
Misbehavior Detection of Embedded IoT Devices in Medical Cyber

Physical Systems

Ilsun You, Kangbin Yim,

Vishal Sharma, Gaurav

Choudhary
 Information Security Engineering

 SoonChunhYang University

Ing-Ray Chen
 Department of Computer Science

 Virginia Tech

Jin-Hee Cho†
 Department of Computer Science

Virginia Tech

ABSTRACT

We propose a lightweight specification-based misbehavior

detection technique to efficiently and effectively detect

misbehavior of an IoT device embedded in a medical cyber

physical system through automatic model checking and formal

verification. We verify our specification-based misbehavior

detection technique with a patient-controlled analgesia (PCA)

device embedded in a medical health monitoring system.

KEYWORDS

Medical cyber physical systems, IoT, behavior rules, zero-day

attacks.

1 Introduction

In general, there are three types of misbehavior detection

techniques for Internet of Things (IoT): signature-based, anomaly-

based and specification-based techniques [12]. Our proposed

misbehavior detection technique in this work falls under

specification-based detection. We dispose signature-based

detection as it cannot deal with zero-day attacks. We consider

specification-based techniques rather than anomaly-based

techniques for misbehavior detection for efficiency reasons

especially for resource-constrained IoT devices by avoiding the

high cost associated with profiling and learning anomaly patterns

as would be required by anomaly-based techniques. We argue that

contemporary anomaly-based misbehavior detection methods for

IoT-embedded CPSs based on profiling and machine learning

through correlation and statistical analysis of a large amount of data

or logs for classifying misbehavior [2, 6-7] will not work for IoT-

embedded CPSs because of high memory, run time,

communication, and computational overhead, considering that

many embedded IoT devices are severely resource-constrained.

Specification based misbehavior detection provides a viable

approach for misbehavior detection of embedded IoT devices

because of light resource requirements for checking misbehaviors

against specifications.

The novelty of our work is that we pioneer the use of lightweight

behavior rule specification-based misbehavior detection for

lightweight IoT devices embedded in a CPS with memory, run

time, communication, and computational overhead considerations.

Our work is novel compared to the existing specification-based

intrusion detection techniques (see Section 2 Related Work for

details) in the following aspects: (1) design and implementation of

a module for automatically modeling and deriving behavior rules

from an embedded IoT device’s operational profile specifications

[16, 20, 23]; (2) design and implementation of a model checking

tool to formally verify that the generated behavior rules are correct

and cover all the threats (or meet the security requirements) and

that the resulting safe and unsafe states are complete and are

generated correctly w.r.t. the specified behavior rules; (3) design

and implementation of a module for automatically transforming

behavior rules into “attack behavior indicators” and then into a state

machine for misbehavior detection at runtime; (4) design and

implementation of a lightweight runtime collection module for

collecting compliance degree data from runtime monitoring of an

IoT device based on its derived state machine; and (5) design and

implementation of a lightweight statistical analysis module for

misbehavior detection based on experimentally collected

misbehavior data at runtime.

The rest of the paper is organized as follows. In Section 2, we

survey existing work on misbehavior detection of IoT devices and

compare as well as contrast our work with existing work. In Section

3, we discuss the system model. In Section 4, we describe our

MedIoT design in detail and apply MedIoT to a patient-controlled

analgesia (PCA) device embedded in a medical health monitoring

system. In Section 5, we compare MedIoT with an existing

anomaly detection method in performance outcomes. In Section 6,

we conclude the paper and outline future research areas.

†This work was conducted while Jin-Hee Cho was affiliated with US Army Research

Laboratory.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

CHASE '18, September 26–28, 2018, Washington, DC, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5958-0/18/09$15.00

https://doi.org/10.1145/3278576.327860190

2 Related Work

In this section, we provide an overview of related work in three

categories: anomaly-based IoT misbehavior detection,

specification-based IoT misbehavior detection, and formal

verification of behavior specifications in specification-based

detection techniques.

