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ABSTRACT 

We propose a lightweight specification-based misbehavior 

detection technique to efficiently and effectively detect 

misbehavior of an IoT device embedded in a medical cyber 

physical system through automatic model checking and formal 

verification. We verify our specification-based misbehavior 

detection technique with a patient-controlled analgesia (PCA) 

device embedded in a medical health monitoring system. 

KEYWORDS 

Medical cyber physical systems, IoT, behavior rules, zero-day 

attacks. 

1 Introduction 

In general, there are three types of misbehavior detection 

techniques for Internet of Things (IoT): signature-based, anomaly-

based and specification-based techniques [12]. Our proposed 

misbehavior detection technique in this work falls under 

specification-based detection. We dispose signature-based 

detection as it cannot deal with zero-day attacks. We consider 

specification-based techniques rather than anomaly-based 

techniques for misbehavior detection for efficiency reasons 

especially for resource-constrained IoT devices by avoiding the 

high cost associated with profiling and learning anomaly patterns 

as would be required by anomaly-based techniques. We argue that 

contemporary anomaly-based misbehavior detection methods for 

IoT-embedded CPSs based on profiling and machine learning 

through correlation and statistical analysis of a large amount of data 

or logs for classifying misbehavior [2, 6-7] will not work for IoT-

embedded CPSs because of high memory, run time, 

communication, and computational overhead, considering that 

many embedded IoT devices are severely resource-constrained. 

Specification based misbehavior detection provides a viable 

approach for misbehavior detection of embedded IoT devices 

because of light resource requirements for checking misbehaviors 

against specifications.  

The novelty of our work is that we pioneer the use of lightweight 

behavior rule specification-based misbehavior detection for 

lightweight IoT devices embedded in a CPS with memory, run 

time, communication, and computational overhead considerations. 

Our work is novel compared to the existing specification-based 

intrusion detection techniques (see Section 2 Related Work for 

details) in the following aspects: (1) design and implementation of 

a module for automatically modeling and deriving behavior rules 

from an embedded IoT device’s operational profile specifications 

[16, 20, 23]; (2) design and implementation of a model checking 

tool to formally verify that the generated behavior rules are correct 

and cover all the threats (or meet the security requirements) and 

that the resulting safe and unsafe states are complete and are 

generated correctly w.r.t. the specified behavior rules; (3) design 

and implementation of a module for automatically transforming 

behavior rules into “attack behavior indicators” and then into a state 

machine for misbehavior detection at runtime; (4) design and 

implementation of a lightweight runtime collection module for 

collecting compliance degree data from runtime monitoring of an 

IoT device based on its derived state machine; and (5) design and 

implementation of a lightweight statistical analysis module for 

misbehavior detection based on experimentally collected 

misbehavior data at runtime.  

The rest of the paper is organized as follows. In Section 2, we 

survey existing work on misbehavior detection of IoT devices and 

compare as well as contrast our work with existing work. In Section 

3, we discuss the system model. In Section 4, we describe our 

MedIoT design in detail and apply MedIoT to a patient-controlled 

analgesia (PCA) device embedded in a medical health monitoring 

system. In Section 5, we compare MedIoT with an existing 

anomaly detection method in performance outcomes. In Section 6, 

we conclude the paper and outline future research areas.  
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2 Related Work 

In this section, we provide an overview of related work in three 

categories: anomaly-based IoT misbehavior detection, 

specification-based IoT misbehavior detection, and formal 

verification of behavior specifications in specification-based 

detection techniques.  

2.1 Anomaly-based IoT Misbehavior Detection 

Existing misbehavior detection methods for IoT mostly are 

designed to detect either routing attacks or Denial of Service (DoS) 

attacks [24]. More recent works [25] also addressed detecting 

illegal memory accesses in low-power IoTs. These existing works, 

however, are based on anomaly-based techniques applying 

profiling and machine learning through correlation and statistical 

analysis of a large amount of data or logs for classifying 

misbehavior [2, 6-7, 10-11, 14-15, 25]. Our motivation of this work 

is that anomaly-based detection techniques will not work for IoT-

embedded CPSs because many embedded IoT devices especially 

battery-operated ones are severely resource-constrained. Our work 

is based on lightweight specification-based misbehavior detection 

of each IoT device embedded in a CPS.  

