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Abstract

We propose and analyze trust-based cooperative spectrum sensing data fusion schemes against spectrum

sensing data falsification attacks in cognitive radio networks. We first consider the case in which a centralized

data fusion center is in place for decision making. Then we extend it to the case in which the data fusion

center is absent leading to autonomous and distributed decision making. Our trust-based data fusion schemes

are based on mechanism design theory to motivate users to report authentic sensing data so as to improve

the success rate. Further, we decouple erroneous sensing reports due to low sensing capabilities from false

reports due to attacks, thus avoiding unnecessary punishments to good users. We conduct a theoretical

analysis validated with extensive simulation and identify optimal parameter settings under which our trust-

based data fusion schemes outperform existing non-trust based cooperative spectrum sensing data fusion

schemes.

Key Words: Spectrum sensing data falsification attacks, Trust management, Consensus-based cooperative

spectrum sensing.

I. INTRODUCTION

Cognitive radio has aroused a lot of interest as a solution to spectrum scarcity in the next

generation of wireless communication. The main idea of cognitive radio is to let the secondary users



(SUs) opportunistically access the channels that are temporarily not occupied by the preassigned

primary users (PUs). In a cognitive radio system, the access priorities of PUs have to be guaranteed,

i.e., SUs need to learn the PUs’ activities to avoid interfering with the PUs on the band. Therefore,

SUs need to sense the PU activity on a particular spectrum before transmitting data on that spectrum.

Due to limited sensing capabilities of individual SUs, cooperative spectrum sensing is provided as a

way to gather SUs’ sensing information in order to increase the accuracy of PU occupancy detection.

However, cooperative spectrum sensing can be attacked by malicious SUs, who can intentionally

report fake sensing results to mislead the final aggregated result. Therefore, how to design a secure

data fusion scheme for cooperative spectrum sensing is a big challenge in security management of

cognitive radio networks.

This paper proposes and analyzes a trust-based data fusion scheme based on mechanism design

to aggregate the SUs’ reported outcomes in such a way that the correctness of aggregated outcome

is stable in the presence of a high percentage of malicious SUs. Mechanism design is a sub-field of

microeconomics and game theory that considers how to construct and implement a mechanism that

provides incentives for the users to communicate and act in such a way so as to further the interest

of the designer, despite the fact that the users are strategic and self-interested, and possess private

information [1]. We apply mechanism design to implement a scheme providing incentives for all

SUs within the system to report their actual sensing capabilities and sensing results, despite the

fact that some of the SUs are self-interested with malicious intent to disrupt cooperative spectrum

sensing. The basic idea is that the system would like to know the true channel availability but it

cannot completely trust sensing reports from the SUs because it is in malicious SU’s interest to

distort the truth. With mechanism design, the system can design a static game whose rules can

influence the SUs to act the way it would like. It is a static game in the sense that all SUs make

decisions (or select a strategy) simultaneously, without knowledge of the strategies that are being

chosen by the system.

Our trust-based data fusion scheme derived from the static game also employs a reputation/trust

system [2]–[5] to identify malicious SUs in the long run. We do not differentiate trust from reputation



in this paper, although reputation refers to common belief of the community toward a node, while

trust refers to subjective belief of one node toward another node [2]. Henceforth, we will use

reputation and trust interchangeably. During data fusion, an SU reports its sensing capability and

the sensed channel availability to the system who makes a decision on the channel availability

based on majority voting of trusted SUs. The SU sensing capability is taken into consideration

in the static game in order to differentiate a fake outcome reported by a malicious SU from an

erroneous outcome reported by a good SU with poor sensing capability. Moreover, the system can

elect to check the channel availability in order to compare this first-hand evidence with a sensing

outcome reported by an SU to detect if the SU lies about the channel availability.

The objectives of our trust-based data aggregation scheme are threefold: (1) under the designed

scheme, malicious SUs have no incentive to report fake sensing capabilities; (2) the system’s

checking probability should be minimized in each time slot since the cost for the system to check

the channel availability itself and to detect sensing result discrepancies by SUs is prohibitively high;

and (3) the success decision rate should be maximized to match the data fusion outcome with the

ground truth channel availability with a high probability.

In order to identify erroneous sensing results due to SUs’ poor sensing abilities, our scheme

requires SUs to report the sensing capability. A threshold is set to filter out the SUs with low

sensing capabilities. On the other hand, to avoid malicious SUs from reporting fake sensing abilities,

the system can check the PU activity based on our static game model design. When checking the

spectrum, the system punishes the SUs whose report outcomes are different by decreasing their

reputation scores based on their reported sensing capabilities. Otherwise, if the system does not

sense the spectrum in a particular time slot, it aggregates the reported sensing outcomes from those

SUs whose sensing capability is over a predefined threshold, weighed by their reputation scores.

In this paper we consider self-interested malicious attackers with the objective to disrupt coop-

erative spectrum sensing. In other words, the malicious attackers aim to destroy the functionality

of cooperative spectrum sensing, so that the system cannot trust the aggregated sensing results.

We consider four types of spectrum sensing data falsification (SSDF) attacks to test the resiliency



of the proposed data aggregation scheme: “always yes,” “always no,” “always false,” and “always

random.” Under the always yes attack scenario, the malicious SUs always report the presence

of PUs ignoring their real sensing results. Under the always no attack scenario, the malicious

SUs always report the absence of PUs on the channel ignoring the real detection results. Under the

always false attack scenario, the malicious SUs always report the opposite of their sensed outcomes.

Under the always random attack scenario, the malicious SUs randomly generate a sensing result

to report to the system. We test the resiliency of our trust-based data fusion scheme against these

four different attacks. We use simulation to demonstrate that our proposed scheme outperforms a

traditional approach using a majority fusion rule under all attacking scenarios despite increasing

malicious node population. Also, the malicious nodes can be identified through reputation scores

in our scheme.

The research presented in this paper can be situated within the broader class of opportunistic

channel selection strategy design in cognitive radio networks. The primary contributions of this

paper are as follows:

1) We design a trust-based scheme for cooperative spectrum sensing to enhance the detection

accuracy of PU channel occupancy.

2) We develop a static game based on mechanism design to discourage malicious SUs from

reporting fake sensing capability.

3) We analyze the impact of SUs’ sensing capability regarding channel occupancy on their ability

to dynamically exploit the band.

4) Our design principles apply to both centralized cognitive radio networks in which a Data

Fusion Center (DFC) exists and distributed cognitive radio networks in which the DFC does

not exist. We identify the best parameter settings under which the performance of our proposed

scheme is optimized and outperforms existing schemes in either case. We also discuss the

amenability of our design principles as applying to centralized and distributed cognitive radio

networks.

This paper has been substantially extended from our previous work [8] [12] as follows: (a) we



provide a uniform treatment of applying mechanism design theory principles to both centralized

cooperative spectrum sensing in which a DFC exists and distributed cooperative spectrum sensing

in which a DFC does not exist in cognitive radio systems; (b) we formal prove the correctness

of our trust-based data fusion schemes for both centralized and distributed trust-based cooperative

spectrum sensing by theorem proving and ascertain the validity by extensive simulation; and (c) we

compare centralized and distributed trust-based cooperative spectrum sensing in terms of prediction

accuracy and overhead, as well as the amenability of our mechanism design theory principles as

applying to centralized and distributed trust-based cooperative spectrum sensing.

