemic attacks, more interconnectivity be-

tween nodes in a network introduces higher security vulner-
ability while bringing a larger size of the giant component,
implying higher network connectivity. In addition, when two
nodes use the same software package where the vulnerability
of the software package is known to an attacker, it provides
a high advantage to the attacker. How nodes are connected
to each other is highly critical in determining the network’s
vulnerability to epidemic attacks.

• Even if two network topologies have the same network
density (i.e., the same number of edges), how nodes are
connected to each other can vastly change the extent of
the security vulnerability to epidemic attacks. It is even
possible that a sparser network may introduce more security
vulnerability than a denser network depending on how the
nodes are connected to each other.

• It is not necessary to consider the entire network topology
for each node to make effective edge adaptation decisions to
minimize security vulnerability while maximizing network
connectivity. Our SDA algorithm allows each node to make
effective decisions on edge adaptation in a lightweight
manner. This is because edge adaptation decisions are
determined based on ranking of node software vulnerability
values, which is more flexible than using a threshold, to
achieve the dual goals of security and performance.

• Under medium dense and dense networks, our SDA
scheme significantly outperforms existing counterpart base-
line schemes. However, under the sparse network, although
our SDA scheme still outperforms other schemes, the differ-
ence was less significant. We conclude that our SDA scheme
is most effective in a dense network under which SDA can

effectively decide which edges among many existing con-
nections to add or remove to effectively maximize software
diversity and the size of the giant component as well as
minimizing the percentage of compromised nodes.

• Our proposed SDA scheme is extremely resilient to harsh
environments. The performance gain relative to counterpart
baseline schemes increases as the environment is harsher,
i.e., as the percentage of attackers increases or as the number
of the software packages decreases. This proves the high
resilience of the proposed SDA scheme under a highly
disadvantageous environment.

REFERENCES

[1] “Common Vulnerability Scoring System (CVSS).”
[Online]. Available: https://www.first.org/cvss/

[2] R. Albert, H. Jeong, and A. Barabási, “Error and attack
tolerance of complex networks,” nature, vol. 406, no.
6794, pp. 378–382, 2000.

[3] A. Avizienis, “On the implementation of N-version pro-
gramming for software fault tolerance during execution,”
Proc. COMPSAC, pp. 149–155, 1977.

[4] ——, “The N-version approach to fault-tolerant soft-
ware,” IEEE Transactions on Software Engineering,
vol. 11, no. 12, pp. 1491–1501, Dec. 1985.

[5] A.-L. Barabási, Network Science, 1st ed. Cambridge
University Press, 2016.

[6] J. L. Cardy and P. Grassberger, “Epidemic models and
percolation,” Journal of Physics A: Mathematical and
General, vol. 18, no. 6, p. L267, 1985.

[7] L. Chen and J. H. R. May, “A diversity model based on
failure distribution and its application in safety cases,”
IEEE Transactions on Reliability, vol. 65, no. 3, pp.
1149–1162, Sept. 2016.

[8] Y. Chen, B. Boehm, and L. Sheppard, “Value driven
security threat modeling based on attack path analysis,”
in 2007 40th Annual Hawaii International Conference
on System Sciences (HICSS’07), 2007, pp. 280a–280a.

[9] J.-H. Cho and T. J. Moore, “Software diversity for
cyber resilience: percolation theoretic approach,” Nature-
Inspired Cyber Security and Resiliency: Fundamentals,
techniques and applications, p. 313, 2019.

[10] J.-H. Cho, I.-R. Chen, and D.-C. Wang, “Performance
optimization of region-based group key management
in mobile ad hoc networks,” Performance Evaluation,
vol. 65, no. 5, pp. 319–344, 2008.

[11] C. Colbourn, “Network Resilience,” SIAM Journal on
Algebraic Discrete Methods, vol. 8, no. 3, pp. 404–409,
1987.

[12] D. Das, “A fuzzy multiobjective approach for network re-
configuration of distribution systems,” IEEE transactions
on power delivery, vol. 21, no. 1, pp. 202–209, 2005.

[13] A. Desai and S. Milner, “Autonomous reconfiguration
in free-space optical sensor networks,” IEEE Journal on
Selected Areas in Communications, vol. 23, no. 8, pp.
1556–1563, 2005.

[14] Z. Dezsö and A.-L. Barabási, “Halting viruses in scale-
free networks,” Physical Review E, vol. 65, May 2002.