2.1 Anomaly-based IoT Misbehavior Detection

Existing misbehavior detection methods for IoT mostly are

designed to detect either routing attacks or Denial of Service (DoS)

attacks [24]. More recent works [25] also addressed detecting

illegal memory accesses in low-power IoTs. These existing works,

however, are based on anomaly-based techniques applying

profiling and machine learning through correlation and statistical

analysis of a large amount of data or logs for classifying

misbehavior [2, 6-7, 10-11, 14-15, 25]. Our motivation of this work

is that anomaly-based detection techniques will not work for IoT-

embedded CPSs because many embedded IoT devices especially

battery-operated ones are severely resource-constrained. Our work

is based on lightweight specification-based misbehavior detection

of each IoT device embedded in a CPS.

2.2 Specification-based IoT Misbehavior Detection

In the literature, specification-based misbehavior detection has

been mostly applied to communication networks [4, 8, 21] and CPS

security [1, 9, 17, 18, 26]. DaSilva et al. [4] proposed traffic-based

rules to detect network intruders. Ioannis et al. [8] devised packet-

forwarding behavior rules to detect blackhole and greyhole attacks.

Song et al. [21] proposed specification-based detection rules (i.e.,

identifying monitored activity) to ensure that the global security

requirement is complied with an IP configuration protocol in

mobile ad networks. In the context of CPS security, Berthier et al.

[1] proposed specification-based misbehavior detection to audit the

network traffic among smart meters and access points for protocol

compliance. Jokar et al. [9] devised specifications to detect MAC

layer attacks in smart grids. Mitchell et al. [17, 18] discussed a

conceptual model of behavior rule based intrusion detection for

CPSs and conducted a proof-of-concept statistical analysis using

pre-generated data following an attacker behavior model. Khan et

al. [26] proposed behavior-based executable specification against

false data injection attacks for industrial control systems. Unlike

the above existing works, we pioneer the use of lightweight

specification-based misbehavior detection specifically for

resource-constrained IoT devices embedded in a CPS.

2.3 Verification of Specification-based Intrusion Detection

While specification-based detection in general induces a lower

false positive rate than anomaly detection, a limitation of

specification-based approaches is the difficulty to verify if the

specifications are correct and cover all the threats [1]. Toward this

end, Song et al. [21] describe a formal reasoning framework to first

define a global security requirement and then define the

specifications of the behaviors of local nodes to assure the global

security property. Berthier et al. [1] followed a similar approach

and proposed a formal framework comprising a model of the

network, monitoring operations, protocol specifications, and a

security policy. Utilizing the Applicative Common Lisp (ACL)

theorem prover [27], they verify that all network traces that respect

the network model, monitoring operations, and protocol

specifications will also respect the security policy. Unlike the above

cited work [1, 21], we start with the “operational profile” [16, 20,

23] of an embedded IoT that defines the mission statement of the

embedded IoT device to derive the security requirements and hence

the threats of the embedded IoT device. Then we derive the

behavior rules specifying the intended behavior and verify that the

behavior rules are correct and cover all the threats. Since ACL2

[27] is a proven tool, we use it to define behavior specifications and

security requirements, all expressed as ACL functions, for formal

verification. Lastly unlike [1, 21], MedIoT is specifically designed

for misbehavior detection of lightweight IoT devices embedded in

a Medical Cyber-Physical Systems (MCPS) with energy

consideration.

3 System Model

We refer the readers to [12, 13, 24, 25] for attacker behaviors

and intrusion detection mechanisms available for IoT-embedded

CPSs. Our behavior-rule based IDS approach relies on the use of

monitor nodes. We assume that a monitor node performs

misbehavior detection on a target node. One possible design is to

have a sensor (actuator) monitor another sensor (actuator

respectively) within the same CPS. This may require each sensor

(actuator) to have multiple sensing functionalities. Another

possibility is that each IoT device is built on top of a secure

computational space (e.g., [5]) such that each target IoT device can

execute misbehavior detection code in the secure computation

space and self-monitor itself, even if the operating kernel has been

compromised. The monitoring process is lightweight and will not

interfere with the normal operations of the monitor IoT device or

the target IoT device (see Section 4.3 for detail).