2.2 Specification-based IoT Misbehavior Detection  

In the literature, specification-based misbehavior detection has 

been mostly applied to communication networks [4, 8, 21] and CPS 

security [1, 9, 17, 18, 26]. DaSilva et al. [4] proposed traffic-based 

rules to detect network intruders. Ioannis et al. [8] devised packet-

forwarding behavior rules to detect blackhole and greyhole attacks. 

Song et al. [21] proposed specification-based detection rules (i.e., 

identifying monitored activity) to ensure that the global security 

requirement is complied with an IP configuration protocol in 

mobile ad networks. In the context of CPS security, Berthier et al. 

[1] proposed specification-based misbehavior detection to audit the 

network traffic among smart meters and access points for protocol 

compliance. Jokar et al. [9] devised specifications to detect MAC 

layer attacks in smart grids. Mitchell et al. [17, 18] discussed a 

conceptual model of behavior rule based intrusion detection for 

CPSs and conducted a proof-of-concept statistical analysis using 

pre-generated data following an attacker behavior model. Khan et 

al. [26] proposed behavior-based executable specification against 

false data injection attacks for industrial control systems. Unlike 

the above existing works, we pioneer the use of lightweight 

specification-based misbehavior detection specifically for 

resource-constrained IoT devices embedded in a CPS.  

2.3 Verification of Specification-based Intrusion Detection 

While specification-based detection in general induces a lower 

false positive rate than anomaly detection, a limitation of 

specification-based approaches is the difficulty to verify if the 

specifications are correct and cover all the threats [1]. Toward this 

end, Song et al. [21] describe a formal reasoning framework to first 

define a global security requirement and then define the 

specifications of the behaviors of local nodes to assure the global 

security property. Berthier et al. [1] followed a similar approach 

and proposed a formal framework comprising a model of the 

network, monitoring operations, protocol specifications, and a 

security policy. Utilizing the Applicative Common Lisp (ACL) 

theorem prover [27], they verify that all network traces that respect 

the network model, monitoring operations, and protocol 

specifications will also respect the security policy. Unlike the above 

cited work [1, 21], we start with the “operational profile” [16, 20, 

23] of an embedded IoT that defines the mission statement of the 

embedded IoT device to derive the security requirements and hence 

the threats of the embedded IoT device. Then we derive the 

behavior rules specifying the intended behavior and verify that the 

behavior rules are correct and cover all the threats. Since ACL2 

[27] is a proven tool, we use it to define behavior specifications and 

security requirements, all expressed as ACL functions, for formal 

verification. Lastly unlike [1, 21], MedIoT is specifically designed 

for misbehavior detection of lightweight IoT devices embedded in 

a Medical Cyber-Physical Systems (MCPS) with energy 

consideration.  

3 System Model 

We refer the readers to [12, 13, 24, 25] for attacker behaviors 

and intrusion detection mechanisms available for IoT-embedded 

CPSs. Our behavior-rule based IDS approach relies on the use of 

monitor nodes. We assume that a monitor node performs 

misbehavior detection on a target node. One possible design is to 

have a sensor (actuator) monitor another sensor (actuator 

respectively) within the same CPS. This may require each sensor 

(actuator) to have multiple sensing functionalities. Another 

possibility is that each IoT device is built on top of a secure 

computational space (e.g., [5]) such that each target IoT device can 

execute misbehavior detection code in the secure computation 

space and self-monitor itself, even if the operating kernel has been 

compromised. The monitoring process is lightweight and will not 

interfere with the normal operations of the monitor IoT device or 

the target IoT device (see Section 4.3 for detail).   