ZHANG et al.: VULNERABILITY-AWARE RESILIENT NETWORKS: SOFTWARE DIVERSITY-BASED NETWORK ADAPTATION 15

[15] Q. Do, B. Martini, and K.-K. R. Choo, “Exfiltrating data
from Android devices,” Computers & Security, vol. 48,
pp. 74–91, 2015.

[16] N. Fernández, R. J. D. Barroso, D. Siracusa,
A. Francescon, I. de Miguel, E. Salvadori, J. C. Aguado,
and R. M. Lorenzo, “Virtual topology reconfiguration in
optical networks by means of cognition: Evaluation and
experimental validation [invited],” IEEE/OSA Journal of
Optical Communications and Networking, vol. 7, no. 1,
pp. A162–A173, 2015.

[17] “Common Vulnerabilities and Exposures (CVE),” Forum
of Incident Response and Security Teams. [Online].
Available: https://cve.mitre.org/

[18] M. Franz, “E unibus pluram: Massive-scale software
diversity as a defense mechanism,” in Proceedings of the
2010 New Security Paradigms Workshop, ser. NSPW ’10.
New York, NY, USA: ACM, 2010, pp. 7–16.

[19] G. Grimmett, “Percolation and disordered systems,” in
Lectures on Probability and Statistics. Springer Berlin
Heidelberg, 1997, pp. 153–300.

[20] K. J. Hole, “Diversity reduces the impact of malware,”
IEEE Security Privacy, vol. 13, no. 3, pp. 48–54, May
2015.

[21] ——, “Toward anti-fragility: A malware-halting tech-
nique,” IEEE Security Privacy, vol. 13, no. 4, pp. 40–46,
July 2015.

[22] ——, “Diversity reduces the impact of malware,” IEEE
Security & Privacy, vol. 13, no. 3, pp. 48–54, 2013.

[23] A. Homescu, T. Jackson, S. Crane, S. Brunthaler,
P. Larsen, and M. Franz, “Large-scale automated soft-
ware diversity–program evolution redux,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 14,
no. 2, pp. 158–171, March 2017.

[24] J. B. Hong and D. S. Kim, “Assessing the effectiveness
of moving target defenses using security models,” IEEE
Transactions on Dependable and Secure Computing,
vol. 13, no. 2, pp. 163–177, Mar. 2016.

[25] J. B. Hong, S. Yoon, H. Lim, and D. S. Kim, “Optimal
network reconfiguration for software defined networks
using shuffle-based online mtd,” in 2017 IEEE 36th Sym-
posium on Reliable Distributed Systems (SRDS), 2017,
pp. 234–243.

[26] S. Hosseini and M. A. Azgomi, “The dynamics of an
SEIRS-QV malware propagation model in heterogeneous
networks,” Physica A: Statistical Mechanics and its Ap-
plications, vol. 512, pp. 803–817, 2018.

[27] C. Huang, S. Zhu, and R. Erbacher, Toward Software
Diversity in Heterogeneous Networked Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, July 2014, pp.
114–129.

[28] C. Huang, S. Zhu, Q. Guan, and Y. He, “A software
assignment algorithm for minimizing worm damage in
networked systems,” Journal of Information Security and
Applications, vol. 35, no. Supplement C, pp. 55–67,
2017.

[29] T. Kaur and J. Baek, “A strategic deployment and cluster-
header selection for wireless sensor networks,” IEEE
Transactions on Consumer Electronics, vol. 55, no. 4,

pp. 1890–1897, 2009.
[30] M. Keramati, A. Akbari, and M. Keramati, “CVSS-

based security metrics for quantitative analysis of attack
graphs,” in ICCKE 2013, 2013, pp. 178–183.

[31] J. Knight, J. Davidson, A. Nguyen-Tuong, J. Hiser, and
M. Co, “Diversity in cybersecurity,” Computer, vol. 49,
no. 4, pp. 94–98, Apr. 2016.

[32] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothen-
berg, S. Azodolmolky, and S. Uhlig, “Software-defined
networking: A comprehensive survey,” Proceedings of
the IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[33] P. Larsen, S. Brunthaler, and M. Franz, “Security through
diversity: Are we there yet?” IEEE Security & Privacy,
vol. 12, no. 2, pp. 28–35, Mar. 2014.