4 MedIoT Design as Applying to PCA in MCPS

In this section, we provide the detail of our MedIoT design and

exemplify MedIoT with patient-controlled analgesia (PCA)

devices embedded in a health monitoring MCPS [17]. We consider

a PCA device that is programmed to perform analgesic injection in

response to the injection button being pressed, with the injection

period and dosage controlled by authority.

4.1 Behavior Rule Specification of a PCA

We use the design concept of “operational profile” [16, 20, 23]

during the testing and debugging phase of an embedded IoT device

when the IoT software is built to identify the complete set of

behavior rules. An IoT device’s operational profile essentially is a

mission assignment during the operational phase of the IoT device.

A mission assignment in an embedded IoT device’s operational

profile explicitly defines a set of security requirements for the

mission to be successful, from which a set of threats as well as a set

of behavior rules to cope with the threats may be automatically

derived.

We consider a PCA in a MCPS with the following operational

profile:

Raise an alert to designated personnel and halt analgesic

injection if the patient’s medical condition is unfit for analgesic

injection; raise an alert to designated personnel and halt

analgesic injection if the PCA is not ready for analgesic injection;

communicate with authorized personnel only regarding the

injection rate and dosage of medicine; perform correct IDS

functions; when the injection button is pressed, if the patient

controlled injection rate is less than or equal to the specified

injection rate then inject a specified dose of medicine.

Given this operational profile as input, the security requirements

of this PCA may be derived as listed in Table 1.

Table 1: PCA Security Requirements.

ID Security Requirement

SR 1 The PCA must raise alert to designated personnel and hold

analgesic injection if the patient’s condition is unfit for

analgesic injection

SR2 The PCA must raise alert to designated personnel and hold

analgesic injection if the PCA is not ready for analgesic

injection

SR 3 The PCA must change its injection rate and medicine

dosage upon authorized commands only

SR 4 The PCA must perform correct IDS functions when

serving as a monitor node, i.e., providing true

recommendations

SR 5 The PCA must perform analgesic injection at the specified

dosage without exceeding the allowable injection rate

With the system requirements defined, it is relatively

straightforward to identify the threats that will keep this PCA from

accomplishing its mission, as listed in Table 2.

Table 2: PCA Threats.

ID Threat

THREAT 1 The PCA is not able to raise alert and hold analgesic

injection when patient is unfit

THREAT 2 The PCA is not able to raise alert and hold analgesic

injection when PCA is not ready

THREAT 3 The PCA is not able to follow authorized commands

THREAT 4 The PCA is not able to perform correct IDS functions,

i.e., not able to provide true IDS recommendations

THREAT 5 The PCA’s analgesic injection rate is above the

specified injection rate

THREAT 6 The PCA is not injecting the specified dosage

Next, we derive the behavior rule set for this PCA. Table 3 lists

the behavior set without priority order for simplicity. It also lists

the security aspect (integrity, confidentiality, or availability)

associated with each behavior rule. A behavior rule is typically

derived from a threat because a threat specifying a negative event

that can lead to an undesired outcome is just opposite to a behavior

rule specifying a good behavior or a good event that can lead to a

desired outcome.

Table 3: PCA Behavior Rules.

ID Behavior Rule Security Aspect

BR 1 Raise alert to designated personnel and

hold analgesic injection if patient is

unfit

Integrity,

confidentiality,

availability

BR 2 Raise alert to designated personnel and

hold analgesic injection if PCA is not

ready

Integrity,

confidentiality,

availability

BR 3 Accept authorized commands Integrity,

confidentiality,

availability

BR 4 Provide true recommendations integrity

BR 5 Perform analgesic injection without

exceeding the specified rate

integrity

BR 6 Perform analgesic injection at the

specified dosage

integrity

We conduct automatic model verification of the behavior rules

generated by verifying if the behavior rules generated are correct

and cover all the threats (or satisfy the security requirements). We

leverage ACL2 [27], a theorem prover, to define security

requirements (in Table 1) as well as behavior rules (in Table 3) as

ACL functions. We complete formal verification by defining a

theorem (also an ACL function) that is evaluated to be true, proving

that this PCA device will not violate the security requirements if it

does not violate the behavior rules.