4  MedIoT Design as Applying to PCA in MCPS 

In this section, we provide the detail of our MedIoT design and 

exemplify MedIoT with patient-controlled analgesia (PCA) 

devices embedded in a health monitoring MCPS [17]. We consider 

a PCA device that is programmed to perform analgesic injection in 

response to the injection button being pressed, with the injection 

period and dosage controlled by authority.   

4.1 Behavior Rule Specification of a PCA 

We use the design concept of “operational profile” [16, 20, 23] 

during the testing and debugging phase of an embedded IoT device 

when the IoT software is built to identify the complete set of 

behavior rules. An IoT device’s operational profile essentially is a 

mission assignment during the operational phase of the IoT device. 

A mission assignment in an embedded IoT device’s operational 

profile explicitly defines a set of security requirements for the 

mission to be successful, from which a set of threats as well as a set 

of behavior rules to cope with the threats may be automatically 

derived. 



  

 

 

We consider a PCA in a MCPS with the following operational 

profile:  

Raise an alert to designated personnel and halt analgesic 

injection if the patient’s medical condition is unfit for analgesic 

injection; raise an alert to designated personnel and halt 

analgesic injection if the PCA is not ready for analgesic injection; 

communicate with authorized personnel only regarding the 

injection rate and dosage of medicine; perform correct IDS 

functions; when the injection button is pressed, if the patient 

controlled injection rate is less than or equal to the specified 

injection rate then inject a specified dose of medicine. 

Given this operational profile as input, the security requirements 

of this PCA may be derived as listed in Table 1. 

Table 1: PCA Security Requirements. 

ID Security Requirement  

SR 1 The PCA must raise alert to designated personnel and hold 

analgesic injection if the patient’s condition is unfit for 

analgesic injection 

SR2 The PCA must raise alert to designated personnel and hold 

analgesic injection if the PCA is not ready for analgesic 

injection 

SR 3 The PCA must change its injection rate and medicine 

dosage upon authorized commands only 

SR 4 The PCA must perform correct IDS functions when 

serving as a monitor node, i.e., providing true 

recommendations 

SR 5 The PCA must perform analgesic injection at the specified 

dosage without exceeding the allowable injection rate 

With the system requirements defined, it is relatively 

straightforward to identify the threats that will keep this PCA from 

accomplishing its mission, as listed in Table 2.  

Table 2: PCA Threats. 

ID Threat 

THREAT 1 The PCA is not able to raise alert and hold analgesic 

injection when patient is unfit 

THREAT 2 The PCA is not able to raise alert and hold analgesic 

injection when PCA is not ready 

THREAT 3 The PCA is not able to follow authorized commands 

THREAT 4 The PCA is not able to perform correct IDS functions, 

i.e., not able to provide true IDS recommendations 

THREAT 5 The PCA’s analgesic injection rate is above the 

specified injection rate 

THREAT 6 The PCA is not injecting the specified dosage 

Next, we derive the behavior rule set for this PCA. Table 3 lists 

the behavior set without priority order for simplicity. It also lists 

the security aspect (integrity, confidentiality, or availability) 

associated with each behavior rule. A behavior rule is typically 

derived from a threat because a threat specifying a negative event 

that can lead to an undesired outcome is just opposite to a behavior 

rule specifying a good behavior or a good event that can lead to a 

desired outcome. 

Table 3: PCA Behavior Rules. 

ID Behavior Rule Security Aspect 

BR 1 Raise alert to designated personnel and 

hold analgesic injection if patient is 

unfit 

Integrity, 

confidentiality, 

availability 

BR 2 Raise alert to designated personnel and 

hold analgesic injection if PCA is not 

ready 

Integrity, 

confidentiality, 

availability 

BR 3 Accept authorized commands Integrity, 

confidentiality, 

availability 

BR 4 Provide true recommendations integrity  

BR 5 Perform analgesic injection without 

exceeding the specified rate 

integrity  

BR 6 Perform analgesic injection at the 

specified dosage 

integrity 

We conduct automatic model verification of the behavior rules 

generated by verifying if the behavior rules generated are correct 

and cover all the threats (or satisfy the security requirements). We 

leverage ACL2 [27], a theorem prover, to define security 

requirements (in Table 1) as well as behavior rules (in Table 3) as 

ACL functions. We complete formal verification by defining a 

theorem (also an ACL function) that is evaluated to be true, proving 

that this PCA device will not violate the security requirements if it 

does not violate the behavior rules. 

