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Abstract— This article discusses a lightweight behavior rule 

specification-based monitoring solution for identifying 

misbehavior of an embedded IoT device.  These unusual activities 

are exhibited because of attacks exploiting the vulnerability 

exposed through automatic model checking and formal 

verification. It is conclusive in the presented research that rule 

specification-based misbehavior detection technique outperforms 

contemporary anomaly-based misbehavior detection techniques 

for an unmanned aerial vehicle (UAV) cyber-physical system. 
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zero-day attacks. 

1. INTRODUCTION 

Misbehavior detection techniques for Internet of Things 

(IoT) embedded cyber-physical systems (CPS) in general can 

be classified into three types: signature-based, anomaly-based 

and specification-based techniques [5]. Our behavior rule 

specification-based misbehavior detection technique proposed 

in this work falls under specification-based detection. The 

signature-based detection is disposed to counteract the 

possibilities of zero-day attacks. Specification-based 

techniques are considered rather than anomaly-based 

techniques for misbehavior detection to avoid the high cost 

associated with profiling and learning anomaly patterns for 

resource-constrained IoT devices and to prevent high false 

positives. It is argued that contemporary anomaly-based 

misbehavior detection methods for IoT-embedded CPSs [6] 

[7] based on profiling and machine learning through 

correlation and statistical analysis of a large amount of data or 

logs for classifying misbehavior will not work for IoT-

embedded CPSs because of high memory, run time, 

communication, and computational overhead, considering the 

fact that many embedded IoT devices are severely constrained 

in resources.  

2. SPECIFICATION-BASED MISBEHAVIOR DETECTION 

FOR EMBEDDED IOT IN CPS 

2.1Modeling and Verification of Behavior Rules 

The design concept of “operational profile” [3] is used 

during the testing and debugging phase of an embedded IoT 

device when the IoT software is built to identify the complete 

set of behavior rules. A mission assignment in an embedded 

IoT device’s operational profile explicitly defines a set of 

security requirements for the mission to be successful, from 

which a set of threats as well as a set of behavior rules to cope 

with the threats may be automatically derived. The 

verification that the behavior rules generated are correct and 

cover all the threats (or satisfy the security requirements) is 

done through automatic model verification of the behavior 

rules. The basic idea is to prove that the behavior rules can 

guarantee all security requirements are not violated, so any 

violation of the security requirements implies violations of the 

behavior rules.  

2.2 Automatic Transformation of a Behavior Rule Set to a 

State Machine for Misbehavior Detection 

The behavior-rule-to-state-machine transformation process 

is automatic and it involves the identification of a “bad 

behavior indicator” based on violation of a defined rule. More 

specifically, a conjunctive normal form predicate [6] is created 

to define each bad behavior indicator such that if the predicate 

is evaluated true then it means that the corresponding behavior 

rule is violated; otherwise, the behavior rule is satisfied. Each 

bad behavior rule indicator is therefore a state component with 

a true (1) or false (0) value in the underlying state machine.  

Following this, there are 2n states, out of which only one is a 

safe state (when all n bad behavior indicators are false taking 

the value of 0) and all other 2n - 1 states are unsafe states. It is 

worth mentioning that we defend against zero-day attacks that 

try to avoid pre-established behavior rules by identifying the 

complete set of “bad behavior indicators” (mechanically 

derived from the corresponding set of behavior rules) that can 

possibly fail a mission assigned for execution. A malicious 

embedded IoT device can avoid being detected only if it never 

enters an unsafe state.  

2.3 Lightweight Runtime Collection of Compliance Data 

Unlike anomaly detection which frequently requires heavy 

resources to profile/learn anomaly patterns, the behavior rule 

specification-based data collection process is lightweight. By 

using the transformed state machine, only periodical 

monitoring is required to check if a trustee IoT device is in 

safe or unsafe states. A monitor device is aware of the 

transformed state machine of the trustee device at bootstrap 

time. The monitor device evaluates the states of the trustee 

IoT device in safe and unsafe states during its event triggered 

transitions. A monitor device can save energy by monitoring 

and recording the state of the trustee device in discrete time 

space so that c=∑ 𝑜𝑖/𝑁 𝑖 where c is the compliance degree of a 

device, N is the number of times it probes the state of the 

trustee device in a monitoring time interval T and 𝑜𝑖 = 1 if the 



trustee IoT device is in a safe state in the ith probe; 0 

otherwise. With this lightweight data collection process, a 

monitor device manages a trustee device’s cooperation history 

𝑐1, 𝑐2, … , 𝑐𝑛over n monitoring time intervals. 