4.2 Transforming the Behavior Rules to a State
Machine for Misbehavior Detection

After the behavior rule set is identified, we transform it to a state

machine for lightweight misbehavior detection. The behavior-rule-

to-state-machine transformation process is automatic. First, one or

more “attack behavior indicators” (ABIs) for each behavior rule is

identified. Then, each ABI is expressed as a conjunctive normal

form (CNF) predicate to be evaluated to true or false indicating

whether the corresponding behavior rule is violated or not. Then,

all ABIs are combined together into a disjunctive normal form

(DNF) predicate. Lastly the state machine is formed with all ABIs

as state components, each taking the value of 1 (true) or 0 (false).

When all ABIs take the value of 0, it means that none of the

behavior rules is violated and hence the system is in a safe state.

Conversely, when any ABI takes the value of 1, it means

misbehavior because that particular behavior rule is violated. We

describe the behavior rule to state machine transformation process

in the following subsections.

4.2.1 Attack Behavior Indicators Expressed as CNF Predicates

Table 4 lists 9 ABIs, each to be evaluated to 1 (true) or 0 (false)

at runtime through monitoring, indicating whether the

corresponding behavior rule is violated or not. When an ABI is

evaluated to true, the PCA is detected as misbehaving against the

corresponding behavior rule. Identifying an ABI involves

identifying a set of physical variables whose runtime values decide

if the corresponding behavior rule is violated or not. For example,

ABI 1 in Table 4 has two physical variables, namely, Patient Pulse

Rate and Action. When the patient’s pulse is not normal and the

action is not alert-and-hold, it is a violation of BR 1.

ABIs 1, 2, and 3 derive from BR 1 as there are three conditions

for defining “when patient is unfit,” ABIs 4 and 5 derive from BR

2 as there are two conditions for defining “when the PCA is not

ready,” ABI 6 derives from BR 3, ABI 7 derives from BR 4, and

ABI 8 and ABI 9 derive from BR 5 and BR 6 as there are two

conditions for defining the PCA not being able to follow authorized

commands to correctly perform analgesic injection.

The 1st ABI (ABI 1 in Table 4) is that this PCA does not alert

personnel and hold analgesic injection when the patient’s pulse rate

is not normal. A normal pulse rate for adults is 60-100 beats per

minute. The CNF of the Boolean expression is (Patient Pulse Rate

 Normal)  (Action  Alert-and-Hold).

The 2nd ABI (ABI 2 in Table 4) is that this PCA still injects

analgesic when the patient’s respiration rate is not normal. The

normal respiratory rate for adults is 12–20 breaths per minute. The

CNF of the Boolean expression is (Patient Respiration Rate 

Normal)  (Action  Alert-and-Hold).

The 3rd ABI (ABI 3 in Table 4) is that this PCA still injects

analgesic when the patient is being treated with defibrillation. The

CNF of the Boolean expression is (Patient Status = Defibrillation)

 (Action  Alert-and-Hold).

The 4th ABI (ABI 4 in Table 4) is that this PCA does not alert

personnel and hold analgesic injection when the drug reservoir is

empty. The CNF of the Boolean expression is (Drug Reservoir =

Empty)  (Action  Alert-and-Hold).

The 5th ABI (ABI 5 in Table 4) is that this PCA does not alert

personnel and hold analgesic injection when the infusion site is

incorrect, e.g., the injection is pulled of the patient’s body or the

injection is not at the patient’s correct infusion point. This is

indicated by measuring the infusion pressure being normal or not.

The CNF of the Boolean expression is (Infusion Pressure 

Normal)  (Action  Alert-and-Hold). This ABI has a local variable

called Infusion Pressure for measuring the infusion pressure to

detect if the infusion site is correct. If image sensors are built inside

the PCA, image-sensing the infusion site may directly detect if the

infusion site is at the right place.

The 6th ABI (ABI 6 in Table 4) is that a PCA does not accept

authorized commands to update its injection rate and medicine

dosage. The CNF is (Action  Accept)  (Command =

AUTHORIZED).

The 7th ABI (ABI 7 in Table 4) is that a monitor PCA provides

false recommendations toward a behaving target PCA (called bad-

mouthing attacks), and good recommendations toward a

misbehaving target PCA (called ballot-stuffing attacks). This may

be detected by detecting recommendation discrepancies among

multiple monitor PCAs. The CNF is Target Node Audit  Monitor

Node Audit.