4.2 Transforming the Behavior Rules to a State 
Machine for Misbehavior Detection 

After the behavior rule set is identified, we transform it to a state 

machine for lightweight misbehavior detection. The behavior-rule-

to-state-machine transformation process is automatic. First, one or 

more “attack behavior indicators” (ABIs) for each behavior rule is 

identified. Then, each ABI is expressed as a conjunctive normal 

form (CNF) predicate to be evaluated to true or false indicating 

whether the corresponding behavior rule is violated or not. Then, 

all ABIs are combined together into a disjunctive normal form 

(DNF) predicate. Lastly the state machine is formed with all ABIs 

as state components, each taking the value of 1 (true) or 0 (false). 

When all ABIs take the value of 0, it means that none of the 

behavior rules is violated and hence the system is in a safe state. 

Conversely, when any ABI takes the value of 1, it means 

misbehavior because that particular behavior rule is violated. We 

describe the behavior rule to state machine transformation process 

in the following subsections. 

4.2.1 Attack Behavior Indicators Expressed as CNF Predicates  

Table 4 lists 9 ABIs, each to be evaluated to 1 (true) or 0 (false) 

at runtime through monitoring, indicating whether the 

corresponding behavior rule is violated or not. When an ABI is 

evaluated to true, the PCA is detected as misbehaving against the 

corresponding behavior rule. Identifying an ABI involves 

identifying a set of physical variables whose runtime values decide 

if the corresponding behavior rule is violated or not. For example, 

ABI 1 in Table 4 has two physical variables, namely, Patient Pulse 



 

 

Rate and Action. When the patient’s pulse is not normal and the 

action is not alert-and-hold, it is a violation of BR 1. 

ABIs 1, 2, and 3 derive from BR 1 as there are three conditions 

for defining “when patient is unfit,” ABIs 4 and 5 derive from BR 

2 as there are two conditions for defining “when the PCA is not 

ready,” ABI 6 derives from BR 3, ABI 7 derives from BR 4, and 

ABI 8 and ABI 9 derive from BR 5 and BR 6 as there are two 

conditions for defining the PCA not being able to follow authorized 

commands to correctly perform analgesic injection.  

The 1st ABI (ABI 1 in Table 4) is that this PCA does not alert 

personnel and hold analgesic injection when the patient’s pulse rate 

is not normal. A normal pulse rate for adults is 60-100 beats per 

minute. The CNF of the Boolean expression is (Patient Pulse Rate 

 Normal)  (Action  Alert-and-Hold).  

The 2nd ABI (ABI 2 in Table 4) is that this PCA still injects 

analgesic when the patient’s respiration rate is not normal. The 

normal respiratory rate for adults is 12–20 breaths per minute. The 

CNF of the Boolean expression is (Patient Respiration Rate  

Normal)  (Action  Alert-and-Hold).  

The 3rd ABI (ABI 3 in Table 4) is that this PCA still injects 

analgesic when the patient is being treated with defibrillation. The 

CNF of the Boolean expression is (Patient Status = Defibrillation) 

 (Action  Alert-and-Hold).  

The 4th ABI (ABI 4 in Table 4) is that this PCA does not alert 

personnel and hold analgesic injection when the drug reservoir is 

empty. The CNF of the Boolean expression is (Drug Reservoir = 

Empty)  (Action  Alert-and-Hold).  