The rest of the paper is organized as follows: In Section II, we discuss related work in cooperative

spectrum sensing in both centralized and distributed cognitive radio networks. In Section III, we

discuss the system model and notation used. In Section IV, we develop, analyze, and validate

a trust-based data fusion scheme based on mechanism design theory for centralized cooperative

spectrum sensing. In Section V we extend our trust-based design methodology and analysis results

to distributed cognitive radio networks in which the DFC does not exist so the data fusion decision

is made autonomously by every SU in the system. In Section VI we compare centralized and

distributed trust-based cooperative spectrum sensing in terms of prediction accuracy and overhead,

as well as their amenability to our design principles. We summarize our conclusions and outline

directions for future work in Section VII.

II. RELATED WORK

Cooperative spectrum sensing is a promising technique to increase PU activity sensing accuracy

in cognitive radio networks by aggregating sensing reports from different SUs. In cooperative

spectrum sensing, malicious SUs may report false sensing data to degrade the final aggregated

sensing outcome.

Cooperative spectrum sensing can be conducted in both centralized and distributed cognitive radio

networks. In a centralized system, SUs report sensing outcomes to a DFC and receive instructions

from the DFC. In a distributed system, SUs do not rely on a DFC for channel access decision



making but autonomously decide the channel availability by aggregating outcomes reported by

other SUs. Cooperative spectrum sensing is confronted by SSDF attacks by which malicious SUs

intentionally report fake sensing results to mislead decision making. Most existing anti-attack fusion

rules in cooperative spectrum sensing are for the centralized infrastructure [6]–[8]. To date, there

are only a handful of works on fusion rule design against SSDF attacks in distributed cognitive

radio networks [9]–[12]. Our work considers cooperative spectrum sensing in both centralized and

distributed cognitive radio networks.

In [13], the sensing information of SUs is weighted to maximize the detection probability of

available channels under the constraint of a required false alarm probability. However, the scheme

only considers sensing errors from the SUs without considering the malicious behavior of SUs.

[14] proposes a modified combinatorial optimization identification (COI) algorithm to defend against

malicious attacks. [15] proposes an HMM-based malicious SU detection algorithm to simultaneously

estimate two HMMs without requiring separated training sequences. [16] provides an algorithm

based on the non-parametric Kruskal-Wallis test to detect malicious users without having a priori

knowledge. [17] proposes a decentralized scheme utilizing spatial correlation of received signal

strengths and aggregating decisions based on a neighborhood majority voting approach for the

secondary users to decide malicious users. However, a common problem related to the works cited

above [13]–[17] is that they cannot distinguish a fake sensing outcome reported by a malicious SU

from an erroneous outcome reported by a good SU with poor sensing capability.

There is limited work on the use of trust to enhance cooperative spectrum sensing. [18] discusses

a simple trust-weighted cooperative spectrum sensing scheme with trust factors of SUs being used

as weights for DFC decision making. However, it relies on the DFC to detect result discrepancy

between the SU reports and the ground truth to update trust factors of SUs, which incurs a

prohibitively high cost. Our static game model minimizes the DFC detection cost by probabilistic

periodic check. [6] discusses an innovative idea of decoupling the detection ability of each SU

from the reported detection result. According to their model, each SU reports a binary detection

result, i.e., whether the targeted frequency is used by PUs or not, together with its detection sensing



power to the DFC. The DFC considers the detection ability and trust it has toward each SU, and

applies a threshold below which the SU’s reported result is filtered out. Therefore, the DFC’s final

decision is based on trusted SUs’ reported outcomes only. However, their scheme may fail when

there is a high percentage of malicious SUs in the system. In particular, as each SU reports its

own sensing capability, a malicious SU may intentionally report a higher sensing capability to get

a higher impact on the final aggregated outcome. Moreover, if malicious SUs collude to report

fake sensing capabilities, with a high percentage of malicious SUs within the system, their reported

results will finally dominate the DFC’s decision making, which will lead to a repeated wrong

aggregated decision of the system. Our proposed scheme, on the other hand, can deal with the fake

report problem despite the presence of a high percentage of malicious SUs. More specifically, our

designed scheme allows the DFC to optionally sense the spectrum, then use the result to assess

trustworthiness of SUs, and finally aggregate sensing outcomes from trusted SUs.

III. ASSUMPTIONS AND NOTATION

A. Threat Model

In this section, we discuss the type of malicious attacks considered in this paper. We assume that

attackers are self-interested, i.e., they disrupt cooperative spectrum sensing for own benefits so they

can keep the spectrum for their own use. Further, we assume that malicious nodes know each other

and can collude to maximize their chance of success. For example, they can all report that they

sense the presence of the PUs but in fact the channel is free. They can collude to report fake but

high sensing capabilities so that their reported results can dominate decision making. They can also

collude to frame a good SU to put it in the blacklist so as to prevent it from accessing spectrum

resources. In cooperative spectrum sensing, the main attack is SSDF by which a malicious SU

attacks by sending a false sensing report to the DFC. The SSDF attack can be further categorized

into four types:

1) "Always yes" attack: malicious SUs always report the PU being active on the channels.

2) "Always no" attack: malicious SUs always report the channels being idle from PUs.



Figure 1: DFC Architecture for Centralized Cooperative Sensing.

3) "Always false" attack: malicious SUs always report the opposite of their sensed channel

occupancy.

4) "Always random" attack: malicious SUs report true/false channel occupancy randomly.

B. Cooperative Spectrum Sensing Architecture

In this section, we discuss the system model for centralized cooperative spectrum sensing in

cognitive radio networks. Later in Section V we extend it to distributed cooperative spectrum

sensing. In a centralized system, SUs report sensing outcomes to the DFC and receive instructions

from the DFC. The DFC architecture for centralized cooperative spectrum sensing is shown in

Figure 1. The notation used for centralized cooperative spectrum sensing is summarized in Table

I. We focus on the design principle and propose a general and flexible utility function design that

applies to many scenarios. For example, the cost and utility functions considered in this paper (C,

G and L in Table I) can be related to power, money, and/or risk in real scenarios.

We consider a cognitive radio network with N SUs and one DFC adopting the cooperative

spectrum sensing technique to learn the PU activities on the channel. Time is slotted in fixed

interval length. At the end of each time slot t, SU i reports its sensing result Ot
i (reporting if the

PU is using the channel) together with its sensing capability Ct
i,real to the DFC. More specifically,

Ot
i is a binary value with Ot

i = 1 indicating SU i sensed PU existence in time slot t and Ot
i = 0

indicating SU i sensed no PU activity in time slot t. During the sensing process, SU i also knows its

signal and noise level in time slot t, which can be translated into a continuous value Ct
i,real ∈ [0, 1],



Table I: Notation.

Symbol Definition

N the number of SUs.