The 8th ABI (ABI 8 in Table 4) is that this PCA injects analgesic

at a rate exceeding the specified injection rate. The CNF is

(Injection Rate  Specified Injection Rate)  (Action = Inject).

Finally, the 9th ABI (ABI 9 in Table 4) is that this PCA does not

inject analgesic at the right dosage. The CNF is (Dosage 

Specified Dosage)  (Action = Inject).

Table 4: PCA Attack Behavior Indicators in CNF.

ID Attack Behavior Indicator

ABI 1 (Patient Pulse Rate  Normal)  (Action  Alert-and-

Hold)

ABI 2 (Patient Respiration Rate  Normal)  (Action  Alert-

and-Hold)

ABI 3 (Patient Status = Defibrillation)  (Action  Alert-and-

Hold)

ABI 4 (Drug Reservoir = Empty)  (Action  Alert-and-Hold)

ABI 5 (Infusion Pressure  Normal)  (Action  Alert-and-

Hold)

ABI 6 (Command = AUTHORIZED)  (Action  Accept)

ABI 7 Target Node Audit  Monitor Node Audit

ABI 8 (Injection Rate  Specified Injection Rate)  (Action =

Inject)

ABI 9 (Dosage  Specified Dosage)  (Action = Inject)

4.2.2 All ABIs are Combined into a DNF Predicate

All 9 ABIs in Table 4 are combined together into a DNF

predicate (ABI 1  ABI 2  ABI 3  ABI 4  ABI 5  ABI 6  ABI

7  ABI 8  ABI 9) because every ABI if evaluated to true is an

indication of misbehavior.

4.2.3 Generated State Machine for Misbehavior Detection

For the PCA state machine, there are 9 Boolean variables (each

taking the value of either 1 or 0) in the state representation, resulting

in the total number of states being 29= 512, out of which only one

is a safe state (when all 9 Boolean variables are false or take the

value of 0) and all other 511 states are unsafe states. Note that there

are many variables in these 9 ABIs. However, these variables are

internal variables maintained by a monitor PCA who updates these

internal variable values at monitoring intervals to determine the

true/false (or 1/0) of the 9 Boolean variables for a target PCA that

is being monitored on.

4.3 Runtime Collection of Compliance Degree Data

Unlike anomaly detection which frequently requires heavy

resources to profile/learn anomaly patterns, our behavior rule

specification-based data collection process is lightweight. By

using the transformed state machine, a monitor device only

needs to periodically monitor if a target IoT device is in safe or

unsafe states without interfering with the normal operation of

either the monitor device or the target device. For the target

PCA, we label its 512 states in the state machine as states 0, 1,

2, …, 511 with state 0 represented by (0, 0, 0, 0, 0, 0, 0, 0, 0) as

the only safe state in which all 9 Boolean variables (ABI 1 – ABI

9) take the value of 0 or false. Hence the monitor node can

simply collect an instance of the compliance degree of the

target node (to be monitored on) by measuring the proportion

of time the target PCA node is in state 0. This collection process

is repeated periodically. So by the end of the nth monitoring

periods, the monitor node would collect the compliance degree

history 𝑐1, 𝑐2, … , 𝑐𝑛 of the target PCA. As the state machine has

incorporated the knowledge of safe vs unsafe states, this data

collection process is extremely lightweight. The monitor node

just needs to check which states the target node is in during a

monitoring interval and measures the proportional of time the

target node is in safe states. To save energy, this monitoring

process can be done in discrete time space involving probing

the states of the target node at discrete time points. Then an

instance of the compliance degree can be measured as the ratio

of the number of times in which the target node is found to be

in safe states over the total number of times the monitor node

probes the status of the target node.