2.4. Lightweight Statistical Analysis 

The compliance degree of a trustee IoT device is modeled 

by a random variable X with G()=Beta(,) distribution [6]. 

X=0 means the behavior is totally unacceptable and X=1 

means the behavior is completely acceptable, such that G(a), 

0a1, is given by:  

𝐺(𝑎) = ∫
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1𝑎

0
𝑑𝑥 (1) 

The expected value of X is given by:  

𝐸[𝑥] = ∫ 𝑥
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−11

0
𝑑𝑥 =

𝛼

𝛼+𝛽
     (2) 

The 𝛼 and 𝛽 are maximum likelihood-based estimated 

parameters observable by using the compliance degree history 

𝑐1, 𝑐2, … , 𝑐𝑛 of a device collected during runtime. In this case, 

the run time complexity is O( 𝑛𝑙𝑜𝑔𝑛).  For an extremely 

resource-constrained monitor IoT device such as a sensor, the 

compliance degree can be modeled by X with a simple one-

parameter Beta(𝛽) distribution, i.e.  𝛼 = 1. For this, the density 

becomes 𝛽(1 − 𝑋)𝛽−1for 0 ≤ 𝑋 ≤ 1 and 0 otherwise, where 

𝛽 is given by a simple analytical expression:  

𝛽 = 𝑛/ ∑ log (1/1 − 𝑐𝑖).𝑛
𝑖=1  (3) 

In this case, the run time complexity is only O(𝑛). The 

misbehavior detection prediction accuracy can be measured by 

false negative and false positive probabilities, denoted by 𝑃𝑓𝑛 

and 𝑃𝑓𝑝,  respectively. A simple threshold-based criterion is 

adopted, which means if a “bad” IoT device’s compliance 

degree denoted by 𝑋𝑏 following the earlier defined G 

(.)=Beta(𝛼, 𝛽) is higher than the system defined compliance 

threshold 𝐶𝑇, then there is a false negative, i.e., 

𝑃𝑓𝑛 = Pr(𝑋𝑏 > 𝐶𝑇) = 1 − 𝐺(𝐶𝑇).  (4) 

In case of a “good” IoT device’s compliance degree 

denoted by 𝑋𝑔 with a G(.)=Beta (𝛼, 𝛽) distribution is less than 

or equal to 𝐶𝑇, then there is a false positive, i.e.  

𝑃𝑓𝑝 = Pr(𝑋𝑔 ≤ 𝐶𝑇) = 𝐺(𝐶𝑇).  (5) 

3. INTRUSION DETECTION OF UAV CPS 

The defined IoT IDS technique is applied to a UAV (a 

drone) embedded in a UAV-CPS [1]. We first conduct 

automatic model verification of the behavior rules generated 

by verifying that the behavior rules generated are correct and 

cover all the threats (or satisfy the security requirements). 

Currently we are exploring ACL2 [2], a theorem prover, to 

define security requirements as well as behavior rules as ACL 

functions. The verification is done by defining a theorem (also 

an ACL function) that is evaluated to be true, thus proving that 

under certain assumptions (to cover properties that may not be 

monitored by the behavior rules) if this UAV does not violate 

the behavior rules, it does not violate the security requirements 

either. We transform the behavior rules identified into a state 

machine for lightweight misbehavior detection. A monitor 

UAV is assigned to monitor a trustee UAV. With the 

compliance degree history 𝑐1, 𝑐2, … , 𝑐𝑛collected, we calculate 

𝑃𝑓𝑛  and 𝑃𝑓𝑝.  The minimum compliance threshold 𝐶𝑇  is 

adjusted to control 𝑃𝑓𝑛 and 𝑃𝑓𝑝. 

The IoT IDS technique is compared with ACCM 

developed by Tsang and Kwong [4] for industrial CPSs. 

Figure 1 compares the ROC graphs (true positive rate or 

1 − 𝑃𝑓𝑛 versus 𝑃𝑓𝑝). A mis-monitoring probability 𝑝𝑒𝑟𝑟 = 1% 

is considered due to environment noises. Figure 1 shows that 

the IoT IDS technique outperforms ACCM; especially in 

𝑃𝑓𝑝.The AUROC (area under ROC) of our IoT IDS technique 

is dominantly greater than that of ACCM.  

 
Figure 1: IDS Performance Comparison in terms of AUROC. 

4. CONCLUSION 

The behavior rule specification-based misbehavior 
detection technique can be positioned as the only feasible 
solution in terms of low memory, run time, communication, 
and computation overhead, and high misbehavior detection 
prediction accuracy to ensure protection of resource-
constrained embedded IoT devices against zero-day attacks. 
This work is a start toward verifying our position. 
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