
2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

BRIoT: Behavior Rule Specification-
based Misbehavior Detection for IoT-
Embedded Cyber-Physical Systems
Vishal Sharma

1
, Member, IEEE, Ilsun You

1
, Senior Member, IEEE, KangbinYim

1
, Ing-Ray

Chen
2
, Member, IEEE, and Jin-Hee Cho

2
, Senior Member, IEEE

1Dept. of Information Security Engineering, Soonchunhyang University, Asan-si-31538, South Korea
2Virginia Tech, Department of Computer Science, VA 24061, USA

Corresponding author: Ilsun You (e-mail: ilsunu@gmail.com).

This work was supported by Institute for Information &communications Technology Promotion (IITP) grant funded by the Korea

government (MSIT) (No.2017-0-00664, Rule Specification-based Misbehavior Detection for IoT-Embedded Cyber-Physical
Systems). The work was also supported by the U.S. AFOSR under grant number FA2386-17-1-4076.

ABSTRACT The identification of vulnerabilities in a mission-critical system is one of the challenges faced

by a Cyber-Physical System (CPS). The incorporation of embedded Internet of Things (IoT) devices makes

it tedious to identify vulnerability and difficult to control the service-interruptions and manage the

operations losses. Rule-based mechanisms have been considered as a solution in the past. However, rule-

based solutions operate on the goodwill of the generated rules and perform assumption-based detection.

Such a solution often is far from the actual realization of IoT runtime performance and can be fooled by

zero-day attacks. Thus, this paper takes this issue as a motivation and proposes better lightweight behavior

rule specification-based misbehavior detection for IoT-embedded cyber-physical systems (BRIoT). The key

concept of our approach is to model a system with which misbehavior of an IoT device manifested as a

result of attacks exploiting the vulnerability exposed may be detected through automatic model checking

and formal verification, regardless of whether the attack is known or unknown. Automatic model checking

and formal verification are achieved through a 2-layer Fuzzy-based Hierarchical Context-Aware Aspect-

Oriented Petri Net (HCAPN) model, while effective misbehavior detection to avoid false alarms is achieved

through a Barycentric-coordinated based center of mass calculation method. The proposed approach is

verified by an unmanned aerial vehicle (UAV) embedded in a UAV system. The feasibility of the proposed

model is demonstrated with high reliability, low operational cost, low false-positives, low false-negatives,

and high true positives in comparison with existing rule-based solutions.

INDEX TERMS behavior rules, cyber-physical systems, IoT, specification-based intrusion detection, and

zero-day attacks.

I. INTRODUCTION

Misbehavior detection techniques for Internet of Things

(IoT) embedded cyber-physical systems (CPS) in general can

be classified into three types: signature-based, anomaly-

based and specification-based techniques [12, 28]. The

proposed behavior rule specification-based misbehavior

detection technique in this work falls under specification-

based detection. The proposed approach disposes of

signature-based detection so as to deal with zero-day attacks.

It considers specification-based techniques rather than

anomaly-based techniques for misbehavior detection to avoid

the high cost associated with profiling and learning anomaly

patterns for resource-constrained IoT devices and to avoid

high false positives (treating good devices as bad devices).

We argue that contemporary anomaly-based misbehavior

detection methods for IoT-embedded CPSs based on

profiling and machine learning through correlation and

statistical analysis of a large amount of data or logs for

classifying misbehavior (e.g., [2, 6-7, 10-11, 14-15, 29]) will

not work for IoT-embedded CPSs because of high memory,

run time, communication, and computational overhead,

considering the fact that many embedded IoT devices are

severely constrained in resources. Specification-based

misbehavior detection provides a viable approach for

misbehavior detection of embedded IoT devices because of

light resource requirements for checking misbehaviors

against specifications.

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 2

The goal of this work is to develop a Behavior Rule

specification-based embedded-IoT misbehavior detection

technique (called BRIoT for short) to achieve high accuracy

in detecting misbehavior of an embedded IoT device in a

CPS against zero-day attacks, without incurring high

memory, run time, communication, or computation overhead

by avoiding the high cost of profiling and learning anomaly

patterns as in anomaly detection. To achieve the goal of

defending against zero-day attacks, BRIoT detects “intended

behaviors” specified in the “operational profile” [16] (i.e.,

mission specification) for every IoT device such that

misbehaviors manifested as a result of attacks exploiting the

vulnerability exposed may be detected through automatic

model checking and formal verification. Moreover, our

method to defend against zero-day attacks that try to avoid

pre-established rule specification-based misbehavior

detection is to identify the complete set of misbehaving states

deriving from the device’s operational profile that can

possibly fail a mission assigned for execution. A malicious

UAV can avoid being detected only if it never enters a

misbehaving state, in which case the IoT device will not

cause any harm to the mission execution because no failure

will ever result if the IoT device never enters any

misbehaving state.

In a large IoT-embedded CPS, there will be a huge number

of IoT sensors/actuators and it is neither scalable nor

practical to rely on a central entity to perform misbehavior

detection. Since the central entity cannot physically perform

misbehavior detection itself, it needs to collect misbehavior

reports/logs from IoT devices. The amount of traffic

generated will not only consume IoT energy but also cripple

the CPS communication network. Hence, distributed

misbehavior detection is the only feasible way. Since IoT

devices are resource-constrained, the detection must be

lightweight. For scalability, we propose a methodology to

transform behavior rules to a state machine, turning behavior

monitoring of an embedded IoT device into a lightweight

process because it only involves checking if a monitored IoT

device is in a safe or unsafe state against the transformed

state machine.

The following aspects are novel in our work relative to the

existing specification-based intrusion detection techniques

(see Section 2 Related Work for detail): (1) design and

implementation of a module for automatically modeling and

deriving behavior rules from an embedded IoT device’s

operational profile specifications [16];(2) design and

implementation of a 2-layer Fuzzy-based Hierarchical

Context-Aware Aspect-Oriented Petri Net (HCAPN [33])

model to formally verify that the behavior rules generated are

correct and cover all the threats (or satisfy the security

requirements) and that the resulting safe and unsafe states are

complete and are generated correctly with respect to the

behavior rules specified;(3) design and implementation of a

module for automatically transforming behavior rules into

“attack behavior indicators” (ABIs) and then into a state

machine for misbehavior detection at runtime;(4) design and

implementation of a lightweight runtime collection module

for collecting compliance degree data from runtime

monitoring of an IoT device based on its derived state

machine; (5) design and implementation of a lightweight

statistical analysis module for effective misbehavior

detection to avoid false alarms through a novel Barycentric-

coordinated based center of mass calculation method; and (6)

experimental verification by an unmanned aerial vehicle

cyber physical system (UAV-CPS) demonstrating its

superior performance over a contemporary specification-

based intrusion detection solution called BRUIDS [18].

The rest of the paper is organized as follows: In Section

II, we survey related work. In Section III, we discuss the

system model. In Section IV, we describe in detail the

design and implementation of BRIoT. In Section V, we

apply BRIoT to misbehavior detection of a UAV embedded

in a UAV-CPS and perform a comparative analysis of

BRIoT against BRUIDS. Finally, in Section VI, we

conclude the paper and outline future work.

II. RRELATED WORK

In this section, we discuss related work in three areas:

anomaly-based IoT misbehavior detection, specification-

based IoT misbehavior detection, and verification of

specification-based IoT misbehavior detection. We

compare and contrast our work with existing work.

Anomaly-based IoT Misbehavior Detection: Existing

intrusion detection methods for IoT mostly are designed to

detect either routing attacks or Denial of Service (DoS)

attacks (see a survey in [28]). More recent works such as

[29] also addressed detecting illegal memory accesses in

low-power IoT. These existing works, however, are based

on anomaly-based techniques applying profiling and

machine learning through correlation and statistical analysis

of a large amount of data or logs for classifying

misbehavior (e.g., [2, 6-7, 10-11, 14-15, 29]). We believe

anomaly-based detection techniques will not work for IoT-

embedded CPSs because many embedded IoT devices

especially battery-operated ones are severely constrained in

resources. Our work is based on lightweight specification-

based intrusion detection for misbehavior detection of each

IoT device embedded in a CPS.

Specification-based IoT Misbehavior Detection: In the

literature, specification-based misbehavior detection has

been mostly applied to communication networks [4, 8, 21]

and CPS security [1, 9, 17, 18, 30]. In the context of

communication networks, DaSilva et al. [4] proposed

traffic-based rules to detect network intruders: interval,

retransmission, integrity, delay, repetition, radio

transmission range and jamming. Ioannis et al. [8] proposed

auditing the forwarding behavior of suspects to detect

blackhole and greyhole attacks based on rule specification

violations. Song et al. [21] proposed specification-based

detection rules (identifying activity that is monitored) to

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 3

ensure the global security requirement is obeyed for an IP

configuration protocol in mobile ad networks. In the

context of CPS security, Berthier et al. [1] proposed

specification-based misbehavior detection to audit the

network traffic among smart meters and access points for

protocol compliance. Jokar et al. [9] considered

specification-based misbehavior detection against physical

and MAC layer attacks in ZigBee networks in smart grids.

Mitchell et al. [17, 18] discussed a conceptual model of

behavior rule specification-based intrusion detection for

CPSs and conducted a proof-of-concept statistical analysis

using pre-generated data following a probability

distribution. Khan et al. [30] proposed behavior-based

executable specification against false data injection attacks

for industrial control systems. Our contribution relative to

existing works cited above is that we pioneer the use of

lightweight behavior rule specification-based misbehavior

detection for resource-constrained IoT devices embedded in

a CPS.

Verification of Specification-based Intrusion Detection:

While specification-based detection in general induces a

lower false positive rate than anomaly detection, a

limitation of specification-based approaches is the difficulty

of verifying that the specifications are correct and cover all

the threats [1]. Toward this end, Song et al. [21] described a

formal reasoning framework to first define a global security

requirement and then defined the specifications of the

behaviors of local nodes to assure the global security

property. Utilizing the ACL theorem prover[32], they

formally proved that the local detection rules (identifying

local behavior that is monitored against behavior

specifications) imply the global security requirement.

Berthier et al. [1] followed a similar approach and proposed

a formal framework comprising a model of the network,

monitoring operations, protocol specifications, and security

policy. The key idea of their framework is to formally

verify that no network trace can violate the security policy

without being detected. Utilizing ACL, they verify that all

possible network traces that respect the network model,

monitoring operations, and protocol specifications will also

respect the security policy. Unlike the above-cited work [1,

21], we start with the “operational profile” [16] of an

embedded IoT that defines the mission statement of the

embedded IoT device to derive the security requirements

and hence the threats of the embedded IoT device. Then we

derive the behavior rules specifying the intended behavior

and verify that the behavior rules are correct and cover all

the threats. We develop a 2-layer Fuzzy-based HCAPN

model for formal verification. Lastly, unlike [1, 21], our

approach is specifically designed for intrusion detection of

lightweight IoT devices embedded in a CPS with energy

consideration.