Ot
i The sensing result reported by SU i in time slot t. i ∈ {1, 2, ..N} and Ot

i ∈ {0, 1}.
Ot

DFC The accumulated outcome of the DFC in time slot t. Ot
DFC ∈ {0, 1}.

Ot
true The true PU activity outcome sensed by the DFC in time slot t. Ot

true ∈ {0, 1}.

T t
DFC The minimum capability threshold used by the DFC in time slot t to filter out sensing

reports.

Ct
i,real The real sensing capability of SU i in time slot t. i ∈ {1, 2, ..N} and Ct

i,real ∈ [0, 1].

Ct
i,report The reported sensing capability of SU i in time slot t. i ∈ {1, 2, ...N}, Ct

i,report ∈ [0, 1] and
Ct

i,real ≤ Ct
i,report

Rt
i The reputation score of SU i in time slot t.i ∈ {1, 2, ..., N} and Rt

i ∈ Z.

pt The probability for the DFC to check the PU activity on the spectrum in time slot t.
pt ∈ [0, 1].

C The cost of the DFC for sensing the spectrum in each time slot. C > 0.

G Aggregation function adopted by DFC in each time slot.

L Punishment function adopted by DFC in each time slot

T t
i The minimum capability threshold used by SU i to decide if it can trust its own sensing

capability in time slot t.

F t
i The minimum trust threshold used by SU i to decide if it can trust another SU’s sensing

report in time slot t.

reflecting its true sensing capability. This value indicates SU i’s certainty for its reported sensing

result, i.e., the closer Ct
i,real is to 1, the more certain SU i is about its reported sensing outcome in

time slot t. Therefore, the closer Ct
i,real is to 1, the larger i′s reported result should be weighted in

the final aggregated outcome. However, a malicious SU i may take advantage of this scheme by

intentionally reporting a fake and high sensing capability Ct
i,report at time slot t to impact more on

the final aggregated outcome. Apparently, a malicious SU does not want to report a low sensing

capability because its sensing report will likely be filtered out by the DFC, and would not be able

to affect the final accumulated sensing result. Therefore, we assume Ct
i,report ≥ Ct

i,real.



After gathering the reported information from SUs, the DFC applies data fusion rules for decision

making. The data fusion rules can be categorized into hard decision and soft decision. Under hard

decision rules, the DFC applies decision-based rules to combine the results from SUs. Three simple

decision-based rules are "or," "and," and "majority" rules. Under soft decision rules, the DFC often

makes decisions based on the reported energy from each SU. The soft decision rules usually have a

higher communication overhead and require a complicated aggregation algorithm compared to hard

decision rules. Therefore, we adopt hard decision rules in our fusion rule design. Let G denote

the aggregation function adopted by DFC to generate the final outcome at time t, denoted by

Ot
DFC ∈ {0, 1}.
Besides passively receiving reported results from SUs, the DFC can actively sense the spectrum

so as to check if an SU lies about the sensing outcome. More specifically, the DFC checks the

PU activity on the channel with probability pt, with pt ∈ [0, 1], in each time slot t. After checking

the spectrum availability, the DFC uses its “first-hand” evidence, denoted by Ot
true, to punish the

SUs whose reported results are different from Ot
true based on the punishment function L. Note that

malicious nodes will not know whether the DFC will check the PU activity on the channel in a

particular slot because the DFC checks the PU activity probabilistically with probability pt. The

punishment to SU i in time slot t is in the form of decreasing SU i’s reputation score Rt
i with

Rt
i ∈ Z for i ∈ {1, 2, ..., N}. We assume all SUs have the same initial reputation scores assigned by

the DFC, i.e., R0
i = R0

j for i �= j and i, j ∈ {1, 2, ..., N}. Also, the punishment level to i is related

to its reported sensing capability Ct
i,report because SU i′s erroneous sensing outcome is maybe due

to its poor sensing capability. The reason that the DFC does not check the spectrum availability in

every time slot is that the DFC spectrum sensing is often at a high cost of equipment, technology

and energy. Moreover, when the coverage of spectrum is larger than the sensing range of the DFC

(multiple channels), the DFC may not be able to check PU activities on all channels at the same

time. Therefore, in our scheme, we represent this sensing cost by C which is a fixed value irrelevant

of time. If in a particular time slot t the DFC checks the PU existence, it applies the punishment

function L to decrease the reputation scores of those SUs with a different sensing result from Ot
true;



if the DFC does not check the spectrum availability in t, it applies the aggregation function G to

aggregate the opinions from SUs and generate the final outcome Ot
DFC . Our trust-based data fusion

scheme derived from mechanism design thus has two design objectives:

• Design G and L to force malicious SUs to report the real sensing ability, i.e. Ct
i,report = Ct

i,real

for i ∈ {1, ..., N}, t > 0.

• Design a scheme to allow the DFC to perform minimum checking with the smallest probability

pt.

IV. MECHANISM DESIGN FOR CENTRALIZED COOPERATIVE SENSING AND ITS ANALYSIS

In this section, we formulate a static game based on mechanism design to model decision making

between the DFC and malicious SUs for centralized cooperative spectrum sensing and then present

a theoretical analysis to formally prove the correctness.

A. Trust-Based Data Fusion Rule Design

We use a static game to model the relationship between the DFC and a malicious SU i in each

single time slot. From a malicious SU i’s perspective, in time slot t, it has two options on reporting

its sensing capability: honestly reporting its sensing capability Ct
i,real or intentionally reporting a

higher fake sensing capability Ct
i,report > Ct

i,real. On the other hand from the DFC’s perspective, in

time slot t, it decides to sense the PU activity with probability pt or not to with probability 1− pt.

The payoff matrix for the DFC and a malicious SU i in the game model is shown in Table II. The

table entry is in the format of (DFC payoff, malicious SU i payoff). For example, if the DFC checks

the PU activity while SU i dishonestly reports a higher fake sensing capability Ct
i,report > Ct

i,real,

the payoff to the DFC is L(Ct
i,report, R

t
i)−C and the payoff to malicious SU i is −L(Ct

i,report, R
t
i).

We explain the payoff matrix in Table II. According to the described static game model of

our scheme, in slot t each malicious SU i reports both its sensing result Ot
i and its fake sensing

capability Ct
i,report to the DFC, who aggregates the reported results to the final outcome based on

the aggregation function G. Therefore, the “impact” of i’s reported result to the DFC’s aggregation



Table II: The Payoff Matrix for the DFC and a Malicious SU.

SU i reports Ct
i,real SU i reports Ct

i,report

DFC checks L(Ct
i,real, R

t
i)− C, −L(Ct

i,real, R
t
i) L(Ct

i,report, R
t
i)− C, −L(Ct

i,report, R
t
i)

DFC does not
check

−G(Ct
i,real, O

t
i , R

t
i), G(Ct

i,real, O
t
i , R

t
i) −G(Ct

i,report, O
t
i , R

t
i), G(Ct

i,report, O
t
i , R

t
i)

result Ot
DFC can be denoted as G(Ct

i,report, O
t
i , R

t
i), which can be viewed as the gain to the malicious

SU if not caught by DFC. On the other hand in time slot t, the DFC decides to check the spectrum

with probability pt at a fixed cost C. If the DFC decides to check the spectrum, it can detect the true

occupancy and then punish the nodes who reported a different outcome from the detected channel

occupancy signal. Denoted by L(Ct
i,reported, R

t
i) the loss to SU i being punished due to the reported

result being different from that by the DFC. A malicious SU i who reports Ct
i,report higher than

Ct
i,real will get a punishment L(Ct

i,report, R
t
i). Therefore, the payoff matrix between a malicious SU

and the DFC can be defined as in Table II.