4.4 Statistical Analysis for Misbehavior Detection

Our lightweight statistical analysis does not involve training,

that is, we do not partition the “compliance degree” history

𝑐1, 𝑐2, … , 𝑐𝑛 collected (see Section 4.3) into the training set and the

data set for testing because such heavy profiling and learning at

runtime is impractical for resource-constrained IoT devices. Rather,

we simply model an IoT device’s “compliance degree” by a random

variable 𝐶 following a probability distribution function G(.) with

the value of 0 indicating zero compliance and 1 indicating perfect

compliance. Once we know the target node’s compliance degree

distribution function, we can compute the expected value of C to

know the average compliance degree of the target node over a time

period. This information will allow us to decide if the target node

is considered “malicious” based on a binary grading criterion, i.e.,

if the target node’s average compliance degree is less than or just

equal to a minimum threshold 𝐶𝑇, we consider the target node as

malicious.

In this work we consider 𝐺(.) = 𝐵𝑒𝑡𝑎(𝛼, 𝛽) as the probability

distribution function. The 𝛼 and 𝛽 parameters can be parameterized

using the target node’s compliance degree history

𝑐1, 𝑐2, … , 𝑐𝑛 collected during runtime. The computation overhead

would be manageable because the monitor node just needs to solve

the maximum likelihood equations to parameterize the 𝛼 and 𝛽

parameters. In this case, the run time complexity is 𝑂(𝑛𝑙𝑜𝑔𝑛). If

we use a one-parameter 𝐵𝑒𝑡𝑎(𝛽) distribution with 𝛼 fixed at the

value of 1 as the probability distribution function, the run time

complexity to parameterize 𝛽 using the target node’s compliance

degree history is only 𝑂(𝑛) which is extremely lightweight

compared with contemporary anomaly based detection methods

that would incur the run time complexity of O(𝑛𝑝) to O(𝑝𝑛), p > 1,

where n is the number of data samples because of the need to profile

or learn anomaly patterns.

The effectiveness of our lightweight statistical analysis method

described above can be measured by the false negative probability

𝑃𝑓𝑛 and false positive probability 𝑃𝑓𝑝. During an experimental run

if a seeded “good” node’s compliance degree is lower than or just

equal to the minimum threshold 𝐶𝑇, we incur a false positive, i.e.,

treating a good node as a bad node. On the other hand, if during an

experimental run a seeded “bad” node’s compliance degree is

higher than the minimum threshold 𝐶𝑇, we incur a false negative,

i.e., treating a bad node as a good node. For the target PCA, since

we know the target PCA’s compliance degree distribution function

G(.) after applying our lightweight statistical analysis method, we

can easily compute 𝑃𝑓𝑛 = Pr(𝐶 > 𝐶𝑇) = 1 − 𝐺(𝐶𝑇) given that the

PCA device is “bad” and 𝑃𝑓𝑝 = Pr(𝐶 ≤ 𝐶𝑇) = 𝐺(𝐶𝑇) given that

the PCA device is “good” during experimental runs.

5 Performance Comparison

We compare MedIoT with a semi-supervised anomaly-based

behavior detection method [22] for classifying patient behaviors in

a medical health monitoring system. Their design is based on

auditing data collected from a series of events involving least

common subsequence (LCS) and non-LCS events with event start

times and durations. 70% of the data set is used as training data to

learn normal event patterns based on similarity and the remaining

30% used as testing data for evaluating performance.

We setup the testing environment with a good target PCA and a

malicious target PCA as in Park’s experiment. A monitor PCA is

also setup to periodically monitor the good target PCA and the

malicious target PCA based on the behavior-rule state machine

preloaded into the monitor PCA’s memory upon bootstrapping.

The environment is characterized by an imperfect monitoring

probability of 3% due to coding errors, transient faults and

environment noises. That is, the monitor PCA may mis-detect the

state a target PCA is in with a 3% error probability due to coding

errors, transient faults, or environment noises. The malicious target

PCA attacks whenever possible based on the PCA threat conditions

listed in Table 2. The monitor PCA collects a target PCA’s

compliance degree history 𝑐1, 𝑐2, … , 𝑐𝑛 subject to the imperfect

monitoring probability, based on which it computes the true

positive rate (1 − 𝑃𝑓𝑛) versus false positive rate (𝑃𝑓𝑝) by adjusting

the minimum compliance threshold 𝐶𝑇 as described in Section 4.4.

Figure 1: Performance Comparison of MedIoT vs.