III.SYSTEM MODEL

In this section, the system model, including the

architecture model, threat model, and monitoring model on

which the proposed IDS are based upon, is discussed in

detail.
A. ARCHITECTURE MODEL

An embedded IoT device can be a sensor, an actuator, a

controller, or a combination of the above such as a UAV.

The architecture model depends on the specific type of IoT

device under consideration. We illustrate it with an

embedded UAV device in a UAV-CPS as considered in

[18] with the addition of the misbehavior detection module

(labeled as BRIoT) and the external architecture, where the

information is served with both the distantly placed

monitoring station and the other UAVs, as shown in Fig.1.

Fig. 1: Architecture Model for a UAV-CPS.

B. THREAT MODEL

We first understand the meanings of threats and attackers

with the following definitions:

Definition 1: A threat is a negative event that can lead to

an undesired outcome, such as damage to or a loss of an

asset. Threats can use or become more dangerous because

of a vulnerability (which is simply a weakness in the

system).

Definition 2: A threat agent or an attacker is a person,

actor, entity, or organization that is initiating a threat event.

In this paper, our primary interest is on attacks of

embedded IoT devices performing basic sensing, actuating,

navigating, and networking functions. Our threat model

considers all threats that target integrity, confidentiality and

availability aspects of IoT-embedded CPS security. The

known attacks that have been investigated in the literature

are summarized in Table 1. Unlike most existing IoT

intrusion detection approaches which design specific

intrusion detection functions to detect or prevent specific

known attacks [28], we take an entirely different approach.

That is, we use the design concept of “operational profile”

[16] during the testing and debugging phase of an

embedded IoT device when the IoT software is built to

define the embedded IoT device’s security requirements,

from which the threat model is derived. The threat model

comprises a list of threats that would fail an embedded IoT

device’s mission assignment. The threat model leads to a set

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 4

of behavior rules against which the misbehavior of an IoT

device would be detected automatically at runtime,

regardless of if the attack is known (e.g., as listed in Table

1) or unknown. In our work, we formally verify that the

behavior rules generated are correct and cover all the

threats (or satisfy the security requirements).

C. MISBEHAVIOR MONITORING MODEL

Our behavior-rule based IDS approach relies on the use

of monitoring nodes. We assume that a monitoring node

performs misbehavior detection on a target node. One

possible design is to have a sensor (actuator) monitor

another sensor (actuator respectively) within the same CPS.

This may require each sensor (actuator) to have multiple

sensing functionalities. Note that a malicious embedded IoT

device cannot bypass misbehavior detection because our

approach is based on a device being monitored by a peer

device (or more than one peer IoT devices to increase the

detection strength). If a peer monitoring IoT device is itself

malicious and performs attacks, its misbehavior would be

detected by another peer IoT device. Further, whenever an

IoT device is identified as malicious, its monitoring duty

would be reassigned to another IoT device. Therefore, no

malicious IoT device can bypass detection in our approach.

Another possibility is that each IoT device is built on top of

secure computational space (e.g., [40]) such that each target

IoT device can execute misbehavior detection code in a

secure computation space and self-monitor itself, even if

the operating kernel has been compromised. In this case,

once a node identifies itself as misbehaved based on the

behavior rule specification, it can take itself off the mission

or even self-shutdown.

Table 1: “Known” Attacks that Target Integrity, Confidentiality and

Availability Aspects of IoT-CPS Security

Attack Type Security Aspect

command spoofing attack [20],
data spoofing attack [12],

bad-mouthing/ballot-stuffing attack [3],
capture attack [13],

GPS spoofing attack [11, 27]

integrity

data exfiltration attack [13] confidentiality

DoS or jamming attack [12],
black/grey hole attack [12],

energy exhaustion attack [25]

availability

IV. BEHAVIOR RULE SPECIFICATION-BASED
MISBEHAVIOR DETECTION FOR EMBEDDED IOT

We first explain the workflow of BRIoT, as illustrated

in Fig. 2. The automatic derivation of behavior rules is done

at static time (or compile time) given a target IoT device’s

operational profile as input. Each behavior rule is then

converted into a corresponding “attack behavior

indicator”(ABI) being expressed as a Boolean expression to

be evaluated true (1) or false (0), indicating whether the

corresponding behavior rule is violated or not. All ABIs

thus generated (corresponding to all behavior rules) are

encoded in XML format and are fed as input to a HCAPN

tool which does automatic model checking and formal

verification also at static time. Once the behavior rules are

formally verified and proven correct, we transform the

corresponding ABIs into a C-language state machine for

misbehavior detection of the specified target IoT device.

This part is also performed at static time. Then we preload

the state machine into the memory of a monitoring node

and assign the monitoring node the duty of monitoring and

detecting misbehavior of the target IoT device. This

misbehavior detection part is performed at runtime. During

runtime, misbehavior data detected if any are collected by

the monitoring node via anon-board lightweight data

collector. Subsequently the data collected are fed into a

lightweight statistical analyzer (also on-board as it is

lightweight) to judge if the target IoT device is malicious.

Fig.2: Workflow of BRIoT.

The HCAPA tool in Fig. 2 is developed to ease

automation of model checking and formal verification. The

tool uses basic coding principles which are extended to fit

into the need of the proposed 2 layers statistical HCAPN

model. The tool not only helps parse the user’s or expert’s

inputs but also checks whether the developed rules are

formally verifiable or not. It further allows visualization of

the final model in the form of workflow through Petri Net

visualization. The tool helps generate the reports and obtain

results to check the basic principles of HCAPN model. In

addition, it provides a high flexibility to model different

behavior rules and attack behaviors. Fig. 3 provides an

overview of our BRIoT design. In the following, we detail

our BRIoT design in three major areas: automatic modeling

and verification of behavior rule specification for an

embedded IoT device through HCAPN (Section IV.A),

automatic transformation of a behavior rule set to a state

machine for misbehavior detection (Section IV..B), and

lightweight runtime collection of compliance degree data

and statistical analysis (Section IV.C).

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 5

A. AUTOMATIC MODELING AND VERIFICATION OF
BEHAVIOR RULE SPECIFICATION FOR AN EMBEDDED
IOT DEVICE THROUGH HCAPN

We propose to use “operational profile” [16], which

essentially is a mission assignment statement generated

according to the probabilities with which events will

happen to an embedded IoT device during its mission

execution as input to BRIoT. A mission assignment

statement explicitly defines a set of security requirements

for the mission to be successful, from which a set of threats

as well as a set of behavior rules to cope with the threats

may be automatically derived. If the “operational profile”

of an embedded IoT device (by software engineers who

developed the IoT device) which defines the security

requirements is available, then it can be modeled to

automatically identify the complete set of threats and

consequently derive the complete set of behavior rules.

Otherwise, the system designer would be guided to define

the “anticipated operational profile” as input.

Fig.3: Overview of BRIoT design.

The automatic model verification of the behavior rules

is conducted by verifying that the behavior rules generated

are correct and covers all the threats (or satisfies the

security requirements). The basic idea is to prove that the

behavior rules can guarantee all security requirements are

not violated, so any violation of the security requirements

implies violations of the behavior rules. This means all

attacks that violate the security requirements will be

detected by the behavior rules.

The formal proof is made possible by expressing the

behavior rules generated and the security requirements

derived in a HCAPN [33] model such that “any violation of

the security requirements implies violations of the behavior

rules” is expressed as Boolean expressions in HCAPN. The

model verification begins with generating a HCAPN model

from the generated behavior rules. The newly generated

HCAPN is a fuzzy-based statistical 2-layer model that is

lightweight on memory and running time.

More specifically, a system comprising a set I of IoT

devices is considered, with the cardinality |I| denoting the

number of IoT devices. Each IoT device must execute

certain operations leading to a behavior set B generated

automatically through the operational profile and must be

verified before deployment. The verification is accounted

with a behavior recording variable V, a Boolean variable

that tells whether the behavior set B is verifiable or not. If

verifiable, it marks whether the verified behavior is correct

or incorrect by using another Boolean expression (G).The

correctness variable, G, is accounted through HCAPN

observations and can be written as G=Fuzzy(H(.)) where (.)

denotes the functional inputs to the HCAPN model defined

as in [33]. By extending the initial model, V can be

expressed as a fuzzy function [42] related to the behavior

variables from the behavior set B, the degree of dependence

of behavior represented by a set D, and a statistical

weightage set W generated based on the dependence value,

such that V=Fuzzy(B, D, W).Here, V can operate on a

vector of behavior rules or an individual rule depending on

the initial observations as well as the supporting model

available from an expert (E). For an expert, the verification

function can be modeled as VE=Fuzzy(B, D, W)E. The

values from an expert remain unchanged for a specified

duration. However, for observations of the CPS, timing

represents a key role because it becomes important to

consider an instance-based (timely) fuzzy function written

as VT=Fuzzy(B, D, W)T.

The proposed approach considers users and experts for

operations, where users are the track-able devices with

behavior rules whose evaluations are to be verified,

whereas experts are the original sources available for

testing, validating and defining the correct system.

Although, the proposed model can work as an independent

unit, we model it around the expert’s observations for

proving correctness. Usually, it is questionable that the

availability of expert’s values can directly provide

correctness of the observed or recorded values. Therefore,

an additional methodology is required. To answer this, an

expert can provide base values for a given CPS. In practice,

a user may encounter a different set of metrics, which could

be dynamically verified and adjusted to form a base for

timely detection of misbehavior patterns. Moreover, with

verifications after certain time is elapsed, user’s values can

replace expert’s values, thereby allowing the approach to

settle into strong priori-probabilities.