[34] ——, “Automatic software diversity,” IEEE Security &
Privacy, vol. 13, no. 2, pp. 30–37, Mar. 2015.

[35] A. S. Leong, D. E. Quevedo, A. Ahlén, and K. H.
Johansson, “On network topology reconfiguration for re-
mote state estimation,” IEEE Transactions on Automatic
Control, vol. 61, no. 12, pp. 3842–3856, 2016.

[36] J. Leskovec and A. Krevl, “SNAP Datasets:
Stanford large network dataset collection,”
http://snap.stanford.edu/data, June 2014.

[37] D. Li, Q. Zhang, E. Zio, S. Havlin, and R. Kang, “Net-
work reliability analysis based on percolation theory,”
Reliability Engineering & System Safety, vol. 142, pp.
556–562, 2015.

[38] H. Li, K. Ota, and M. Dong, “Learning IoT in edge: Deep
learning for the internet of things with edge computing,”
IEEE Network, vol. 32, no. 1, pp. 96–101, Jan 2018.

[39] T. Li, C. Feng, and C. Hankin, “Improving ICS cyber
resilience through optimal diversification of network
resources,” CoRR, vol. abs/1811.00142, 2018. [Online].
Available: http://arxiv.org/abs/1811.00142

[40] A. X. Liu and M. G. Gouda, “Diverse firewall design,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 19, no. 9, pp. 1237–1251, 2008.

[41] M. R. Lyu and L. K. Lau, “Firewall security: Policies,
testing and performance evaluation,” in Proceedings 24th
Annual International Computer Software and Applica-
tions Conference. COMPSAC2000. IEEE, 2000, pp.
116–121.

[42] P. K. Manadhata and J. M. Wing, A Formal Model for a
System’s Attack Surface. New York, NY: Springer New
York, 2011, pp. 1–28.

[43] S. Mavoungou, G. Kaddoum, M. Taha, and G. Matar,
“Survey on threats and attacks on mobile networks,”
IEEE Access, vol. 4, pp. 4543–4572, 2016.

[44] C. Moore and M. E. Newman, “Epidemics and per-
colation in small-world networks,” Physical Review E,
vol. 61, no. 5, p. 5678, 2000.

[45] W. Najjar and J. L. Gaudiot, “Network resilience: a
measure of network fault tolerance,” IEEE Transactions
on Computers, vol. 39, no. 2, pp. 174–181, Feb. 1990.

[46] M. E. J. Newman, Networks: An Introduction, 1st ed.
Oxford University Press, 2010.

[47] A. J. O’Donnell and H. Sethu, “On achieving software
diversity for improved networksecurity using distributed

16 IEEE TRANSACTIONS ON NETWORK SERVICE AND MANAGEMENT, VOL. X, NO. X, MONTH, 2020

coloring algorithms,” in Proceedings of the 11th ACM
Conference on Computer and Communications Security,
ser. CCS ’04, 2004, pp. 121–131.

[48] Y. Prieto, N. Boettcher, S. E. Restrepo, and J. E. Pezoa,
“Optimal multiculture network design for maximizing
resilience in the face of multiple correlated failures,”
Applied Sciences, vol. 9, no. 11, p. 2256, 2019.

[49] C. Pu, A. P. Black, C. Cowan, J. Walpole, and C. Consel,
“A specialization toolkit to increase the diversity of
operating systems,” 1996.

[50] R. S. Rao, K. Ravindra, K. Satish, and S. Narasimham,
“Power loss minimization in distribution system us-
ing network reconfiguration in the presence of dis-
tributed generation,” IEEE Transactions on Power Sys-
tems, vol. 28, no. 1, pp. 317–325, 2012.

[51] J. P. Sterbenz, D. Hutchison, E. K. Cetinkaya, A. Jabbar,
J. P. Rohrer, M. Schöller, and P. Smith, “Resilience
and survivability in communication networks: Strategies,
principles, and survey of disciplines,” Computer Net-
works, vol. 54, no. 8, pp. 1245–1265, 2010.

[52] E. Totel, F. Majorczyk, and L. Mé, “Cots diversity based
intrusion detection and application to web servers,” in
International Workshop on Recent Advances in Intrusion
Detection. Springer, 2005, pp. 43–62.