In this game, both the malicious SUs and the DFC want to maximize their own utility functions.

In particular, the malicious SUs aim at manipulating the DFC’s aggregated outcome by reporting

higher sensing capabilities. Meanwhile, the DFC aims to minimize the checking probability pt and

leave malicious SUs no motivation to report fake sensing capabilities.

B. Analysis

In this section, we conduct a theoretical analysis to prove the correctness of our data fusion

design.

Theorem 1. To discourage malicious SU i from reporting a higher sensing capability than its actual

sensing capability, i.e., Ct
i,report > Ct

i,real, the DFC’s checking probability pt, aggregation function

G and punishment function L should satisfy: pt[L(Ct
i,report)− L(Ct

i,real)] ≥ (1− pt)[G(Ct
i,report)−

G(Ct
i,real)].

Proof: According to the described static game model and the payoff matrix shown in Table



II, a malicious SU i’s payoff of reporting Ct
i,real, i.e., ui(C

t
i,real, R

t
i), can be expressed as:

ui(C
t
i,real, R

t
i) =− ptL(Ct

i,real, R
t
i)

+ (1− pt)G(Ct
i,real, O

t
i , R

t
i) (1)

On the other hand if SU i reports a higher fake sensing capability Ct
i,report, the payoff to SU, i.e.,

i ui(C
t
i,report, R

t
i), is:

ui(C
t
i,report, R

t
i) =− ptL(Ct

i,report, R
t
i)

+ (1− pt)G(Ct
i,report, O

t
i , R

t
i) (2)

To guarantee that SU i has no incentive to report a higher fake sensing capability, we need

ui(C
t
i,real, R

t
i) ≥ ui(C

t
i,report, R

t
i). From Equations 1 and 2, we have:

pt(L(Ct
i,report, R

t
i)− L(Ct

i,real, R
t
i))

≥ (1− pt)(G(Ct
i,report, O

t
i , R

t
i)−G(Ct

i,real, O
t
i , R

t
i)) (3)

Theorem 1 provides a general rule for the design of the aggregation function G and the punish-

ment function L. Let �G = G(Ct
i,report, O

t
i , R

t
i) − G(Ct

i,real, O
t
i , R

t
i) and �L = L(Ct

i,report, R
t
i) −

L(Ct
i,real, R

t
i) denote the gain and loss of malicious SU i, respectively. Then, we can rewrite Equation

3 as pt�L ≥ (1 − pt)�G. That is, as long as the DFC checks the spectrum with probability no

less than �G
�G+�L

, a malicious SU has no motivation to report a fake sensing capability.

Next, we analyze the checking probability pt from the DFC’s utility perspective. In time slot t, if

DFC checks the spectrum availability, it observes the true PU activity result Ot
true. Let Nm denote

the set of malicious SUs within the system.

The DFC’s payoff for checking the spectrum in a particular time slot can be expressed as
∑

i∈Nm

L(Ct
i,report, R

t
i)−C; the DFC’s payoff for not checking the spectrum is − ∑

i∈Nm

G(Ct
i,report, O

t
i , R

t
i).



Therefore, the DFC’s utility function under checking probability pt is:

uDFC =pt(
∑

i∈Nm

L(Ct
i,report, R

t
i)− C)

− (1− pt)
∑

i∈Nm

G(Ct
i,report, O

t
i , R

t
i) (4)

Here we note that the cost to the DFC is equivalent to the negative payoff to the DFC as shown

in Equation 4. Consequently, maximizing the DFC’s payoff is the same as minimizing the DFC’s

cost. By taking the derivative of Equation 4 with respect to pt, we get:

∂uDFC

∂pt
=
∑

i∈Nm

L(Ct
i,report, R

t
i)

+
∑

i∈Nm

G(Ct
i,report, O

t
i , R

t
i)− C (5)

Equation 5 indicates that the optimized checking probability pt depends on the evaluation re-

sult of
∑

i∈Nm

L(Ct
i,report, R

t
i) +

∑
i∈Nm

G(Ct
i,report, O

t
i , R

t
i) − C. In particular, if

∑
i∈Nm

L(Ct
i,report, R

t
i) +

∑
i∈Nm

G(Ct
i,report, O

t
i , R

t
i) − C > 0, the optimal pt value is 1. That is, the DFC should check the

spectrum in every time slot to maximize its payoff. On the other side, if
∑

i∈Nm

L(Ct
i,report, R

t
i) +

∑
i∈Nm

G(Ct
i,report, O

t
i , R

t
i) − C < 0, the optimal pt value is 0. Under this scenario, the DFC should

not check spectrum to maximize its payoff. However, this analysis needs to be combined with the

result generated in Theorem 1, which requires the check probability pt to be at least maxi
�Gi

�Gi+�Li
.

C. Simulation Validation

In this section, we validate our trust-based data aggregation design for centralized cooperative

spectrum sensing by extensive simulation. The performance of our trust-based data aggregation

scheme will be compared with a traditional aggregation scheme where the DFC accumulates the

reported results from all SUs and makes the final decision based on majority voting. In contrast,

our scheme is designed based on Theorem 1 to discourage malicious nodes from reporting fake

sensing capabilities. Also with probability 1 − pt, the DFC accumulates the reported results from
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(b) Always no attack.
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(c) Always false attack.
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(d) Always random attack.

Figure 2: Comparison of Success Decision Rate between Our Scheme and a Traditional Majority
Voting Aggregation Scheme with varying Malicious Node Percentage.

all SUs based on trust-weighted majority voting.

We consider a cognitive radio system consisting 100 SUs and one DFC. We run a simulation

experiment with 1000 repeated time slots. The ground truth of the channel occupancy is randomly

simulated (either 0 or 1) in these 1000 runs. In each time slot, all SUs report the detected outcome

(either 0 or 1) together with their sensing capabilities (within [0, 1]) to the DFC. We assume that

malicious SUs report the highest sensing capability (Ct
i,report=1) to maximize its impact, while good

SUs report its true sensing capability (Ct
i,real following uniform distribution U[0, 1]) to the DFC.

Also we assume that malicious SUs report the channel occupancy based on their attack strategies

as described in the threat model, while good SUs report the channel occupancy they sense.