The use of fuzzy logic [42] for deciding the outcomes of

V helps to observe a Boolean value from the unevenly

observable crisp values of B, D, and W. To find D, the

initial observational values for the behavior rule set B of a

given device in I are taken, such that a correlation

coefficient (𝑟𝑈𝐸) [34] is identified for the user’s as well as

the expert’s sets as follows:

𝑟𝑈𝐸 =
𝜗 𝛼𝑖𝛽𝑖− 𝛼𝑖 𝛽𝑗

𝜗
𝑗=1

𝜗
𝑖=1

𝜗
𝑖=1

 𝜗 𝛼𝑖
2−(𝛼𝑖

𝜗
𝑖=1)2𝜗

𝑖=1 𝜗 𝛽𝑗
2−(𝛽𝑗

𝜗
𝑗=1)2𝜗

𝑗=1

,𝜗𝑈 ≠ 𝜗𝐸(1)

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 6

where 𝜗 is the total number of variables from B with

uniqueness for user and expert in totality (𝜗 = 𝜗𝑈 +
𝜗𝐸), 𝛼𝑖 is the number of occurrences of variable i in the

behavior profiling set by the user, and 𝛽𝑖 is the number of

occurrences of variable i in the behavior profiling set by the

expert. Now, based on these observations, the dependence

of the kth behavior rule for the user can be evaluated as:

𝐷𝑈,𝑘 = 𝑟𝑈𝐸 .
 𝛼𝑗

𝑛1,𝑘
𝑗=1

 𝛼𝑖𝛽𝑖
𝜗
𝑖=1

,𝑛1 ≤ 𝜗𝑈 , 𝑟𝑈𝐸 ≠ 0 (2)

where n1,k is the number of variables for a given behavior

rule k ∈ B of a user’s input. Similarly, the dependence of

the kth behavior rule for an expert can be written as:

𝐷𝐸,𝑘 = 𝑟𝑈𝐸 .
 𝛽𝑗

𝑛2,𝑘
𝑗=1

 𝛼𝑖𝛽𝑖
𝜗
𝑖=1

,𝑛2 ≤ 𝜗𝐸 , 𝑟𝑈𝐸 ≠ 0 (3)

where n2,k is the number of variables for a given behavior

rule k ∈ B of an expert’s input. The ratio of dependence for

a given behavior rule k ∈ B can be given as 𝑅𝑈𝐸,𝑘 =

 𝛼𝑗

𝑛1,𝑘
𝑗=1

 𝛽𝑗
𝑛2,𝑘
𝑗=1

.

Now, D for each behavior rule k (subscript k is omitted

below) can be marked as:

𝐷 =

𝐷𝑈 = 𝐷𝐸 , 𝑖𝑓 𝑅𝑈𝐸 = 1, 𝑒𝑞𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
𝑅𝑈𝐸 , 𝑖𝑓 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑡𝑒 𝑎𝑛𝑑 𝐷𝑈 ≤ 𝐷𝐸

𝛾𝑈𝐷𝑈 +𝛾𝐸𝐷𝐸

𝛾𝑈 +𝛾𝐸
, 𝛾𝑈 + 𝛾𝐸 ≠ 0 , 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑏𝑎𝑠𝑒𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

𝛾𝑈,𝑡−1 + 𝛾𝑈,𝑡,𝑖𝛼𝑖 + 𝛽𝑗 − 𝛼𝑗
𝑛1
𝑗=1

𝑛1
𝑖=1 , 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔

𝑎𝑛𝑑 𝑛𝑜𝑛𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡𝑕 𝑡𝑕𝑒 𝑎𝑏𝑜𝑣𝑒 𝑡𝑕𝑟𝑒𝑒

 (4)

Here, 𝛾𝑈 and 𝛾𝐸 are the importance coefficients

indicating importance of a behavior rule for the user and the

expert, respectively. They are derived from the behavior set

B and its contained variables. Specifically, they can be

derived based on a linear model [35] [36] used in the

formulation of D, such that 𝜇2𝑛1
𝑖=1 is minimum, where 𝜇 =

𝛾𝐸 𝛽𝑗 −
𝑛2
𝑗=1 𝛾𝑈 𝛼𝑗

𝑛1
𝑗 =1 . With 𝛾𝐸 = 1, 𝜇 can be computed

as 𝛽𝑗 −𝛾𝑈𝛼𝑗 . If D is higher then it becomes easier to detect

the possibility of behavior rules being verifiable, which

otherwise is difficult for isolated variables in the behavior

rules. Setting D equal to the user to expert ratio of

dependence, i.e., 𝐷 = 𝑅𝑈𝐸 is convenient to use under the

given constraints as it allows verification between the

user’s and the expert’s inputs. The fourth sub-value for D

helps to evaluate a continuously changing system.

However, this requires setting certain thresholds on the

number of new variables in behavior profiling. An

unlimited number of new variables may cause additional

overheads as it becomes tedious to find dependence for all

additional variables with limited knowledge. Here,

knowledge refers to the available content from the expert

and device profile available from the manufacturer.

For W, a memory coefficient (𝜑) is considered for each

behavior rule, which helps to depict the statistical

requirement (mean occurrences) of a behavior rule and is

uniformly distributed with the value given based on CDF,

such that:

𝜑𝑖 =
αi ,j−min 𝛼 +1

max 𝛼 −min 𝛼 +1

𝑛1
𝑗 =1 (5)

For relative memory, the observations change to:

𝜑𝑈𝐸,𝑖 =
||αi ,j−𝛽𝑖,𝑞 ||−min 𝛼,𝛽 +1

max 𝛼,𝛽 −min 𝛼,𝛽 +1

𝑛1 ,𝑛2
𝑗 =1,𝑞=1 (6)

where the choice between the two is subject to system

constraints and applicability. Now, W can be accumulated

through a Wannier function [37], such that:

𝑊𝑖 = 𝜑𝑖 . 𝑓 𝛼, 𝛽, 𝜑𝑈𝐸 ,𝑖 . 𝑓 𝛼, 𝛽, 𝜀 (7)

where by definition [37],

𝑓 𝛼, 𝛽, 𝜑𝑈𝐸,𝑖 =
1

 𝐵
 𝑒

−𝑗 ||αi ,j−𝛽𝑖,𝑞 ||𝑛1 ,𝑛2
𝑗 =1,𝑞=1 𝑒

𝑗 ||αi ,j−𝛽𝑖,𝑞 ||
. 𝜑𝑈𝐸,𝑖 (8)

and

𝑓 𝛼, 𝛽, 𝜀

=

1, 𝑖𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑎𝑟𝑒 𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

1

sup
0<𝑗≤𝑞

𝜀
 ||α

i,j
− 𝛽𝑖,𝑞 ||

𝑛1 ,𝑛2

𝑗=1,𝑞=1

, 𝑞 > 𝑗, 𝑖𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝜀 𝑎𝑟𝑒

𝑛𝑜𝑛 − 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑

1

 𝐵
 𝑒−𝑗 ||αi,j−𝛽𝑖,𝑞 ||

𝑛1 ,𝑛2

𝑗=1,𝑞=1

 𝑒
𝑗 ||αi ,j−𝛽𝑖,𝑞 ||. 𝜀𝑖,𝑗 , 𝑖 𝑓𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 (𝜀)

𝑎𝑟𝑒 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑

 (9)

Here, the localization of residuals refers to the

identification of errors with respect to a behavior rule. The

above formulations form the base of fuzzy evaluations and

help decide whether the available values for a behavior rule

make it verifiable or not.

Different mechanisms are used to generate normalized

inputs for B, D and W to formulate the fuzzy sets for

generating inference rules. To map B, it is replaced by the

periodicity of the behavior rule (B’), which is normalized

using
𝐵′−min (𝐵′)

max 𝐵′ −min (𝐵′)
. D and W are evaluated for Bayesian

belief, such that their normalized values are given by

𝐷(𝑁)
𝑖 =

𝐿(𝐷𝑈,𝑖).𝑃(𝐷𝐸)

𝑃(𝐷𝑈,𝑖)
 and 𝑊(𝑁)

𝑖 =
𝐿(𝑊𝑈,𝑖).𝑃(𝑊𝐸)

𝑃(𝑊𝑈,𝑖)
,

respectively, where L and P denote the likelihood and the

probability, respectively. Under relaxed constraints and

low-complex evaluations, these are obtained as

0 < 𝑘 ≤ 𝑗
𝑠𝑢𝑝

0 < 𝑚 ≤ 𝑞
[

𝐷𝑈 ,𝑘

max 𝐷𝑈
.

𝐷𝐸,𝑚

max (𝐷𝐸)
] and 0 < 𝑘 ≤ 𝑗

𝑠𝑢𝑝

0 < 𝑚 ≤ 𝑞
[

𝑊𝑈 ,𝑘

max 𝑊𝑈
.

𝑊𝐸,𝑚

max 𝑊𝑈
].

Based on the expert’s recommendations as well as the

devices' readings, limits are set for the membership values

observed for the fuzzy set, thus inferencing an output for

taking a decision on V. For this, Low, Medium, and High

are marked for B’, and Very Low, Low, Medium, High, and

Very High are marked for both D and W. Usually, the value

range is based on beliefs; however, in the proposed

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 7

approach, these are driven by the max-mean approach.

Therefore, the limits on the membership values (0, 1) for B’

are (0, 0.25, 0.5), (0.25, 0.5, 0.75), and (0.5, 0.75, 1.0) and

for W and D are (0, 0.125, 0.25), (0.15, 0.25, 0.35), (0.30,

0.45, 0.60), (0.55, 0.7, 0.85) and (0.75, 0.875, 1.0). Now,

using inference criteria based on the urgency of a behavior

rule, the following fuzzy-observations are attainable for V:

Low, Medium, High, Very High and Extreme with

membership values of the order, (0, 0.2, 0.4), (0.35, 0.5,

0.65), (0.6, 0.7, 0.8), (0.75, 0.825, 0.9) and (0.85, 1.0).Fig.

4 shows how to trace inference rules for their mapping.

(A)Fuzzy (B, D, W) vs. W and B.

(B) Fuzzy (B, D, W) vs. W and D.

Fig.4: A graphical illustration of the fuzzy observations with variations in
fuzzy function with respect to B’, W, D. The plots help to understand the

impact of rules on the observation of identifying the verifiability for given

behavior rules .In both diagrams, the interest is given to a V=Fuzzy (B, D,
W) value higher than the medium value defined by the expert or the user.

A general procedure for fuzzy evaluations involves

converting fuzzy observations to crisp values for finalizing

the value of a function under evaluation. However, in the

given system, the primary concern is about the belief to

consider the verification of a behavior rule. Thus, a Boolean

variable is assigned directly to the fuzzy observations, such

that any value leading to a medium or lower is marked with

0, and 1 otherwise. Now, based on these, the final set of

behavior rules is obtained to further check for correctness.

Fig.5: An illustration of a 2-layer HCAPN model for verifying

behavior rule correctness.

Let Bd, Wd, and Dd, be the derived sets for the evaluated

behavior rules, which are to be formally checked for their

correctness. To handle this task, HCAPN’s 2-layer

statistical format is used (Fig. 5), which is a variant of the

original HCAPN. At first, the system is accounted for the

number of places, passes, and association for building

transitions. Later, the number of tokens required to evaluate

the reachability of HCAPN are generated. Finally, the

statistical evaluations of HCAPN help verify the

correctness of the shortlisted (decided) behavior rules. The

details are as follows:

1. Number of layers: The initial HCAPN model [33] is

efficient in resolving multi-variable dependencies as

well as support variable evaluations and formal

analysis of network entities. However, the initial

version accounts each entity into the place and builds a

transition for each of them leading to a complex

scenario that is heavyweight on memory as well as run-

time. The conditions fail when the real-time

evaluations involve undecided variables accounting

verification. Thus, to make it lightweight, we adopt a

2-layer HCAPN model with statistical decidability,

which reduces the complexity by lowering the number

of places, passes, transitions, and tokens for generating

the required observations.