The 5th ABI (ABI 5 in Table 4) is that this PCA does not alert 

personnel and hold analgesic injection when the infusion site is 

incorrect, e.g., the injection is pulled of the patient’s body or the 

injection is not at the patient’s correct infusion point. This is 

indicated by measuring the infusion pressure being normal or not. 

The CNF of the Boolean expression is (Infusion Pressure  

Normal)  (Action  Alert-and-Hold). This ABI has a local variable 

called Infusion Pressure for measuring the infusion pressure to 

detect if the infusion site is correct. If image sensors are built inside 

the PCA, image-sensing the infusion site may directly detect if the 

infusion site is at the right place.  

The 6th ABI (ABI 6 in Table 4) is that a PCA does not accept 

authorized commands to update its injection rate and medicine 

dosage. The CNF is (Action  Accept)  (Command = 

AUTHORIZED).  

The 7th ABI (ABI 7 in Table 4) is that a monitor PCA provides 

false recommendations toward a behaving target PCA (called bad-

mouthing attacks), and good recommendations toward a 

misbehaving target PCA (called ballot-stuffing attacks). This may 

be detected by detecting recommendation discrepancies among 

multiple monitor PCAs. The CNF is Target Node Audit  Monitor 

Node Audit.  

The 8th ABI (ABI 8 in Table 4) is that this PCA injects analgesic 

at a rate exceeding the specified injection rate. The CNF is 

(Injection Rate  Specified Injection Rate)  (Action = Inject).  

Finally, the 9th ABI (ABI 9 in Table 4) is that this PCA does not 

inject analgesic at the right dosage. The CNF is (Dosage  

Specified Dosage)  (Action = Inject). 

Table 4: PCA Attack Behavior Indicators in CNF. 

ID Attack Behavior Indicator 

ABI 1 (Patient Pulse Rate  Normal)  (Action  Alert-and-

Hold)  

ABI 2 (Patient Respiration Rate  Normal)  (Action  Alert-

and-Hold)  

ABI 3 (Patient Status = Defibrillation)  (Action  Alert-and-

Hold)  

ABI 4 (Drug Reservoir = Empty)  (Action  Alert-and-Hold)  

ABI 5 (Infusion Pressure  Normal)  (Action  Alert-and-

Hold)  

ABI 6  (Command = AUTHORIZED)  (Action  Accept)  

ABI 7 Target Node Audit  Monitor Node Audit 

ABI 8  (Injection Rate  Specified Injection Rate)  (Action = 

Inject)  

ABI 9  (Dosage  Specified Dosage)  (Action = Inject) 

4.2.2 All ABIs are Combined into a DNF Predicate 

All 9 ABIs in Table 4 are combined together into a DNF 

predicate (ABI 1  ABI 2  ABI 3  ABI 4  ABI 5  ABI 6  ABI 

7  ABI 8  ABI 9) because every ABI if evaluated to true is an 

indication of misbehavior.  

4.2.3 Generated State Machine for Misbehavior Detection 

For the PCA state machine, there are 9 Boolean variables (each 

taking the value of either 1 or 0) in the state representation, resulting 

in the total number of states being 29= 512, out of which only one 

is a safe state (when all 9 Boolean variables are false or take the 

value of 0) and all other 511 states are unsafe states. Note that there 

are many variables in these 9 ABIs. However, these variables are 

internal variables maintained by a monitor PCA who updates these 

internal variable values at monitoring intervals to determine the 

true/false (or 1/0) of the 9 Boolean variables for a target PCA that 

is being monitored on. 