[53] B. Walker, A. Kinzig, and J. Langridge, “Original arti-
cles: plant attribute diversity, resilience, and ecosystem
function: the nature and significance of dominant and
minor species,” Ecosystems, vol. 2, no. 2, pp. 95–113,
March 1999.

[54] A. D. Wood and J. A. Stankovic, “Denial of service in
sensor networks,” Computer, vol. 35, no. 10, pp. 54–62,
Oct. 2002.

[55] Y. Yang, S. Zhu, and G. Cao, “Improving sensor network
immunity under worm attacks: A software diversity ap-
proach,” in Proceedings of the 9th ACM International
Symposium on Mobile Ad Hoc Networking and Comput-
ing, ser. MobiHoc ’08, 2008, pp. 149–158.

[56] ——, “Improving sensor network immunity under worm
attacks: A software diversity approach,” Ad Hoc Net-
works, vol. 47, no. Supplement C, pp. 26–40, 2016.

[57] M. Zhang, L. Wang, S. Jajodia, A. Singhal, and M. Al-
banese, “Network diversity: A security metric forevalu-
ating the resilience of networks againstzero-day attacks,”
IEEE Transactions on Information Forensics and Secu-
rity, vol. 11, no. 5, pp. 1071–1086, May 2016.

[58] Y. Zhang, H. Vin, L. Alvisi, W. Lee, and S. K. Dao, “Het-
erogeneous networking: A new survivability paradigm,”
in Proceedings of Network Security Paradigms Workshop
(NSPW’01). Cloudcroft, New Mexico, USA: ACM, Sep.
2001.

[59] Y. Zhang, M. Murata, H. Takagi, and Yusheng Ji,
“Traffic-based reconfiguration for logical topologies in
large-scale wdm optical networks,” Journal of Lightwave
Technology, vol. 23, no. 10, pp. 2854–2867, 2005.

Qisheng Zhang is currently a Ph.D. student in
the Department Computer Science at Virginia Tech.
He received the B.S. degree in mathematics from
Shandong University in 2017 and the M.S. degree
in mathematics from the University of Warwick in
2018. His research interests include network security
and network science.

Jin-Hee Cho is currently an associate professor in
the department of computer science at Virginia Tech
since 2018. Prior to joining the Virginia Tech, she
worked as a computer scientist at the U.S. Army
Research Laboratory (USARL), Adelphi, Maryland,
since 2009. Dr. Cho has published over 140 peer-
reviewed technical papers in leading journals and
conferences in the areas of trust management, cy-
bersecurity, metrics and measurements, network per-
formance analysis, resource allocation, agent-based
modeling, uncertainty reasoning and analysis, infor-

mation fusion / credibility, and social network analysis. She received the
best paper awards in IEEE TrustCom’2009, BRIMS’2013, IEEE GLOBE-
COM’2017, 2017 ARL’s publication award, and IEEE CogSima 2018. She is
a winner of the 2015 IEEE Communications Society William R. Bennett Prize
in the Field of Communications Networking. In 2016, Dr. Cho was selected
for the 2013 Presidential Early Career Award for Scientists and Engineers
(PECASE). Dr. Cho received MS and PhD degrees in computer science from
the Virginia Tech in 2004 and 2008, respectively. She is a senior member of
the IEEE and a member of the ACM.

Terrence J. Moore received the B.S. and M.A.
degrees in mathematics from American University
in 1998 and 2000, respectively, and the Ph.D. degree
in mathematics from the University of Maryland,
College Park in 2010. He is currently a researcher
in the Network Science Division of the U.S. Army
Research Laboratory. His research interests include
sampling theory, constrained statistical inference,
stochastic optimization, network security, geometric
and topological applications in networks, and net-
work science.

Ing-Ray Chen (M’90) received the B.S. degree from
National Taiwan University, and the M.S. and Ph.D.
degrees in computer science from the University
of Houston. He is currently a Professor with the
Department of Computer Science, Virginia Tech.
His research interests include trust and security,
network and service management, and reliability and
performance analysis of mobile wireless networks
and cyber physical systems. He was a recipient of the
IEEE Communications Society William R. Bennett
Prize in Communications Networking and of the

U.S. Army Research Laboratory (ARL) Publication Award. Dr. Chen currently
serves as an associate editor for IEEE TRANSACTIONS ON SERVICES
COMPUTING, IEEE TRANSACTIONS ON NETWORK AND SERVICE
MANAGEMENT, and The Computer Journal.