2. Number of places: Two sets of places, NU
P and NL

P , for

the lower layer and the upper layer of HCAPN,

respectively, are decided based on the number of

variables and the number of behavior rules. All

tracking variables, 𝜗𝑈,are marked as places in the

HCAPN’s upper layer and all behavior rules,𝐵𝑑 , are

taken for places in the lower layer, such that:
NU

P = 𝜗𝑈| 𝜗𝑈 > 0, 𝜗𝑈 is the variables formulating 𝐵𝑑 ,

NL
P = 𝑥 𝑥ϵ𝐵𝑑} (10)

3. Number of transitions: The transitions for the upper

layers involve the evaluation formulas using the

variables from the places and are represented by a

set TU
P (e.g. 3 for ABI 1 - Tables 1-5). In the lower

layer, the transitions are marked by security aspects,

which are denoted by a set TL
P (e.g. 13 for given

behavior rules - Tables 1-5), such that,

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 8

TU

P = 𝑎| 𝑎 is the equation involving variables from places ,

TL
P = 𝑏 𝑏 is the referral aspects} (11)

The referral aspects can be any property, condition or

additional rules. In this work, the referral aspects refer

to security aspects, which are accounted for based on

the behavior rules for devices in a CPS.

4. Number of passes: The number of passes is an integral

part of HCAPN which provides flexibility of multi-

party verifications without rebuilding new Petri nets

for the dependent variables. In this work, the number of

passes is not directly generated based on the rules of

places/passes. Rather, five main strategies are used

which are further based on two main properties,

namely, active passing and passive passing. In the

passive passing, the number of passes between the

upper and the lower layer Petri nets is pre-decided and

any additional inclusion of passes or change in

transition leads to the fresh derivation of HCAPN. In

the active passing, the number of passes is decided on-

demand; however, such a situation generates an

optimization problem which accounts for settling a

tradeoff between the excessive passes and operational

time. The excessive passes can lead to far more

accurate results even for a complex scenario, but at a

cost of time and memory. While keeping time in

constraint, the number of passes can still be functional,

but only under certain conditions leading to the

verification of strict behavior rules only. Irrespective of

the mode of operation, the following solutions can be

used for deciding the number of passes in the 2-layer

statistical HCAPN model for behavior rule verification:

a) In case of loops: The active passing can

especially be used to remove loops during

evaluations of behavior rules. Any adversary,

who tends to avoid the verification to prevent its

detection as misbehavior, can try to fool the

system by sending similar types of data from the

same devices again and again. This may result in

a loop over a particular variable as the behavior

rule for the verification remains the same. To

avoid such a situation, the context can be shifted

while avoiding loops over the involved places

and transitions, thereby preventing missing

verification for a non-included behavior rule.

b) In case of relationships: In case of a direct

relationship between the variables and behavior

rules, a pass is needed between the two layers of

Petri nets. However, the choice of positioning of

passes and extending a pass from a particular

variable to a particular behavior rule is again an

issue related to optimization.

c) In case of deviation in observations: There are

certain situations, where the system generates a

large number of false positives because of

numerous connectivity or excessive tokens,

which lead to a deviation of the system from

generating desired results. In such a case, the

passes are marked between the variables and the

behavior rules to avoid false positives. Moreover,

in such situations, the passes can be considered

from formulae from the upper layer to the aspects

of the lower layer via additional places.

d) In case of high operational time: As expressed

in the first part, high operational time for

evaluating the correctness of behavior rules has to

be avoided in a solution pertaining to the

identification of misbehavior in a CPS. Thus,

additional places and transitions need to be

removed and new passes must be generated to

increase the performance without compromising

the verification procedure.

e) In case of large traversals of places: This is

similar to loops, the places which are traversed

several times must have a common variable or

behavior rule, which can be overlooked, however,

only at the cost of false negatives. In case the

system shows an increase in false positives, such

traversals should be allowed even if the

computational time increases. The time cost in

such a situation can be saved by skipping

variables based on periodicity.

In a general HCAPN model, the number of layers may

vary, so is the number of passes. However, there is an

upper limit for the number of passes to avoid additional

overheads. In the case of a 2-layer HCAPN model, the

number of passes is marked by the general distribution

of the number of variables and the behavior rules. The

upper limits remain at X(X-1)/2, where X denotes the

sum of the places and tokens. However, such a

situation causes more tokens and hinders the timely

verification of the behavior rule correctness. To resolve

this, a law of K by K is formulated which means

finding the value of K such that K variables are always

in demand by exactly K behavior rules. The value of K

should be minimized subject to the verification of

behavior rules. Additionally, the value of K should also

be maximized subject to the minimization of the

evaluation time. The value of K remains to be the

number of passes required for building the 2-layer

HCAPN model. To solve this, the Walsh matrix

approach [38] is used, according to which, the number

of sign changes between the slots refers to the

requirements of the passes between the two layers. The

sign changes are derived based on the occurrences of

variables during a fixed slot. Thus, mathematically,

number of passes can be expressed as:

𝐾 =

 𝑆𝑡

 𝐶
 𝑊 𝑍 2𝜗𝑈 , 𝑡1 ≤ 𝑡 ≤ 𝑡2 , 𝑡2 − 𝑡1 ≠ 0, 𝑡1 > 0, 𝑆𝑡

 𝐶 . ≠ 0

𝑄𝑡
 𝐶

 𝑊 𝑍 2|𝐵𝑑 | , 𝑆𝑡
 𝐶 . = 0, 𝑡1 ≤ 𝑡 ≤ 𝑡2 , 𝑡2 − 𝑡1 ≠ 0, 𝑡1 > 0,

𝑐𝑜𝑚𝑚𝑜𝑛(𝜗𝑈 , 𝐵𝑑)

2
, 𝐵𝑑 = 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡, 𝑆𝑡

 𝐶 . = 0, 𝑄𝑡
 𝐶 . = 0

1, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 (12)

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 9

where M is the Walsh matrix derived over the Hadamard

matrix (Z) for the number of available variables, 𝑆𝑡
 𝐶

 and

𝑄𝑡
 𝐶

are the functions tracking the change in signs for the

recorded variables and behavior rules, respectively. The

function 𝑐𝑜𝑚𝑚𝑜𝑛(𝜗𝑈 , 𝐵𝑑) calculates the number of

variables with a common interest for the behavior rules in

the lower layer. It is to be considered that the total number

of passes should not be allowed to go beyond the mesh

structure (
𝐾(𝐾−1)

2
) and it should be consistent with the rule

of passes and places followed by the original HCAPN

model [33].

5. Number of tokens: The number of tokens is driven by

the operational requirements of the 2-layer HCAPN

model. For initial consideration, each behavior rule as

well as each variable is provided with a single token,

whose requirements depend on the number of

occurrences in the transition-formulae and the security

aspects, respectively. The periodicity of a behavior rule

has a definite impact on the number of tokens to be set

for evaluating the inputs for a device. Thus, for

verification, the number of tokens is set as𝐵′
 𝛼𝑗

𝜗𝑈
𝑗=1

|𝐵𝑑 |
.

6. Deciding the input and the outputs: The number of

inputs is based on the data read for the embedded IoT

device involved. The number of inputs initially is set to

that needed by the first behavior rule. The choice after

the initiation depends on the user, i.e., the 2-layer

HCAPN model can be operated in a top-bottom or

bottom-top approach. It can also be initiated in both

directions to confirm the reachability of all the places

as well as for checking the firing of all transitions. Note

that reachability of all places and firing of all

transitions also depends on the reliability of the system.

For the outputs, the place formed at last during a given

slot is taken as an output. Moreover, in any instance, 2-

layer HCAPN can be halted, and, unlike traditional

Petri nets, any place can be marked as an output.

7. Deciding the aspect and the context: The aspect refers

to the feature of HCAPN, which is set as “verification”

for the tracked behavior rules and the context refers to

an event which causes a transition to fire. Multiple

transitions can have the same context and each context

depends on the number of behavior rules and the

variables which form these behavior rules. The firing

of the transition is dependent on the tokens with the

variables in the upper layer and the tokens with the

behavior rules in the lower layer. The firing of

transition is based on the requirements of the context

and the availability of variable information from the

device under surveillance for behavior verification. The

firing can also be predicted similar to the general Petri

nets, provided that accurate transition matrices are

formed for the tracked behavior rules. The context in

the proposed set up is marked by C<index> and the

aspect helps to understand the state of the HCAPN

model, i.e., whether it is in the verification stage or the

prediction stage. Moreover, aspect can also be used to

identify if the system is evaluating the results through

comparison or ignoring the available inputs.

8. Deciding Supervisory HCAPN: The supervisory

HCAPN is the experts’ observations, which are based

on a prediction as well as the flow of data available

from the embedded device in the CPS. The decisive

supervisory HCAPN helps to understand the deviation

of the system in successfully verifying the behavior

rules. Moreover, it is used as learning for the system,

which helps to ignore pre-decided/pre-evaluated

behavior rules, thereby saving computations as well as

overheads of misbehavior detection.

9. Observing G=Fuzzy(H(.)):Once all the above

requirements are satisfied, the system is ready to verify

that the behavior rules generated are correct and cover

all the threats (or satisfy the security requirements) and

that the resulting safe and unsafe states are complete

and are generated correctly. For this, by definition of

HCAPN, we have G=Fuzzy(H(A1, A2,A3, A4, A5,

A6, A7, A8, A9)), where A1-A9 are the metrics of the

HCAPN model, such that, A1 is the set of places

(NU
P + NL

P), A2 is the set of transitions (TU
P + TL

P),A3 is

the set of connections between A1 and A2, A4 is the

set of passes (A4={K| K> 0}), A5 is the set of type of

passes, which is marked with the number of tokens for

evaluation in BRIoT, A6 is the set of context

conditions (A6={C| C ∈ ABIs derived from the

behavior rules}), A7 denotes the aspect, A8 is the

number of layers, which is 2, and A9 is the set of

output places, which is 1. The verification is done

based on correctness properties, which are then fed into

the fuzzy inference system for generating a Boolean

output to check the correctness as well as the

applicability of the behavior rules. The details of the

properties used for verification [33] are as follows:

a) Isolation: It refers to the places which are left

alone and does not have any connectivity within

the HCPAN based on the given behavior rules.

The isolation is tested in the upper as well as the

lower layer of HCAPN by accounting A1 without

A2 and A6 associated with it. Mathematically, it

can be written as:

𝑆𝐼
<𝐿𝑎𝑦𝑒𝑟 >

= 1 −
1

 N<𝐿𝑎𝑦𝑒𝑟 >

P ′

 N <𝐿𝑎𝑦𝑒𝑟 >
P

2

−1

, |N<𝐿𝑎𝑦𝑒𝑟 >
P ′

| ≠ N<𝐿𝑎𝑦𝑒𝑟 >
P

 (13)

where the prime operator(′) denotes the non-

functional places in the HCAPN model.