The data aggregation function G used by the DFC to aggregate SU sensing reports is based on

trust-weighted majority voting. In particular, the DFC first filters out SUs whose reported sensing

capability is below the DFC’s minimum sensing capability threshold (T t
DFC = 0.8). The DFC then

categorizes the SUs into two groups S0 and S1: S0 contains the SUs who reported no PU activity on

the channel and S1 contains the SUs who reported PU existence on the channel. Finally, the DFC



decides the aggregated outcome as 0 if
∑

i∈S0
Rt

i >
∑

i∈S1
Rt

i, and as 1 otherwise. If the DFC does

not check the spectrum, it applies the aggregation function G based on trust-based majority voting

discussed above. If the DFC checks the spectrum in a particular time slot t, it senses true channel

occupancy Ot
true, and uses it to punish the SUs who reported a different outcome. Specifically, the

punishment function L on a SU’s reputation is Rt
i = Rt

i − Ct
i,reported where Rt

i is the reputation

of the SU at time t and Ct
i,reported is the sensing capability reported by the SU at time t. The

initial reputation score for each SU is 0 representing ignorance, i.e., R0
i = 0 for i ∈ {1, ..., N},

with the range of the reputation score being [-200, 200]. We note that with the G and L functions

defined above, the DFC will check the spectrum in each time slot with probability pt = 1
2

based on

Theorem 1 with the design of the aggregation function G and the punishment function L satisfying

�G = �L. Notice here, we assume the cost for the DFC to check the channel is relatively large,

i.e.,
∑

i∈Nm

L(Ct
i,real, R

t
i) +

∑
i∈Nm

G(Ct
i,real, O

t
i , R

t
i)−C < 0. Therefore, from the DFC’s perspective, it

is always reluctant to check the channel availability by itself. However, to guarantee the malicious

SUs do not have the incentive to fake sensing capabilities, the DFC still needs to sense the PU

occupancy with the minimum checking probability given by Theorem 1.

1) Success Decision Rate: We analyze the success rate of the DFC’s decision with respect to the

percentage of malicious SUs under the four different malicious attacks in our threat model. We vary

the percentage of malicious SUs from 0% to 90% and calculate the success decision rate. We also

output the success decision rate of the traditional data aggregation scheme as a comparison. The

result is shown in Figure 2. Specifically, we analyze the performance under four types of malicious

attacks: the “always yes” attack, shown in Figure 2a, where the malicious SUs always report the

existence of PU activity; the “always no” attack, shown in Figure 2b, where the malicious SUs

always report the absence of PU activity; the “always false” attack, shown in Figure 2c, where the

malicious SUs always report the opposite of the sensed PU activity; the “always random” attack,

shown in Figure 2d, where the malicious SUs randomly report a binary result as the PU activity.

From Figure 2 we see that our trust-based data aggregation scheme derived from the static

game always performs better than the traditional approach. It especially outperforms the traditional
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(a) Always yes attack.
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(b) Always no attack.
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(c) Always false attack.
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(d) Always random attack.

Figure 3: Comparison of Good Node and Malicious Node Reputation Scores.

approach under the “always false” attack behavior because the attackers will be caught whenever the

DFC decides to check the channel availability with probability pt. We conclude two observations.

First, the performance of our designed scheme (around 75%) is significantly better than that of

the traditional aggregation scheme (around 50%) over all four types of malicious SU attacks. We

attribute the superiority of our trust-based majority voting scheme over the traditional majority voting

scheme to its ability to accurately track the trust status of nodes in the system so that malicious nodes

are filtered out or discounted during trust-based majority voting. On the other hand, the traditional

majority voting scheme simply counts the number of 0’s and 1’s to determine the sensing outcome

without any effective mechanism being applied to filter out or discount false sensing outcomes from

malicious nodes. Secondly, under all malicious attack scenarios, the performance of our designed

scheme is stable over a wide range of malicious node percentage.

2) Reputation Scores: We compare the average reputation scores of the normal and malicious

nodes under each attack scenario for our scheme. The results are shown in Figure 3 which demon-

strates that our trust scheme can effectively distinguish malicious SUs by reputation scores. In



Figure 4: Time Schedule on the Common Control Channel.

particular, after 1000 time slots, the average reputation score of the normal nodes is around 50

while that of the malicious nodes is around −150. It means that when our trust-based fusion

scheme is in place the malicious node reputation scores will drop dramatically with respect to time.

Finally we also note that this reputation gap is stable with respect to the malicious node percentage.

V. EXTENSION TO DISTRIBUTED COOPERATIVE SPECTRUM SENSING

In this section, we extend our design to the case in which the DFC does not exist. In distributed

cooperative spectrum sensing, SUs do not rely on a DFC for channel access decision making but

autonomously decide the channel availability by aggregating outcomes reported by other SUs.

We first extend the system model discussed in Section III for distributed cooperative spectrum

sensing as follows: We consider a distributed cognitive radio network with N SUs adopting the

cooperative spectrum sensing technique to learn the PU’s activity on one channel. We assume

that all SUs are aware of the existence of each other and are within the communication range. In

particular, each SU has a unique identity i ∈ {1, ..., N} which is publicly known by other SUs. To

control the overhead communication messages, SUs are not allowed to communicate directly with

each other. Instead, the SUs share their sensing outcomes on a common control channel (CCC)

in a broadcast manner. Using a CCC for control message exchanges by cognitive radio nodes is

indispensable in distributed cognitive radio systems [20]. However, establishing an always-on and

reliable CCC in distributed cooperative spectrum sensing is still an open issue. Reserving a portion

of the spectrum for establishing a CCC is a possible way but it wastes spectrum resources. Some

research efforts [21], [22] attempted not to use a spectrum portion to establish a CCC.



Figure 4 illustrates a time schedule on the common control channel for distributed cooperative

spectrum sensing. To avoid communication interference on the CCC, time is slotted and each time

slot is further divided into N subslots, one for each SU. An SU with identity i will only broadcast

its report in the ith designated subslot while listening to other SUs’ reports in other subslots. Since

each SU has a unique identity and it can broadcast only in its designated subslot, there is no identity

attack possibility. There are altogether M time slots in a reporting cycle. The first M − 1 slots

(each called a sensing report slot) are used for reporting sensing outcomes and sensing capabilities,

while the last time slot (called a blacklist report slot) is used for reporting malicious nodes for the

purpose of building a blacklist. M is a system parameter and should be sufficiently large to allow

each individual SU to assess trust scores of other SUs and report malicious SUs in the blacklist

report slot. Here we note that for distributed cooperative spectrum sensing, the processing time is

proportional to the number of SUs.

In a sensing report slot, SUs take turns to broadcast their sensing outcomes in their respective

subslots. Specifically, SU i broadcasts its outcome Ot
i together with its capability Ct

i,real on the

CCC. SU i’s outcome Ot
i is a binary variable with Ot

i = 1 indicating that SU i sensed PU existence

and Ot
i = 0 indicating that SU i sensed no PU activity. i’s sensing capability denoted by Ct

i,real is

a continuous value ∈ [0, 1] representing the probability of SU i being able to correctly sense the

channel occupancy status. Hence, the closer Ct
i,real is to 1, the more confident SU i is about its

reported sensing outcome at time t. An SU’s sensing capability is characterized by the probabilities

of false alarm and missed detection. We follow [9] for estimating the missed detection rate Pmd

and the false alarm rate Pfa, as follows:

Pmd = P (pti < γ|H1) (6)

Pfa = P (pti > γ|H0) (7)

where H1 and H0 denote the hypotheses corresponding to the presence and the absence of PU,



respectively, and pti represents the received signal power by SU i at time t which can be estimated

by an energy detection sensing method [19]. The sensing capability Ct
i,real of SU i can be estimated

based on its false alarm rate Pfa and missed detection rate Pmd. Specifically, when SU i senses the

existence of PU, its sensing capability can be calculated as Ct
i,real = 1 − Pmd. When SU i senses

the absence of PU, its sensing capability can be calculated as Ct
i,real = 1− Pfa.