Park’s Design.

We use a Receiver Operating Characteristic (ROC) graph

with the detection rate (1 − 𝑃𝑓𝑛) on the Y coordinate and the

false positive rate (𝑃𝑓𝑝) on the X coordinate for performance

comparison. The Area Under the ROC curve (AUROC) is

especially a well-adopted metric for performance comparison

of misbehavior detection methods because it can properly

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

D
e

te
ct

io
n

 R
at

e

False Positive Probability

Park's Design

MedIoT

reflect the tradeoff between false negative rate (𝑃𝑓𝑛) and false

positive rate (𝑃𝑓𝑝).

Figure 1 compares the ROC curves for MedIoT and Park’s.

We can see clearly that the AUROC of MedIoT dominates that of

Park’s design. In particular, MedIoT always has a better

detection rate given the same 𝑃𝑓𝑝 and always has a better 𝑃𝑓𝑝

given the same detection rate. By setting the minimum

compliance threshold 𝐶𝑇 to a high bar at ..8,, MedIoT can

achieve a 1..% detection rate for detecting the malicious

target PCA, while limiting the false positive probability 𝑃𝑓𝑝 to

just 7% for misjudging the good target PCA because of the

presence of imperfect monitoring. We attribute the superior

performance of MedIoT by the unique design that safe and

unsafe-state information is already summarized in the

transformed state machine, based on which a monitor node just

needs to measure the proportion of time a target node (being

monitored on) is in safe states for effective and efficient

misbehavior detection.

6 Conclusion

The proposed behavior rule specification-based misbehavior

detection technique is generic and can be applied to practical IoT-

embedded cyber physical systems for which very lightweight

embedded IoT devices (e.g., sensors, actuators, or a combination of

both) are an integral part of the overall system design. We

illustrated the feasibility of our proposed method with a PCA device

embedded in a MCPS where a peer PCA serves the role of a monitor

node. We position our behavior rule specification-based

misbehavior detection technique as the only feasible solution in

terms of low memory, run time, communication, and computation

overhead, and high misbehavior detection prediction accuracy to

ensure protection of resource-constrained embedded IoT devices

against zero-day attacks. This is to be further tested with

experimental verification.

ACKNOWLEDGMENTS

This work is partially supported by Institute for Information &

communications Technology Promotion (IITP) grant funded by the

Korea government (MSIT) (No. 2017-0-00664, Rule Specification-

based Misbehavior Detection for IoT-Embedded Cyber Physical

Systems). This work is also supported in part by the U.S. AFOSR

under grant number FA2386-17-1-4076.

REFERENCES
[1] R. Berthier and W.H. Sanders. 2011. Specification-based Intrusion Detection for

Advanced Metering Infrastructures. 17th IEEE Pacific Rim Int. Symp.

Dependable Computing, 184-193.

[2] A. Bezemskij, G. Loukas, R.J. Anthony, and D. Gan. 2016. Behaviour-based

anomaly detection of cyber-physical attacks on a robotic vehicle. IEEE

Symposium on Cyberspace and Security, 1-8.

[3] I.R. Chen, O. Yilmaz, and I.L. Yen. 2006. Admission control algorithms for

revenue optimization with QoS guarantees in mobile wireless networks. Wireless

Personal Communications, 38 (3), 357-376.

[4] A. DaSilva et al. 2005. Decentralized intrusion detection in wireless sensor

networks. 1st ACM inter. workshop on quality of service & security in wireless

and mobile networks., 16–23.

[5] N. Zhang, K. Sun, W. Lou, and Y.T. Hou. 2016. CaSE: Cache-Assisted Secure

Execution on ARM Processors. IEEE Symposium on Security and Privacy.

[6] J. Hong, C.C. Liu, and M. Govindarasu. 2014. Integrated Anomaly Detection for

Cyber Security of the Substations. IEEE Trans. Smart Grid, 5 (4), 1643-1653.

[7] S. Huda, et al. 2017. Defending unknown attacks on cyber-physical systems by

semi-supervised approach and available unlabeled data. Information Sciences,

379, 211-228.