𝑆𝐼
<𝐿𝑎𝑦𝑒𝑟 >

 is for an individual layer, subject to the

identification of error only in the variables (upper

layer) or behavior rules (lower layer). One can

also compute isolation collectively based on A1

as:

𝑆𝐼
<𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒 > = 1 −

1

 𝐴1′

 𝐴1

2

−1

, 𝐴1′ ≠ |𝐴1|

 (14)

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 10

b) Non-Reachability: Non-reachability refers to the

inaccessibility of places in the given HCAPN and

can be expressed as a counter-value of

reachability. In the given mode, the reachability

can be determined by accounting the deflections

in the number of transitions which are fired and

the number of tokens retrieved at each place, such

that:

𝑅𝐵 = 1 −
1

 𝐴2′

 𝐴2

2

− 1

 1 −
1

 𝐴5′

 𝐴5

2

− 1

 ,

 𝐴2′ ≠ |𝐴2|, 𝐴5′ ≠ |𝐴5|.

(15)

The smaller value of reachability means higher

non-reachability and vice versa. Similarly,

reachability can account for the individual layer

based on the location of the output. Moreover,

non-reachability is also checked as part of the

transition matrix by accounting the negatives for

tokens, which refers to the

congestion/cycle/conflict and is against the

policies of a Petri Nets.

c) Dependability: It defines the relationship

between the variables and decreases when more

variables are in the behavior rules without the

prior knowledge. It is difficult to predict any

relation between the variables and the existing

behavior rules without any library, which is not a

case with real-time evaluations. Thus,

dependability decreases with an increase in the

variables with non-availability of relationships

with any of the existing behavior rules. Based on

this, the dependability of the 2-layer HCAPN

model can be given by:

𝐸𝐷
𝑃 =

 𝐵𝑑 + 𝐵𝑑 ,𝑥

𝐽1+𝐽2
 (16)

where

𝐽1 = 𝐵𝑑
1

 𝐵𝑑
 𝜗𝑖 − 𝜗 2 𝐵𝑑

𝑖=1 + 𝜗 −
𝜗 +𝜗𝑥

2

2

 (17)

 and

𝐽2 = 𝐵𝑑,𝑥
1

 𝐵𝑑,𝑥
 𝜗𝑥,𝑖 − 𝜗𝑥

2 𝐵𝑑,𝑥

𝑖=1 + 𝜗𝑥
 –

𝜗 +𝜗𝑥

2

2

 .

 (18)

Here, 𝐵𝑑,𝑥 is the number of behavior rules with

new variables, 𝜗 is the average number of

variables in each behavior rule, 𝜗𝑥 is the number

of new variables, and 𝜗𝑥
 is the average number of

variables in the new behavior rules.

Now, the isolation, non-reachability and dependability

are normalized by using similar formulations as used for B’.

Considering this, the fuzzy inference for verification of

behavior rules is formulated which gives verified or non-

verifiable as an output. It can be expanded to check the

correctness of variables as well as context used to relate

variables and the behavior rules. The fuzzy inference rules

and impact of properties on the decision are illustrated by

Fig. 6.

A. Fuzzy(H(.)) vs. isolation and non-reachability.

B. Fuzzy(H(.)) vs. isolation and dependability.

C. Fuzzy(H(.)) vs. non-reachability and dependability.

Fig.6: A graphical illustration of fuzzy observations for determining
the correctness of behavior rules based on the 2-layer statistical

HCAPN model. The function Fuzzy (H (.)) is contrasting to Fig. 4

even with different variations in non-reachability, isolation and
dependability. This depicts the role of the statistical model in the

verification process. It also verifies that the identification of

correctness is based on the expert’s module as well as the accurate
formation of a 2-layer HCAPN model.

In the fuzzy-based correctness evaluations, isolation and

non-reachability (lower value on reachability means higher

non-reachability and vice versa) are marked with low,

medium, and high membership functions with values (0,

0.2, 0.4), (0.25, 0.5, 0.75), (0.4, 0.7, 1), and (0, 0.2, 0.4),

(0.3, 0.45, 0.6), (0.5, 0.75, 1), respectively. Dependability is

marked with very low, low, medium, high, and very high

with values (0, 0.1, 0.2), (0.15, 0.25, 0.35), (0.30, 0.45,

0.60), (0.55, 0.7, 0.85), and (0.75, 0.875, 1), respectively.

The outputs are marked as low, medium, sensitive, correct,

strictly correct with values (0, 0.2, 0.4), (0.35, 0.5, 0.65),

(0.54, 0.65, 0.75), (0.7, 0.825, 0.95) and (0.85, 1, 1),

respectively. The decision on correctness can be attained

based on the following conditions:

𝐺 =
0, 𝑖𝑓 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝐿𝑜𝑤 ≤ 𝐹𝑢𝑧𝑧𝑦 𝐻 . ≤ 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

1, 𝑖𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡, 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 ≤ 𝐹𝑢𝑧𝑧𝑦 𝐻 . ≤ 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡
 (19)

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 11

In addition to preliminary observations for correctness,

defuzzification can be used to evaluate the model on crisp

values. Irrespective of that, the results of the correctness of

behavior rules will be same as pointed out in (19). Once

these verifications are done, the system can be operated

towards the identification of misbehavior in a CPS. The

details of these procedures for verification and correctness

of behavior rules are presented in Algorithms 1 and 2.

ALGORITHM 1: Verifiability and correctness of behavior rules

Input: B, W, I,𝜸𝑼, 𝜸𝑬[E.g. Table 5], fuzzy range and membership values

Output: V= True/False (0/1), G=True/False (0/1)

1. While (I!=NULL)

2. Set system and initiate operational profiler

3. Obtain values for B (as shown in Table 5) from experts

4. While (Read(B)==True)

5. Fetch ABI from experts and users

6. Set Value for B

7. Calculate D as in (4) using dependants from (1)~(3)

8. If (W==unavailable)

9. Calculate W as in (7) using dependants from (5)~(9)

10. End If

11. Invoke Fuzzy(B,D,W) with predefined rules

12. Obtain V

13. If (V==1)

14. Store Bd, Wd, and Dd

15. G=Initiate HCAPN Tool  HCAPN(Bd, Wd, and Dd)

16. If(G==1)

17. ABI is verifiable and correct.

18. Else

19. ABI is verifiable but incorrect

20. End If

21. Else

22. Exit(-1) // return non-verifiable behavior rule

23. End If

24. End While

25. End While

For observations: Vary 𝜺, W,𝜸𝑼, 𝜸𝑬, 𝒇 𝜶, 𝜷, 𝜺

ALGORITHM 2: G=HCAPN (H (.))

Input: Bd, Wd, and Dd, fuzzy range and membership values

Output: Return G

1. While (Bd!=NULL)

2. Set number of layers = 2

3. Lower layer places=behavior rules – follow 𝐍𝐋
𝐏 in (10)

4. Upper layer places=variables– follow 𝐍𝐔
𝐏 in (10)

5. Set transitions 𝐓𝐔
𝐏 and 𝐓𝐋

𝐏 – follow (11)

6. Set passes between Bd and 𝝑

7. Resolve loops, relationships, large traversals

8. Set tokens and fix input and output places

9. Build HCAPN

10. While (Observation==True)

11. Calculate Isolation as in (14)

12. Calculate Non-reachability as in (15)

13. Calculate Dependability as in (16)

14. Normalize values of (14) ~ (16) and store H (.)

15. Invoke Fuzzy (H (.))

16. Obtain G and return

17. End While

18. End While

B. AUTOMATIC TRANSFORMATION OF A BEHAVIOR
RULE SET TO A STATE MACHINE FOR FEEDBACK-
BASED MISBEHAVIOR DETECTION

We transform behavior rules to a C-language state

machine labeled with safe and unsafe states, against which

good (normal) and bad (malicious) behaviors of the IoT

device can be statistically characterized. Suppose that there

are n ABIs derived from the corresponding n behavior

rules. Then all n ABIs (derived from the behavior rules) are

combined in disjunctive normal form (DNF) into a Boolean

expression for misbehavior detection. This means that a

violation of any ABI Boolean variable (meaning taking a

value of 1) indicates a violation of the corresponding

behavior rule. The resulting state machine has a total of

2
n
states, out of which only one is a safe state (when all ABI

Boolean variables take the value of 0).

However, environmental and operational conditions

may change rapidly causing output variations even if an IoT

device follows the behavior rules. Thus, it is necessary to

model such variations for effective misbehavior detection.

The reference point is the state machine generated (a DNF

Boolean expression) as describe above which resembles an

expert’s observations. This helps track the feedback for

each ABI (and hence each behavior rule) and understand

the limits up to which the variation in the ABI can be

treated as normal behavior. To model this, 𝜀𝑋
𝐹 is used as an

accumulated feedback variable, formulated as follows:

F-𝐷𝑁𝐹 = 𝐷𝑁𝐹 → 𝜀𝑋
𝐹 = 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(Misbehavior Range (“ABI”))(20)

where F-DNF is the feedback on DNF for an ABI, and the

misbehavior range is marked as the feedback value. The

feedback can be treated as a residual for determining new

variables in the tracked behavior rule.

Let 𝑄 𝐵𝑑 , 𝑈, 𝑌 be the bipartite graph between the

behavior rules and the set U containing all the readable

variables (ϑ), such that |𝐵𝑑 | ≤ 𝑈 . The set 𝑌 contains the

feedback variable (𝜀𝑋
𝐹) and also forms the edge between the

behavior rules and the variables. It is accounted for defining

the F-DNF as well as for determining the misbehavior of an

IoT device subject to its adjustment to fit into the network

requirements. The graph operates for each connection

between the rules and the variables and accumulates 𝜀𝑋
𝐹to

check any malicious activity. To form an efficient

feedback-based misbehavior detector, the reference points

are required, which should not cause any excessive

computation and must not keep on iterating for identifying

changes in the same variable. A solution to such a problem

can be sought from the amalgamation of bipartite graphs

and the Barycentric coordinate theory for determining the

center of mass. Both mechanisms are adopted in our

proposed misbehavior detection method to help identify the

misbehavior activity with feedback. A visualization of this

process can be observed in Fig. 7.

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 12

Fig.7: Illustration of the Bipartite-based center of mass mechanism for misbehavior detection.