Let Ct
i,report be the sensing capability reported by SU i at time t. A good SU i reports its real

sensing capability, i.e., Ct
i,report = Ct

i,real, while a malicious SU i intentionally reports a higher

sensing capability Ct
i,report ≥ Ct

i,real to impact other SUs’ decision making.

In a blacklist report time slot, each SU reports an SU with the lowest trust score among all SUs

it keeps in its database. SU i then updates its blacklist binary vector bij for j ∈ {1, 2, ..., N} based

on the blacklist reports gathered in the blacklist report slot. We assume that a malicious node can

perform bad-mouthing attacks to frame a good node as a bad node.

The goal of our distributed cooperative spectrum sensing design is for SU i to effectively

aggregate self and received sensing information, i.e., (Ot
i ,C

t
i,report) for i ∈ {1, ..., N} such that

it can achieve high accuracy in sensing PU occupancy and detect malicious SUs in the long run.

A. Trust-Based Data Fusion Rule Design

In this section, we describe our trust-based data fusion rule design consisting of a data fusion

process and a blacklist generation process. An SU makes channel availability decisions using sensing

reports gathered in a sensing report slot. An SU updates its blacklist in the blacklist generation

process using blacklist reports gathered in a blacklist report time slot.

1) Data Fusion Process: In a sensing report slot, SU i makes a channel occupancy decision

based on its own and received sensing outcomes from other SUs. Due to a lack of ground truth in

decision making, SU i first decides whether to trust its own sensing outcome by comparing its own

sensing outcome Ct
i,real with a minimum sensing capability threshold T t

i . There are two cases:

1) If Ct
i,real > T t

i , SU i has high confidence about its own sensing outcome and will simply adopt

its sensing outcome as the final decision, i.e., Ot
i,final = Ot

i . Meanwhile, i adjusts other SUs’



trust scores by comparing the received sensing outcomes with its own sensing outcome. SU i

updates the trust score of SU j, denoted by Rt
i,j , only if SU j′s reported sensing capability is

over SU i’s minimum trust threshold, i.e., Ct
j,report > F t

i , where F t
i is SU i’s minimum trust

threshold in the range of [0, 1]. If j’s reported outcome matches i’s outcome, SU i increases

SU j’s trust score by:

Rt
i,j = Rt

i,j(1 + Ct
j,report) (8)

If j’s reported outcome Ot
j does not match i’s sensing outcome, SU i decreases SU j’s trust

score by:

Rt
i,j = Rt

i,j(1− (Ct
j,report)

2) (9)

2) If Ct
i,real ≤ T t

i , SU i does not have confidence in its own sensing outcome and will rely

on the received sensing information reported by other SUs to decide the final outcome. In

this case, given that SU i does not have any basis to judge the trustworthiness of sensing

results reported by other SUs, SU i does not update the trust scores of other SUs. SU i first

filters out sensing reports from receivers that do not pass SU i’s minimum trust threshold,

i.e., Ct
j,report < F t

i , or on the blacklist, i.e., bij = 1 for j ∈ {1, 2, ..., N}. After the minimum

capability step, the remaining reports are separated into two groups based on if the sensing

outcome is 0 or 1. For each group, a group trust score is calculated by a trust sum. SU i

then chooses the group with a higher group trust score, and adopts the sensing outcome of

the group (either 0 or 1) as the final outcome. If the group scores are of the same value, SU

i randomly decides the channel occupancy status for that time slot.

2) Blacklist Generation Process: In a blacklist report slot t, SU i reports the identity of the

lowest trust node Bt
i ∈ {1, ..., N}. If more than one node are of the same lowest trust score, SU i

randomly chooses one to broadcast. Meanwhile, SU i updates a blacklist binary vector [bi1, ..., b
i
N ]

based on the received node identities broadcast by other SUs. Since a malicious SU may perform

bad-mouthing attacks and intentionally report a good node as a malicious node, SU i considers Bt
j



(reported by SU j) as malicious only if i trusts j as well as i does not trust Bt
j itself. Specifically,

SU i considers that Bt
j should be put on the blacklist if the following two conditions are met:

1) j’s trust score is above the average trust score of all nodes maintained by i;

2) Bt
j’s trust score is below the average trust score of all nodes maintained by i.

After i decides j as a malicious node, i sets bij to 1 and will exclude j’s reports in future decision

making.

B. Analysis

In this section, we theoretically analyze our data fusion rule design. We denote by G and L the

trust gain and loss, respectively. The theorem below provides the design of G and L to make sure

that a good SU will be awarded with trust gain if it reports its true sensing capability and sensing

outcome faithfully.

Theorem 2. For a trust-based data fusion rule design to award SU j who reports its authentic

sensing outcome and capability, the trust gain (G) and the trust loss (L) must satisfy:

1− Ct
i,real + Ct

j,real − 2Ct
i,realC

t
j,real ≥

G

G− L

Proof: The reported sensing capability of node j, Ct
j,real, is the probability of j being able

to sense PU existence status on the channel. According to our designed scheme (described in

Section V-A) the conditions to award j’s trust by SU i are: i trusts its own sensing outcome, i.e.,

Ct
i,real > T t

i , j’s sensing capability is above i’s minimum trust threshold, i.e., Ct
j,real > F t

i , and

j’s reported sensing outcome matches that of i, i.e., both i and j sense PU existence the same

way either 0 or 1. Therefore, the probability for j being rewarded by SU i with sensing capability

Ct
i,real, denoted by Paward, is given by:

Paward =p(Ct
i,real > T t

i )p(C
t
j,real > F t

i )

(Ct
i,realC

t
j,real + (1− Ct

i,real)(1− Ct
j,real)) (10)



On the other hand, the conditions to penalize j’s trust by SU i are: i trusts its own sensing outcome,

i.e., Ct
i,real > T t

i , j’s sensing capability is above i’s minimum trust threshold, i.e., Ct
j,real > F t

i , and

j’s reported sensing outcome conflicts with that of i, which happens if only one of the two SUs

correctly senses PU existence. Therefore, the probability of j being punished by i with sensing

capability Ct
i,real, denoted by Ppunish, is given by:

Ppunish =p(Ct
i,real > T t

i )p(C
t
j,real > F t

i )

(Ct
i,real(1− Ct

j,real) + Ct
j,real(1− Ct

i,real)) (11)

To guarantee j’s trust is not penalized when it reports its real sensing outcome and capability, we

need:

GPaward ≥ LPpunish (12)

By plugging in Equation 10 and Equation 11 into Equation 12 we can obtain the expression shown

in the theorem.

We denote by �G and �L the gap of trust gain and loss between reporting higher sensing

capability and real sensing capability. The theorem below provides the design of �G and �L to

prevent a malicious SU from gaining trust if it reports high sensing capability and performs SSDF

attacks.