4.3 Runtime Collection of Compliance Degree Data 

Unlike anomaly detection which frequently requires heavy 

resources to profile/learn anomaly patterns, our behavior rule 

specification-based data collection process is lightweight. By 

using the transformed state machine, a monitor device only 

needs to periodically monitor if a target IoT device is in safe or 

unsafe states without interfering with the normal operation of 

either the monitor device or the target device. For the target 

PCA, we label its 512 states in the state machine as states 0, 1, 

2, …, 511 with state 0 represented by (0, 0, 0, 0, 0, 0, 0, 0, 0) as 

the only safe state in which all 9 Boolean variables (ABI 1 – ABI 

9) take the value of 0 or false. Hence the monitor node can 

simply collect an instance of the compliance degree of the 

target node (to be monitored on) by measuring the proportion 

of time the target PCA node is in state 0. This collection process 

is repeated periodically. So by the end of the nth monitoring 

periods, the monitor node would collect the compliance degree 



  

 

 

history 𝑐1, 𝑐2, … , 𝑐𝑛 of the target PCA. As the state machine has 

incorporated the knowledge of safe vs unsafe states, this data 

collection process is extremely lightweight. The monitor node 

just needs to check which states the target node is in during a 

monitoring interval and measures the proportional of time the 

target node is in safe states. To save energy, this monitoring 

process can be done in discrete time space involving probing 

the states of the target node at discrete time points. Then an 

instance of the compliance degree can be measured as the ratio 

of the number of times in which the target node is found to be 

in safe states over the total number of times the monitor node 

probes the status of the target node. 

4.4 Statistical Analysis for Misbehavior Detection 

Our lightweight statistical analysis does not involve training, 

that is, we do not partition the “compliance degree” history 

𝑐1, 𝑐2, … , 𝑐𝑛 collected (see Section 4.3) into the training set and the 

data set for testing because such heavy profiling and learning at 

runtime is impractical for resource-constrained IoT devices. Rather, 

we simply model an IoT device’s “compliance degree” by a random 

variable 𝐶 following a probability distribution function G(.) with 

the value of 0 indicating zero compliance and 1 indicating perfect 

compliance. Once we know the target node’s compliance degree 

distribution function, we can compute the expected value of C to 

know the average compliance degree of the target node over a time 

period. This information will allow us to decide if the target node 

is considered “malicious” based on a binary grading criterion, i.e., 

if the target node’s average compliance degree is less than or just 

equal to a minimum threshold 𝐶𝑇, we consider the target node as 

malicious.  

In this work we consider 𝐺(. ) = 𝐵𝑒𝑡𝑎(𝛼, 𝛽) as the probability 

distribution function. The 𝛼 and 𝛽 parameters can be parameterized 

using the target node’s compliance degree history 

𝑐1, 𝑐2, … , 𝑐𝑛  collected during runtime. The computation overhead 

would be manageable because the monitor node just needs to solve 

the maximum likelihood equations to parameterize the 𝛼 and 𝛽 

parameters. In this case, the run time complexity is 𝑂(𝑛𝑙𝑜𝑔𝑛). If 

we use a one-parameter 𝐵𝑒𝑡𝑎(𝛽)  distribution with 𝛼  fixed at the 

value of 1 as the probability distribution function, the run time 

complexity to parameterize 𝛽 using the target node’s compliance 

degree history is only 𝑂(𝑛)  which is extremely lightweight 

compared with contemporary anomaly based detection methods 

that would incur the run time complexity of O(𝑛𝑝) to O(𝑝𝑛), p > 1, 

where n is the number of data samples because of the need to profile 

or learn anomaly patterns. 

The effectiveness of our lightweight statistical analysis method 

described above can be measured by the false negative probability 

𝑃𝑓𝑛  and false positive probability 𝑃𝑓𝑝. During an experimental run 

if a seeded “good” node’s compliance degree is lower than or just 

equal to the minimum threshold 𝐶𝑇, we incur a false positive, i.e., 

treating a good node as a bad node. On the other hand, if during an 

experimental run a seeded “bad” node’s compliance degree is 

higher than the minimum threshold 𝐶𝑇, we incur a false negative, 

i.e., treating a bad node as a good node. For the target PCA, since 

we know the target PCA’s compliance degree distribution function 

G(.) after applying our lightweight statistical analysis method, we 

can easily compute 𝑃𝑓𝑛 = Pr(𝐶 > 𝐶𝑇) = 1 − 𝐺(𝐶𝑇) given that the 

PCA device is “bad” and 𝑃𝑓𝑝 = Pr(𝐶 ≤ 𝐶𝑇) = 𝐺(𝐶𝑇)  given that 

the PCA device is “good” during experimental runs. 