Based on this misbehavior detection method, the

Barycentric coordinate for the center of mass for the

misbehavior tracking for an IoT device in a CPS can be

given as:

𝑅𝑅,𝑀
(𝐶)

=
1

 𝑤𝑖
|𝐵𝑑 |

𝑖=1

 𝑤𝑗 . 𝑝𝑗
|𝐵𝑑 |
𝑗=1 , 𝑤 ∈ 𝑊𝑑 (21)

where

𝑝𝑗 =
 𝛾𝑚 .𝑉𝑎𝑙 (𝜗)𝑚

𝜗𝑗
𝑚 =1

 𝛾𝑘

𝜗 𝑗
𝑘=1

 (22)

Similar values are observed for expert’s observations and

marked as 𝑅𝐸,𝑀
(𝐶)

.The feedback for observable behavior rules

and the difference in the value of Barycentric coordinates

for misbehavior detection can be calculated as:

𝜀𝑋
𝐹 = (𝑤𝑋 . 𝑝𝑋)𝑒𝑥𝑝𝑒𝑟𝑡 − (𝑤𝑋 . 𝑝𝑋)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (23)

and

∆𝑅𝑋
𝐹 = 𝑅𝐸,𝑀

(𝐶)
− 𝑅𝑅,𝑀

(𝐶)
,∆𝑅𝑋

𝐹 ≥ 0

 (24)

where 𝑝𝑋 is derived from (22)for x. Evaluating these, the

misbehavior can be marked as:

𝑀𝑏 =
1, ∆𝑅𝑋

𝐹 ≥ ∆𝑇𝐻
0, 𝑂𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 (25)

where ∆𝑇𝐻 marks the observational thresholds for all the

behavior rules. It can be fixed by an expert or can be fixed

as a value above which more than y% of behavior rules

disobeys the principle of accuracy. Once 𝑀𝑏 attains a value

of 1, it is certain that there is a high probability of

misbehavior, but the variables primarily causing this

abnormality are still unclear and may affect the other

behavior rules, which are dependent on it. To quantify,

select a subset of behavior rules for which:

𝜀𝑋
𝐹 ≥

1

 𝐵𝑑
 𝑤𝑗 . 𝑝𝑗 − 𝑤. 𝑝

2

 𝐵𝑑

𝑗=1
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

−
1

 𝐵𝑑
 𝑤𝑗 . 𝑝𝑗 − 𝑤. 𝑝

2

 𝐵𝑑

𝑗=1
𝑒𝑥𝑝𝑒𝑟𝑡

 (28)

and parse each behavior rule by following the importance

of its variables (𝛾), such that, for each behavior rule, the

alterations in the ith variable can be calculated trivially as

∆𝜗𝑖 = 𝑉𝑎𝑙(𝜗𝑖)𝑒𝑥𝑝𝑒𝑟𝑡 − 𝑉𝑎𝑙 𝜗𝑖 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 . For a decision on

adjustments, a local Barycentric coordinate observed by an

expert can be evaluated as:

𝐿𝑋,𝑅,𝑀
(𝐶)

=
1

𝑊𝑑,𝑋
 𝑊𝑑,𝑋 . 𝑉𝑎𝑙(𝜗𝑗)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

|𝜗𝑋 |
𝑗=1 (29)

 and

𝐿𝑋,𝐸,𝑀
(𝐶)

=
1

𝑊𝑑,𝑋
 𝑊𝑑,𝑋 . 𝑉𝑎𝑙(𝜗𝑗)𝑒𝑥𝑝𝑒𝑟𝑡

|𝜗𝑋 |
𝑗=1 (30)

Based on these, the adjustments can be evaluated as:

∆𝐿𝐴
(𝐶)

= 𝐿𝑋,𝑅,𝑀
(𝐶)

− 𝐿𝑋,𝐸,𝑀
(𝐶)

=
(≈)0, 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡; 𝑐𝑕𝑒𝑐𝑘 𝑜𝑡𝑕𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑁𝑜 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑠
 . (31)

The above formulation checks if a behavior rule’s overall

coordinates remain the same or not. If these are the same,

the device is not misbehaving but merely performing

certain adjustments to suit dynamically changing

environmental or operational conditions; otherwise, it is

treated as misbehaving which requires immediate actions.

The detailed steps of Feedback-based mechanism can be

followed in Algorithm 3.

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 13

ALGORITHM 3: Feedback-based misbehavior detection

Input: Bd, Wd,, Dd, 𝑸 𝑩𝒅, 𝑼, 𝒀 , 𝜸, ∆𝑻𝑯

Output: 𝜺𝑿
𝑭, ∆𝑳𝑨

(𝑪)
, 𝑴𝒃

1. While (Bd!=NULL)

2. Set experts inputs and check variables in traced B

3. Define local weight w

4. Define probability (p) using (22)

5. Perform steps 2, 3, and 4 for experts observations

6. Calculate Barycentric coordinates (𝑹𝑹,𝑴
(𝑪)

and 𝑹𝑬,𝑴
(𝑪)

) using (21)

7. Calculate 𝜺𝑿
𝑭 using (23) based on expert and observed values

8. Calculate difference in Barycentric coordinates ∆𝑹𝑿
𝑭using (24)

9. If (∆𝑹𝑿
𝑭 ≥ ∆𝑻𝑯)

10. 𝑴𝒃=1

11. Diff=
𝟏

 𝑩𝒅
 𝒘𝒋. 𝒑𝒋 − 𝒘. 𝒑

𝟐 𝑩𝒅

𝒋=𝟏
𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅

−
𝟏

 𝑩𝒅
 𝒘𝒋. 𝒑𝒋 − 𝒘. 𝒑

𝟐 𝑩𝒅

𝒋=𝟏
𝒆𝒙𝒑𝒆𝒓𝒕

12. If (𝜺𝑿
𝑭 ≥ 𝐃𝐢𝐟𝐟)

13. Quantification= true

14. ∆𝝑𝒊 = 𝑽𝒂𝒍(𝝑𝒊)𝒆𝒙𝒑𝒆𝒓𝒕 − 𝑽𝒂𝒍 𝝑𝒊 𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅

15. Calculate 𝑳𝑿,𝑹,𝑴
(𝑪)

 using (29)

16. Calculate 𝑳𝑿,𝑬,𝑴
(𝑪)

 using (30)

17. If(∆𝑳𝑨
(𝑪)

(= 𝑳𝑿,𝑹,𝑴
(𝑪)

− 𝑳𝑿,𝑬,𝑴
(𝑪)

)==0)

18. Device is adjusting, check other variables

19. Else

20. No adjustments, mark misbehavior

21. End If

22. Else

23. Quantifications = false

24. Exit(-1)

25. End If

26. Else

27. 𝑴𝒃=0

28. Exit(-1)

29. End If

30. End While

For observations: Vary 𝑹𝑹,𝑴
 𝑪

 and 𝑹𝑬,𝑴
 𝑪

 as per the behavior rules, p, 𝜸

and ∆𝑻𝑯

ALGORITHM 4: Lightweight statistical analysis

Input: T, ρ, Bd, Wd,, Dd, steps tn, 𝜸

Output: 𝜽, 𝝎𝒈,𝝃(𝝎𝒈),𝝎𝒈
(𝑶)

, 𝝃 𝝎𝒈
 𝑶

 , 𝑭𝑷, 𝑭𝑵

1. While (t<= T)

2. Calculate compliance constant ρ for given instance

3. Calculate ∆𝑳𝑨
(𝑪)

 using (29)~(31)

4. Calculate ∆𝑹𝑿
𝑭 using (24) and 𝑹𝑹,𝑴

 𝑪
 using (21)

5. Use 𝜺𝑿
𝑭 from (28) and Algorithm 3

6. Set 𝑻 𝜽

7. Calculate 𝜽 using (32)

8. Perform predictive evaluations for 𝜽𝒑using (35)

9. Calculate 𝝎𝒈 using (37)

10. Calculate 𝝃(𝝎𝒈) using (38)

11. Calculate 𝝎𝒈
(𝑶)

 using (39)

12. Calculate 𝝃 𝝎𝒈
 𝑶

 using (40)

13. Calculate adjustments and record 𝛙

14. If (𝛙== traceable)

15. If(𝝃 𝝎𝒈
 𝑶

 ≥ 𝝃(𝝎𝒈) + 𝛙)

16. Record FP

17. Else if (𝝃 𝝎𝒈
 𝑶

 ≤ 𝝃(𝝎𝒈) − 𝛙)

18. Record FN

19. End If

20. Else

21. Mark as miss and continue

22. End If

23. t=t+100 // 10 steps in this case

24. End While

For observations: Vary ρ,𝑻 𝜽 , Shuffle rules to change 𝑹𝑹,𝑴
 𝑪

 and 𝑹𝑹,𝑴
 𝑪

C. LIGHTWEIGHT RUNTIME COLLECTION OF

COMPLIANCE DEGREE DATA AND STATISTICAL
ANALYSIS

Unlike anomaly detection which frequently requires

heavy resources to profile/learn anomaly patterns, our

behavior rule specification-based data collection process is

lightweight. By using the transformed state machine, we

only need to periodically monitor if a target IoT device is in

safe or unsafe states. The periodic evaluations are similar to

the recording of behavior rules with a periodicity B’. Now,

considering that the overall evaluations are bounded by

timestamps, t1, t2… tn, the compliance degree data is

denoted by θ, which has to be collected for each device for

a given duration. The compliance degree of data is driven

by the stiffness of the model and can be modeled using

Wannier function of weight and the adjustment values of

each device, such that:

𝜃 =
1

𝜌 𝑡𝑛

1

|𝐵𝑑 |

1

𝑓(𝑊,∆𝑅𝑋
𝐹 ,∆𝐿𝐴

 𝐶
)

|𝐵𝑑 | t1,t2… tn 𝜌t1,t2… tn (32)

where 𝜌 is the compliance constant, which is derived as a

function of 𝛾 for all the behavior rules aggregated for a

device under surveillance, such that 𝜌 =
1

|𝐵𝑑 |
 𝛾𝑖

|𝐵𝑑 |
𝑖=1 . The

function 𝑓(𝑊𝑑 , ∆𝑅𝑋
𝐹 , ∆𝐿𝐴

 𝐶
) derives its value from the

stiffness theory [39], such that:

𝑓 𝑊, ∆𝑅𝑋
𝐹 , ∆𝐿𝐴

 𝐶
 = 𝑓 ∆𝑅𝑋

𝐹 , ∆𝐿𝐴
 𝐶

 + 𝜑 . 𝑓 𝛼, 𝛽, 𝜑𝑈𝐸 . 𝑓 𝛼, 𝛽, 𝜀 (33)

which traces feedback and availability of residual changes

to:

𝑓 𝑊, ∆𝑅𝑋
𝐹 , ∆𝐿𝐴

 𝐶
 = 𝑓 ∆𝑅𝑋

𝐹 , ∆𝐿𝐴
 𝐶

 + 𝜑 . 𝑓 𝛼, 𝛽, 𝜀𝑋
𝐹 2 (34)

where 𝑓 𝛼, 𝛽, 𝜀𝑋
𝐹 2 is derived from (9), and

𝑓 ∆𝑅𝑋
𝐹 , ∆𝐿𝐴

 𝐶
 can be set as a product of 0 and 1 based on

their combinatorial outcome for a variation in Barycentric

coordinate and adjustments. The compliance degree data

can be predicted for a continuous interval as:

𝜃𝑝 =
1

𝜌 𝑡𝑛

1

|𝐵𝑑 |

1

𝑓 ∆𝑅𝑋
𝐹

,∆𝐿
𝐴

 𝐶
 +𝜑 .𝑓 𝛼,𝛽,𝜀𝑋

𝐹 𝑝

2 𝐵𝑑 𝜌𝑝(𝜌, 𝑡) 𝑑𝜌 (35)

where

𝑓 𝛼, 𝛽, 𝜀𝑋
𝐹 𝑝 =

1

 𝐵
 𝑒

−𝑗||αi,j−𝛽𝑖,𝑞||𝑛1 ,𝑛2

𝑗=1,𝑞=1 𝑒𝑗||αi,j−𝛽𝑖,𝑞||
. 𝜀𝑃,𝑋

𝐹 𝜀𝑋
𝐹 , 𝑡 𝑑𝜀𝑋

𝐹 (36)

The observed system model and compliance degree data

are evaluated using Weibull Distribution [41] as it is

difficult to predict the type of distribution of data from a set

of IoT devices in a CPS. Moreover, Wannier formulations

used in the weight calculations are true for pseudo-periodic

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 14

behavior rules, as a device may not behave in a similar

pattern throughout its operations. Furthermore, with

predictive evaluations, Weibull distribution can be more

specific and can take dimensions of any well-suited

statistical model. To keep the entire process light-weighted,

Weibull reliability is determined which operates over the

Weibull formation of the Wannier function-based

compliance degree data and also accounts for the false

positives and false negatives focusing on the misbehavior

detection of embedded IoT devices in a CPS. To model

this, 𝑊𝑑 , ∆𝑅𝑋
𝐹 , ∆𝐿𝐴

 𝐶
as the instance-based value of 𝜃 are

used for evaluating the cumulative reliability of the model

and to specify its capacity in identifying the misbehavior of

a device [41], such that:

𝜔𝑔 =
∆𝑅𝑋

𝐹

𝑇(𝜃)

t1+t2+⋯+ tn

𝑇(𝜃)

∆𝑅𝑋

𝐹−1
𝑒

−
t1+t2+⋯+ tn

𝑇(𝜃)

∆𝑅𝑋

𝐹

, 𝑇 𝜃 ≠ 0, ∆𝑅𝑋
𝐹 ≠ 0

 (37)

where 𝑇(𝜃) is the instance evaluating function which

records the steps for which all the metric values are

available based on the compliance degree of the data

collected for a device. Here, 𝜔𝑔 is the Weibull PDF, based

on which the reliability of the system can be modeled as

[41]:

𝜉(𝜔𝑔) = 𝑒
−

t1+t2+⋯+ tn

𝑇(𝜃)

∆𝑅𝑋
𝐹

 (38)

For actual observations, (37) and (38) are modeled for

Wannier function, such that:

𝜔𝑔
(𝑂)

=
𝑅𝑅,𝑀

(𝐶)

𝑇(𝑊𝑑)

t1+t2+⋯+ tn

𝑇(𝑊𝑑)

𝑅𝑅,𝑀
(𝐶)

−1

𝑒
−

t1+t2+⋯+ tn

𝑇(𝑊𝑑)

𝑅𝑅,𝑀

(𝐶)

, 𝑅𝑅,𝑀
(𝐶)

≠ 0, 𝑇(𝑊𝑑) ≠ 0

 (39)

and

𝜉 𝜔𝑔
 𝑂

 = 𝑒
−

t1+t2+⋯+ tn

𝑇 𝑊𝑑

𝑅𝑅,𝑀

 𝐶

 (40)

Formulations in (37) to (40) are only used when the system

shows a non-approximated value for ∆𝑅𝑋
𝐹 .Such a situation

leads to some false positives or negatives in misbehavior

detection of an IoT device. To understand this, a limiting

constant (±ψ) is derived, such that the false positives and

negatives are identified as:

𝑂𝑢𝑡𝑝𝑢𝑡 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃), 𝜉 𝜔𝑔

 𝑂
 ≥ 𝜉(𝜔𝑔) + ψ

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁), 𝜉 𝜔𝑔
 𝑂

 ≤ 𝜉(𝜔𝑔) − ψ
 . (41)

The steps for lightweight statistical analysis are provided in

Algorithm 4.

V. APPLYING BRIOT TO UAV CPS

In this section, the proposed BRIoT is applied to a UAV

embedded in a UAV-CPS as in BRUIDS [18], which is

used as a baseline model for performance comparison.

Step-by-step descriptions are given to explain the

application, including deriving the security requirements of

a UAV device given its operational profile as input,

deriving the threats that can violate the security

requirements, generate the behavior rules, verifying the

behavior rules are complete and cover all threats (with

respect to the security requirements), performing the

transformation from the behavior rules to a state machine

for misbehavior monitoring, collecting runtime compliance

degree data, conduct statistical analysis for misbehavior

detection, and assessing detection accuracy in comparison

with BRUIDS [18].

A. EXPERIMENTAL SETUP

We first describe the mandatory steps required to setup the

system to be driven by the proposed BRIoT model.

1) Generation of Behavior Rules and Attack
Behavior Indicators with Formal Verification

The first step is to specify the operational profile (or the

mission assignment) of a UAV in a UAV-CPS. It specifies

mission events according to the probabilities with which

they are expected to occur during the operational phase of

the UAV. Without loss of generality, a special type of UAV,

a military UAV [11], is considered with the following

combat mission operational profile during its lifetime:

Navigate to specified locations following specified

routes, perform correct data routing and IDS functions,

return correct and timely sensing data to the designated

ground station only, conserve energy, and upon

confirmation from an authority, launch a missile at a

specified battlefield location target and return to the

home airbase.

Given this operational profile as input, the security

requirements of this UAV can be automatically derived as

listed in Table 2 (please refer to Fig. 1 for the physical

components inside this UAV device).

Table 2: UAV Security Requirements.

ID Security Requirement

SR 1 The UAV must follow a specified route to reach

a specified location

SR 2 The UAV must perform correct data routing

functions

SR3 The UAV must perform correct IDS functions

when serving as a monitor node, i.e., providing

true recommendations

SR 4 The UAV must send correct and timely sensing

data to a specified ground station only

SR 5 The UAV must ready a missile when it is at the

specified battlefield location and upon an

authorized command to fire, must fire the missile

accurately

SR 6 The UAV must not be captured

SR 7 The UAV must consume energy only as needed

so as not to jeopardize the mission

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 15

With the system requirements defined, it is relatively

straightforward to identify the threats that will keep this

UAV from accomplishing its mission, as listed in Table 3.

Table 3: UAV Threats.

ID Threat

THREAT1 The UAV is not able to follow a specified

route

THREAT2 The UAV is not able to perform correct data

routing functions

THREAT3 The UAV is not able to perform correct IDS

functions, i.e., not able to provide true IDS

recommendations

THREAT 4 The UAV is not able to return correct sensing

data

THREAT 5 The UAV is not able to return timely sensing

data

THREAT 6 The UAV is not able to follow authorized

commands

THREAT 7 The UAV is not able to read a missile when it

is at the specified battlefield location

THREAT 8 The UAV is not able to fire a missile

accurately

THREAT 9 The UAV takes off/lands from/to an enemy

airbase

THREAT 10 The UAV sends data to sources other than

the specified ground station

THREAT 11 The UAV unnecessarily consumes energy,

making it unavailable for mission execution

Here it is noticeable that the threats do not make any

assumption of the attack types (known or unknown).

Threats 1 and 3-9 threaten integrity; threat 10 threatens the

confidentiality, and threats 2 and 11threaten availability.

One can assign a priority to a threat, thereby making one

threat more critical than another. For this UAV, one may

want to consider integrity > confidentiality > availability as

the priority order. Correspondingly one can assign a

behavior rule (to be described later) with a priority, thus

making a behavior rule more critical than another. This can

change the criticality associated with behavior rules and

affect the standard by which a node is considered

malicious.

Next, the behavior rules can be automatically derived

for this UAV. Table 4lists the behavior set without priority

order for simplicity. It also lists the security aspect

(integrity, confidentiality, or availability) associated with

each behavior rule. A behavior rule is typically derived

from a threat because a threat specifying a negative event

that can lead to an undesired outcome is just opposite to a

behavior rule specifying a good behavior or a good event

that can lead to the desired outcome. Consequently, it is

straightforward to map a threat to a behavior rule(for

example THREAT 1 in Table 3 leads to BR 1 in Table 4)

for a negative event that has a single cause or source.

However, a threat that is too generally specified (e.g.,

THREAT 11 in Table 3 about energy consumption) can

have more than one cause or source for the negative event

and can require several behavior rules to specify where

good behaviors are to be monitored. Out of the 11 threats in

Table 3, only THREAT 11 has more than one source or

cause for the negative event, so THREAT 11 maps to BR

11 – BR 13 in Table 4 specifying several sources where

excessive energy consumption occurs.

Table 4: UAV Behavior Rules

ID Behavior Rule Security Aspect

BR 1 Fly a specified route integrity

BR 2 forward data packets availability

BR 3 provide true recommendations integrity

BR 4 produce accurate sensing data integrity

BR 5 produce timely sensing data integrity

BR 6 accept only authorized commands integrity

BR 7 ready missile if at target integrity

BR 8 fire missile accurately integrity

BR 9 do not deploy landing gear if

outside home airbase

integrity

BR 10 send data only to designated

ground station

confidentiality

BR 11 do not send an exceptionally

higher number of packets than

necessary

availability

BR 12 use minimum thrust when loitering availability

BR 13 do not emit exceptionally higher

signal strength than necessary

availability

Table 5: UAV Attack Behavior Indicators in Conjunctive

Normal Form.
ID Attack Behavior Indicator Context

ABI 1 |Location–Planned Location | >distance C1

ABI 2 |Trusted Node NPR–Trusted Node NPS | >NPR-NPS C2

ABI 3 Trusted Node Audit  Monitor Node Audit C3

ABI 4 |(Trusted Node Data – Monitor Node Data)/Monitor

Node Data | >data

C4

ABI 5 |Time Received Trusted Node Data –Time Received

Monitor Node Data | >time

C5

ABI 6 (Action FIRE)  (Command = AUTHORIZED) C6

ABI 7 (Missile READY)  (Location = TARGET

LOCATION)

C7

ABI 8 (Action FIRE)  (Outcome SUCCESS) C8

ABI 9 (Gear = DEPLOYED) (Location HOME

AIRBASE)

C9

ABI 10 Report Site HOME GROUND STATION C10

ABI 11 |(Trusted Node NPS – Monitor Node NPS)/Monitor

Node NPS | >NPS

C11

ABI 12 (Thrust >MINIMUM THRUST) (Status =

LOITER)

C12

ABI 13 |Trusted Node RSSI– Monitor Node RSSI | >RSSI C13

Table 5 lists 13 one-to-one “attack behavior indicators”

(ABI 1 – ABI 13) in Conjunctive Normal Form (CNF),

each being expressed as a Boolean expression to be

evaluated true (1) or false (0), indicating whether the

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 16

corresponding behavior rule is violated or not. When a

Boolean expression is evaluated to true, the UAV is

detected as misbehaving against the corresponding behavior

rule. Here we note that each attack behavior indicator may

have several (internal) state variables. For example, ABI 1

in Table 5 has two state variables, namely, Location and

Planned Location.