Theorem 3. To prevent a malicious SU j from reporting higher sensing capability to gain trust

increase to SU i, �G and �L must satisfy:

Ct
i,real�L ≥ (1− Ct

i,real)�G

Proof: For a malicious SU j who reports a fake sensing outcome and a higher capability s.t.

Ct
j,report > Ct

j,real, the conditions for j to be caught and punished by SU i are: i trusts its own

sensing outcome, i.e., Ct
i,real > T t

i , j’s sensing capability is above i’s minimum trust threshold, i.e.,

Ct
j,report > F t

i , and j’s reported sensing outcome disagrees with that of i, which requires i’s sensing



outcome to be true. SU j uses a higher sensing capability than the minimum trust threshold, i.e.,

Ct
j,report > F t

i , to mislead the data fusion process. Therefore, the probability of j being caught by

i with sensing capability Ct
i,real, denoted by Pcaught, is given by:

Pcaught = p(Ct
i,real > T t

i )C
t
i,real (13)

Similarly, the probability of a malicious node j not being punished by SU i, denoted by Pmiss, is

given by:

Pmiss = p(Ct
i,real > T t

i )(1− Ct
i,real) (14)

To guarantee j’s trust is decreased when it reports a fake sensing outcome and a higher calculated

capability, we need:

�LPcaught ≥ �GPmiss (15)

By plugging in Equation 13 and Equation 14 into Equation 15 we prove the theorem.

Corollary 4. Our trust-based data fusion rule design guarantees that a good SU’s trust is increased

when it reports authentic sensing outcome and capability, and a malicious SU’s trust is decreased

when it reports a false sensing outcome and a higher sensing capability.

Proof: We prove this corollary by showing that our trust-based data fusion rule design satisfies

the above two theorems. According to Equations 8 and 9, a good SU (j) who reports true sensing

outcome Ot
real and capability Ct

j,real and will get a trust increase of G = Rt−1
i,j × Ct

j,real and get a

trust loss of L = Rt−1
i,j × (Ct

j,real)
2.

On the other hand, a malicious SU (j) who reports a fake sensing outcome and a higher capability

Ct
j,report > Ct

j,real will get an extra trust increase of �G = Rt−1
i,j × (Ct

j,report −Ct
j,real) and an extra

loss of �L = Rt−1
i,j × ((Ct

j,report)
2 − (Ct

j,real)
2).

We can easily confirm that G, L, �G and �L satisfy Theorems 2 and 3 and hence we prove

the corollary.



Therefore, our trust-based data fusion rule design guarantees a trust gain to normal SUs and

discourages malicious SUs from reporting false sensing outcomes and capabilities.

C. Simulation Validation

In this section, we conduct a performance analysis of our data fusion rule design for distributed co-

operative spectrum sensing using Matlab and compare its performance with three baseline schemes:

individual, majority voting, and capability-weighted (CW) majority voting. Under individual data

fusion, an SU directly accepts its sensing outcome as the final outcome without considering reported

information from other SUs. Therefore, it can be viewed as a non-cooperative scheme. Majority

voting counts the number of 0’s and 1’s and takes the majority as the final outcome. Capability-

weighted majority voting is the same as majority voting except that every count is weighted by the

SU’s reported capability. The performance metric is the individual success rate, or the probability

of successfully detecting the actual status of the channel.

The simulation setup is based on N = 20 SUs. As in [9], we assume that the SU sensing

capability follows the Gaussian distribution. That is, each SU’s true sensing capability is modeled

by a Gaussian distribution with mean μ = 0.6 and variance σ2 = 0.2. The reported sensing capability

for a malicious SU is set to a high value at 0.95. The range of the node trust score is [-1, 3], with

the initial trust score of 1 representing ignorance. In the experiment, we set T t
i =0.7 and F t

i =0.7.

The report cycle M is set to a high value at 20 to allow each individual SU to assess trust scores

of other SUs and report malicious SUs in the blacklist report slot. So in every 20 time slots, SUs

update their individual blacklists based on blacklist reports from other SUs. Each experiment covers

200 time slots. The result is based on 1000 independent repeated experiments.

1) Effect of Malicious Node Population: We first investigate the effect of malicious node per-

centage on the individual success rate (i.e., the probability of successfully detecting the actual status

of the channel). Figure 5 shows the individual success rate of our trust-based data fusion scheme

(labeled by trust-based) against the three baseline schemes (labeled by individual, majority, and

CW majority, respectively) in the presence of SSDF attacks. It is clear from Figure 5 that our
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data fusion rule design outperforms all baseline schemes. The gap between trust-based data fusion

and individual data fusion can be viewed as the gain of adopting distributed cooperative spectrum

sensing over non-cooperative spectrum sensing. The only exception happens when the percentage

of malicious nodes is 90% in which case the number of good nodes is only 2 (10% of N=20)

and only one of which has capability higher than the minimum capability threshold, so there is no

chance for them to update the trust scores of each other. As a result, the trust score remains at 1

and the success rate remains at 0.5.

We observe that the success rate under individual data fusion stays at 0.6. The reason is that each

SU’s true sensing capability is modeled by a Gaussian distribution with mean μ = 0.6 and variance

σ2 = 0.2. We also observe that individual data fusion scheme performs better than majority voting

which in turn performs better than capability-weighted majority voting, especially as the percentage

of malicious nodes increases. This is because malicious SUs report a higher capability which has

an adverse effect on capability-weighted majority voting. Our trust-based data fusion scheme on

the other hand takes both trust and capability into consideration and can achieve a much higher

accuracy in data fusion.



2) Trust Scores of Benign and Malicious SUs: We compare the average trust scores of good

and malicious nodes in our designed scheme. Figure 6 shows the average trust scores of good

and malicious SUs at the end of the 50th time slot as recorded by good SUs under SSDF attacks.

The results support the claim that our trust-based data fusion scheme can effectively distinguish

malicious SUs by their low trust scores. Figure 6 validates the theoretical analysis results that a

good SU will be awarded with trust gain if it reports its true sensing capability and sensing outcome

faithfully, while a malicious SU’s trust will be penalized with trust loss if it falsely reports a high

sensing capability and a false sensing outcome. Our trust-based data fusion scheme can efficiently

distinguish good nodes from malicious nodes in the long run when the percentage of malicious

nodes is below 80%.

3) Impact of Threshold Parameters: We analyze the impact of the minimum capability threshold

T t
i and the minimum trust threshold F t

i on protocol performance. We consider 4 variants of SSDF

attacks: always yes (always saying the channel is free), always no (always saying the channel is not

free), always false (always saying the channel is free/not free opposite to what it senses), and always

random (always saying the channel is free/not free randomly). Note that the analysis performed so

far is for the case of “always false” SSDF attacks, which is the worst case among all.