5 Performance Comparison 

We compare MedIoT with a semi-supervised anomaly-based 

behavior detection method [22] for classifying patient behaviors in 

a medical health monitoring system. Their design is based on 

auditing data collected from a series of events involving least 

common subsequence (LCS) and non-LCS events with event start 

times and durations. 70% of the data set is used as training data to 

learn normal event patterns based on similarity and the remaining 

30% used as testing data for evaluating performance. 

We setup the testing environment with a good target PCA and a 

malicious target PCA as in Park’s experiment. A monitor PCA is 

also setup to periodically monitor the good target PCA and the 

malicious target PCA based on the behavior-rule state machine 

preloaded into the monitor PCA’s memory upon bootstrapping. 

The environment is characterized by an imperfect monitoring 

probability of 3% due to coding errors, transient faults and 

environment noises. That is, the monitor PCA may mis-detect the 

state a target PCA is in with a 3% error probability due to coding 

errors, transient faults, or environment noises. The malicious target 

PCA attacks whenever possible based on the PCA threat conditions 

listed in Table 2. The monitor PCA collects a target PCA’s 

compliance degree history 𝑐1, 𝑐2, … , 𝑐𝑛  subject to the imperfect 

monitoring probability, based on which it computes the true 

positive rate (1 − 𝑃𝑓𝑛) versus false positive rate (𝑃𝑓𝑝) by adjusting 

the minimum compliance threshold 𝐶𝑇 as described in Section 4.4. 

 

 
Figure 1: Performance Comparison of MedIoT vs. 

Park’s Design. 

 

We use a Receiver Operating Characteristic (ROC) graph 

with the detection rate (1 − 𝑃𝑓𝑛) on the Y coordinate and the 

false positive rate (𝑃𝑓𝑝)  on the X coordinate for performance 

comparison. The Area Under the ROC curve (AUROC) is 

especially a well-adopted metric for performance comparison 

of misbehavior detection methods because it can properly 
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reflect the tradeoff between false negative rate (𝑃𝑓𝑛) and false 

positive rate (𝑃𝑓𝑝).  

Figure 1 compares the ROC curves for MedIoT and Park’s. 

We can see clearly that the AUROC of MedIoT dominates that of 

Park’s design. In particular, MedIoT always has a better 

detection rate given the same 𝑃𝑓𝑝 and always has a better 𝑃𝑓𝑝 

given the same detection rate. By setting the minimum 

compliance threshold 𝐶𝑇  to a high bar at ..8,, MedIoT can 

achieve a 1..% detection rate for detecting the malicious 

target PCA, while limiting the false positive probability 𝑃𝑓𝑝 to 

just 7% for misjudging the good target PCA because of the 

presence of imperfect monitoring. We attribute the superior 

performance of MedIoT by the unique design that safe and 

unsafe-state information is already summarized in the 

transformed state machine, based on which a monitor node just 

needs to measure the proportion of time a target node (being 

monitored on) is in safe states for effective and efficient 

misbehavior detection.  

6 Conclusion 

The proposed behavior rule specification-based misbehavior 

detection technique is generic and can be applied to practical IoT-

embedded cyber physical systems for which very lightweight 

embedded IoT devices (e.g., sensors, actuators, or a combination of 

both) are an integral part of the overall system design. We 

illustrated the feasibility of our proposed method with a PCA device 

embedded in a MCPS where a peer PCA serves the role of a monitor 

node. We position our behavior rule specification-based 

misbehavior detection technique as the only feasible solution in 

terms of low memory, run time, communication, and computation 

overhead, and high misbehavior detection prediction accuracy to 

ensure protection of resource-constrained embedded IoT devices 

against zero-day attacks. This is to be further tested with 

experimental verification. 
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