[8] K. Ioannis, T. Dimitriou, and F. Freiling. 2007. Towards intrusion detection in

wireless sensor networks. 13th European Wireless Conference.

[9] P. Jokar, H. Nicanfar, and V.C.M. Leung. 2011. Specification-based Intrusion

Detection for Home Area Networks in Smart Grids. IEEE Int. Conf. on Smart

Grid Communications.

[10] A.M. Kosek. 2016. Contextual anomaly detection for cyber-physical security in

smart grids based on an artificial neural network model. IEEE Workshop on

Cyber-Physical Security and Resilience in Smart Grids.

[11] C. Kwon, S. Yantek, and I. Hwang. 2016. Real-Time Safety Assessment of

Unmanned Aircraft Systems Against Stealthy Cyber Attacks. Journal of

Aerospace Information Systems, 13 (1), 27-46.

[12] R. Mitchell, and I.R. Chen. 2014. A Survey of Intrusion Detection Techniques in

Cyber Physical Systems. ACM Computing Survey, 46 (4), article 55.

[13] R. Mitchell and I.R. Chen. 2016. Modeling and Analysis of Attacks and Counter

Defense Mechanisms for Cyber Physical Systems. IEEE Transactions on

Reliability, 65 (1), 350-358.

[14] S. Ntalampiras. 2016. Automatic identification of integrity attacks in cyber-

physical systems. Expert Systems with Applications, 58, 164-173.

[15] Y. Zhang, L. Wang, W. Sun, R. Green, and M. Alam. 2011. Distributed intrusion

detection system in a multi-layer network architecture of smart grids. IEEE

Trans. Smart Grid, 2 (4), 796–808.

[16] J. Musa. 1993. Operational profiles in software reliability engineering. IEEE

Software, 14–32.

[17] R. Mitchell and I.R. Chen. 2015. Behavior Rule Specification-based Intrusion

Detection for Safety Critical Medical Cyber Physical Systems. IEEE

Transactions on Dependable and Secure Computing, 12 (1), 16-30.

[18] R. Mitchell and I.R. Chen. 2014. Adaptive Intrusion Detection of Malicious

Unmanned Air Vehicles Using Behavior Rule Specifications. IEEE Transactions

on Systems, Man and Cybernetics, 44 (5), 593-604.

[19] S.T. Cheng, C.M. Chen, and I.R. Chen. 2000. Dynamic quota-based admission

control with sub-rating in multimedia servers. Multimedia Systems, 8 (2), 83-91.

[20] I.R. Chen and F.B. Bastani. 1991. Effect of Artificial-Intelligence Planning

Procedures on System Reliability. IEEE Trans Reliability, 40 (3), 364-369.

[21] T. Song, et al. 2006. Formal Reasoning about a Specification-based Intrusion

Detection for Dynamic Auto-configuration Protocols in Ad Hoc Networks.

Formal Aspects in Security and Trust, 16-33.

[22] K. Park, Y. Lin, V. Metsis, Z. Le, and F. Makedon. 2010. Abnormal human

behavioral pattern detection in assisted living environments. 3rd ACM Int. Conf.

Pervasive Technol. Related Assist. Environments, 9:1–9:8.

[23] I.R. Chen, B. Gu, S.E. George, and S.T. Cheng. 2005. On failure recoverability

of client-server applications in mobile wireless environments. IEEE Trans.

Reliability, 54 (1), 115-122.

[24] B.B. Zarpelao, R.S. Miani, C.T. Kawakani, and S.C. de Alvarenga. 2017. A

Survey of Intrusion Detection in Internet of Things. Journal of Network and

Computer Architecture, 84, 25-37.

[25] A. Saeed, A. Ahmadinia, A. Javed, and H. Larikani. 2016. Intelligent Intrusion

Detection in Low-Power IoTs. ACM Trans. Internet Technology, 16 (4), article

27.

[26] M.T. Khan, D. Serpanos, and H. Shrobe. 2017. ARMET: Behavior-based Secure

and Resilient Industrial Control Systems. Proceedings of The IEEE.

[27] M. Kaufmann and J.S. Moore. 2017. A Computational Logic for Applicative

Common Lisp. http://www.cs.utexas.edu/users/moore/acl2/.