Figure 7 shows the average individual success rate vs. T t
i , with F t

i =0.8 to isolate its effect. The

figure is based on 20% malicious nodes. We observe that there exists an optimal T t
i value under

which the success rate is maximized. This is due to our data fusion rule design. Specifically, as

the minimum capability threshold T t
i increases, if SU i’s true sensing capability is still above the

increasing threshold, then its own sensing outcome is likely to be accurate, so the success decision

rate will also increase. However, when T t
i continues to increase, SU i’s true sensing capability will

more likely fall below the threshold. In this case, SU i cannot update the trust scores of other SUs

effectively and must aggregate sensing outcomes from other SUs with inaccurate trust scores. As

a result, the success decision rate decreases. This tradeoff results in the T t
i optimal point.

Figure 8 shows the average individual success rate vs. F t
i , with T t

i =0.8. We observe that there

exist an optimal F t
i value under which the success rate is maximized. This is because as the
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minimum trust threshold F t
i increases, there will be fewer sensing reports passing the threshold but

the quality of information is better. This tradeoff results in the F t
i optimal point.

The optimal T t
i and F t

i settings are sensitive to the percentage of malicious nodes (not reported

here due to page limit). This result suggests adaptive control based on the percentage of malicious

nodes sensed at runtime to maximize protocol performance.

VI. DISCUSSION

In this section, we compare our proposed centralized and distributed cooperative spectrum sens-

ing schemes in terms of prediction accuracy and overhead. We also discuss the amenability of

our mechanism design theory methodology as applying to centralized and distributed cooperative

spectrum sensing in cognitive radio networks.

A. Prediction Accuracy

Figure 9 compares our centralized and distributed cooperative spectrum sensing schemes in terms

of prediction accuracy for the “always false” SSDF attack case. The experiment setting is the same as
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Figure 9: Comparison of Success Rate of Centralized and Distributed Cooperative Spectrum Sensing
Schemes.

that in Section V-C. We see that the distributed scheme performs slightly better than the centralized

scheme when the malicious node percentage is low (0%-30%). The reason is that in the distributed

scheme, good nodes (which are the majority when the percentage of malicious nodes is low) with

high capability can update and propagate trust scores through the blacklist reports broadcast on the

common control channel, while in the centralized scheme trust scores can only be updated by the

DFC with the checking probability pt. As the malicious node population increases, the centralized

scheme outperforms the distributed scheme. The reason is that the centralized scheme can count

on the presence of a centralized DFC to check (with the checking probability of pt) the ground

truth PU activity result and can accurately penalize malicious nodes by reducing their trust scores,

regardless of the percentage of malicious nodes in the system. When the DFC does not check the

ground truth PU activity result (with probability 1 − pt), it will accumulate the reported results

from all SUs based on trust-weighted majority voting. Since the DFC can track trust status of

all SUs accurately, malicious nodes with low trust scores (because the DFC penalizes them) will

not adversely affect the PU occupancy outcome. On the other hand, the distributed scheme does

not have a centralized DFC that can obtain the ground truth PU activity. As the percentage of

malicious SUs increases, an SU with capability lower than the minimum capability threshold can

only update the trust scores of other SUs through the blacklist reports broadcast on the common



control channel. Because malicious SUs can collude to put good SUs in the blacklist and conversely

remove malicious SUs out of the blacklist, an SU is unlikely to keep accurate trust scores of other

SUs in the system. The inaccuracy of trust scores kept by an SU in the distributed scheme is most

pronounced when the percentage of malicious nodes exceeds a threshold (60%) beyond which the

success rate drops rapidly compared with the centralized scheme.

Our analysis indicates that the cutoff point in terms of the minimum percentage of malicious

nodes beyond which centralized cooperative spectrum sensing is better than distributed cooperative

spectrum sensing is 60%, as suggested in Figure 9. Of course the cutoff point of 60% is not

universally true as it depends on the parameter settings. However, one can apply the analysis

methodology developed in this paper to derive the cut-off point, when given a set of parameters

characterizing the cognitive radio environment.

B. Overhead

The convenience of having a DFC to check the ground truth PU occupancy status in the

centralized scheme comes with a cost. In addition to the cost of installing a DFC in the system, it

incurs a high overhead every time the DFC checks the ground truth PU activity so that the DFC

can properly apply penalty in terms of trust loss to malicious nodes that perform SSDF attacks.

The cost is much higher in scale than that of the distributed scheme which only relies on message

broadcasting on the common channel for an SU to determine the PU activity as well as trust status

of other SUs in the system. The high overhead issue is somewhat mitigated in our work by deriving

the smallest DFC checking probability pt under which malicious SUs do not have the intention to

lie about their sensing capability and sensing result. In practice, high overhead is less important

than high prediction accuracy. Therefore, the centralized scheme should be the choice especially

when there is a high percentage of malicious SUs in the system performing DDSF attacks. Lastly,

both schemes are comparable in terms of the decision time delay for an SU to reach a decision,

since slotted broadcasting is used in both schemes to avoid communication interference.



C. Mechanism Design as Applying to Centralized and Distributed Cooperative Spectrum Sensing

We argue that centralized cooperative spectrum sensing is more amenable to mechanism design

theory principles because of the presence of a DFC that can obtain ground-truth PU occupation status

whenever it needs to (with probability pt in a sensing report slot in our proposed centralized scheme).

This ground truth information is used to update trust scores of SUs based on their sensing reports

containing PU occupancy and sensing capability information. This allows the DFC to accurately

track trust status of SUs and consequently achieve high prediction accuracy. On the other hand in

distributed cooperative spectrum sensing, ground-truth PU occupancy status is not available. Each

SU can just aggregate self and received sensing information to deduce PU occupancy. This estimated

PU occupancy tends to be inaccurate when there is a high percentage of malicious SUs performing

attacks. Consequently, Each SU especially the one without a high sensing capability exceeding T t
i

tends to update the trust scores toward other SUs inaccurately, resulting in low prediction accuracy.

This is evident from Figure 9 in which distributed cooperative spectrum sensing performs much

worse than centralized cooperative spectrum sensing when there is a high percentage of malicious

SUs performing attacks.

VII. CONCLUSION

In this paper we proposed and analyzed trust-based data fusion schemes for cooperative spectrum

sensing in cognitive radio networks to cope with data falsification attacks. We designed data fusion

rules to distinguish erroneous reports due to low sensing capability from those due to malicious

attacks. Our design effectively forces malicious nodes to report true sensing capability and outcome

to prevent trust loss, thus allowing a high success rate to be achieved. We also identified optimal

trust protocol settings under which the success rate is maximized. The simulation results validated

the theoretical analysis and demonstrated that our trust-based data fusion scheme outperforms

traditional data fusion rules and can distinguish malicious nodes performing data falsification attacks

through their low trust scores in the long run. Finally, we demonstrated that our trust-based design

methodology and analysis results can be extended to distributed cooperative spectrum sensing in



which the DFC does not exist.

In the future we plan to explore modeling techniques such as Stochastic Petri Nets [23]–[28]

to model behaviors of good and malicious SUs in order to study the interaction and exploit the

design tradeoffs that exist in the game structure. We also plan to further test the resiliency of our

trust-based data fusion scheme against more complicated environmental and operational scenarios

such as different received signals at each node because of the geography effect of the SUs, as well

as more sophisticated attack behaviors such as opportunistic, collusion, and insidious attacks [29],

[30].
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