The 1st attack behavior indicator (ABI 1 in Table 5) is

that this UAV deviates too much from its specified route at

any point in time. The CNF of the Boolean expression is

|Location–Planned Location | >distance. Here distance stands

for the maximum distance separation between the UAV’s

location and its planned location at the monitoring instant.

The 2nd attack behavior indicator (ABI 2) is that the

trusted node is not forwarding packets to neighbor nodes

whenever it should. The CNF is |Trusted Node NPR–

Trusted Node NPS | >NPR-NPS. Here NPR stands for the

number of packets received per time unit, NPS stands for

the number of packets sent per time unit, and NPR-NPS

stands for the maximum difference between this UAV’s

packet receiving rate and packet sending rate.

The 3rd attack behavior indicator (ABI 3) is that a

monitor UAV provides bad recommendations toward a

behaving trusted UAV (called bad-mouthing attacks),

or/and good recommendations toward a misbehaving

trusted UAV (called ballot-stuffing attacks). This is

detected by comparing recommendations provided by

multiple monitor UAVs and detecting discrepancies. The

CNF is Trusted Node Audit  Monitor Node Audit.

The 4th attack behavior indicator (ABI 4) is that a

trusted node’s embedded sensor reading differs from the

monitor node’s embedded sensor reading. The monitor

node is in the neighborhood of the trusted node, measuring

the same physical phenomenon. The CNF is|(Trusted Node

Data – Monitor Node Data)/Monitor Node Data | >data

where data is the maximum percentage difference between

the trusted node sensor reading and the monitor node sensor

reading.

The 5th attack behavior indicator (ABI 5) is that a

trusted node is not reporting its sensor reading timely,

therefore making the delayed sensing outcome practically

useless. The CNF is |Time Received Trusted Node Data –

Time Received Monitor Node Data | >time where time is the

maximum time difference between the trusted node sensor

reading time and the monitor node sensor reading time.

The 6th attack behavior indicator (ABI 6) is that a UAV

does not accept authorized commands to fire the missile.

The CNF is (ActionFIRE) 

(Command=AUTHORIZED).

The 7th attack behavior indicator (ABI 7) is that a UAV

could not ready its missile when it is at the specified target

location. The CNF is (Missile READY)  (Location =

TARGET LOCATION).

The 8th attack behavior indicator (ABI 8) is that a UAV

fires the missile in accurately. The CNF is (ActionFIRE)

 (OutcomeSUCCESS).

The 9th attack behavior indicator (ABI 9) is that a UAV

deploys landing gear when outside its home airbase. The

CNF is (Gear = DEPLOYED) (Location HOME

AIRBASE). This indicates that the UAV is likely to be

captured by the enemy.

The 10th attack behavior indicator (ABI 10) is that a

UAV sends sensing results to unauthorized parties (not to

the specified ground station). This indicator catches

attackers that intend to exfiltrate sending data. The CNF is

Report Site HOME GROUND STATION.

The 11th attack behavior indicator (ABI 11) is that a

UAV transmits an exceptionally high number of packets

sent (NPS) per second to consume energy. This UAV is

also suspicious of performing DoS or jamming attacks

when the NPS is too high [27]. The CNF is |(Trusted Node

NPS – Monitor Node NPS)/Monitor Node NPS |>NPS

where NPS is the maximum percentage difference between

the trusted node’s NPS and the monitor node’s NPS.

The 12th attack behavior indicator (ABI 12) is that a

loitering UAV uses more than the minimum thrust required

to maintain altitude. This indicator catches attackers that

intend to decrease a UAV’s endurance by wasting its

energy; these attackers attach to the UAV thrust module.

The CNF is (Thrust >MINIMUM THRUST)  (Status =

LOITER).The 13th attack behavior indicator (ABI 13) is

that a UAV emits exceptionally high received signal

strength intensity (RSSI) to consume energy. This UAV is

also a suspect in spoofing GPS to seize control of another

neighbor UAV [27]. The CNF is |Trusted Node RSSI–

Monitor Node RSSI | >RSSI where RSSI is the maximum

RSSI difference between the trusted node’s RSSI and the

monitor node’s RSSI.

2) Formal Verification of Behavior Rules
We conduct automatic model checking and formal

verification of the behavior rules generated (and the

corresponding ABIs generated) by verifying that the

behavior rules are correct and can cover all the threats (or

satisfy the security requirements). We follow the

description in Section IV to express the 13 ABIs (in Table

5) and the security requirements (in Table 2) in a 2-layer

Fuzzy-HCAPN model, such that “any violation of the

security requirements implies violations of the behavior

rules” is expressed as a non-conclusive expression proven

to be true in HCAPN.

Fig. 8: Fuzzy rule observations for ABI1.

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 17

More specifically, using the 13 ABIs (in Table 5) and

the security requirements (in Table 2) a monitor UAV

initiates the verification by creating V=Fuzzy(B, D, W)

based on the variables defined in each behavior rule by

using conditions (1) ~ (9). We take ABI 1 as our running

example to illustrate the process. ABI1 has “location” as

the main variable which also appears in ABI 7 and ABI 9

for both the user and the expert. Now, since 𝑅𝑈𝐸𝑘 =
1based on (2) ~ (3) as both the incoming UAV and the

monitor UAV share the same set of behavior rules in a

mission, D will attain a value of 0.33 based on (4). With W

being defined as a function of available residual, W is

varied between 0 and 1, for which the fuzzy rule

observations for ABI 1 can be seen in Fig. 8.

This figure helps to understand the impact of each

behavior rule and tells whether each behavior rule is

verifiable or not based on the values set for V. Furthermore,

V=Fuzzy (B, D, W) can be tracked for individual behavior

rules considering the occurrences of each variable in it as

well as a collective model by considering variables in all

the available behavior rules. However, in such a case,

micro-management is not possible and additional overheads

are accumulated for massive computations.

Note that the model will be operated in localized, non-

localized, or non-available forms depending on the

presence of an expert’s information. Once fixed, a HCAPN

model based on (10) ~ (18), as shown in Fig. 9, can be built

using all 13 behavior rules available from the expert. The

upper layer is formed by using the variables from the

individual behavior rules. To keep it simple, we only show

the variables of ABI 1. For ABI 1, there are two variables,

namely, location and planned locations. Thus, two places,

V1 and V2, are shown in the upper layer. The relations

between the places in the lower layer are governed by the

principle of having common variables with each other. The

passes are marked by checking the dependency of behavior

rules. The transitions are fired if the actual data for the

variables are available.

Fig. 9: An illustration of the HCAPN model using 13 behavior rules

and ABI 1 as the verifiable content.

Next, by using fuzzy observations (Fig. 6) and (19), a

decision is taken to determine if ABI 1 with a defined set of

variables is correct or not. To understand this, put the fuzzy

output V for ABI 1 to Fuzzy(H(.)) along with the range of

isolation, dependability, and non-reachability (as discussed

in (13)~(18)) of ABI 1 by using Fig 9. For ABI 1, isolation

and non-reachability have the same value (i.e., 𝑅𝐵 =

 1 −
1

 𝐴2′

 𝐴2

2

−1

) as the second term of non-usability passes is

1 since the no-extra pass is used and no-pass remains

unused for ABI 1. Now, by putting values of the total

number of places, i.e., 13, and the total number of unused

places, i.e., 4 based on (13) and (14), a value of 2 for

isolation and non-reachability is obtained. Upon

normalizing on the maximum values, i.e., 7 and 8 attained

by using the maximum value of unused places=13-1=12

and the minimum value, i.e., 1, isolation and non-

reachability are given the values of 0.16 or 0.14. For

dependability, (16) and (17) yield a dependability value of

1 since no additional variables are included and the average

number of variables in ABI 1 for the user’s model and the

expert’s model is the same, we set 𝜗 at 2 as two variables

are required for ABI 1 (thresholds can be ignored).

(A)

(B)

Fig. 10: Observed values of G alongside Fuzzy(H()) for ABI 1 at two
different values of isolation and non-reachability (A: isolation and non-

reachability=0.14; and B: isolation and non-reachability=0.16).

Now, placing these values in Fig. 6, it can be

determined that ABI 1 is greater than the range defined for

correctness. As illustrated in Fig. 10, the observed output

from Fuzzy(H()) is 0.949~0.951 based on fuzzy inference

rules. By (19) we obtain G= 1, meaning that ABI 1and its

two variables are verifiably correct.

3) State Machine Generation and Feedback-based
DNF for UAV Misbehavior Detection

For the UAV state machine, there are 13 Boolean

variables (each taking the value of either 1 or 0) in the state

representation, resulting in the total number of states being

2
13

= 8192, out of which only one is a safe state (when all 13

Boolean variables are false or take the value of 0) and all

other 8191 states are unsafe states. This acts as the expert’s

model in the identification of UAV misbehavior. Here, it is

to be noted that there are many variables in these 13 attack

behavior indicator expressions, including Location, Planned

Location, Trusted Node NPR, Trusted Node NPS, Trusted

Node Audit, Monitor Node Audit, Trusted Node Data,

Monitor Data, Time Received Trusted Node Data, Time

Received Monitor Node Data, Action, Command, Missile,

Outcome, Gear, Report Site, Monitor Node NPS, Thrust,

Status, Trusted Node RSSI, and Monitor Node RSSI.

However, these variables are internal variables maintained

by a monitor UAV who updates these internal variable

values at monitoring intervals to determine the true/false (or

1/0) of the 13 Boolean variables for a trusted UAV that is

being monitored on.

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 18

The state machine generated is equivalent to connecting

the 13ABIs in Table 5 in disjunctive normal form (DNF). In

other words, it is a Boolean expression of the 13 ABIs

connected in DNF, representing the expert’s opinion on

UAV misbehavior. To account for output variations which

may be caused by rapid environmental and operational

changes and UAV dynamic adjustments in response to

environmental changes, we apply feedback-based DNF as

discussed in Section IV.A.3, such that:

F-𝐷𝑁𝐹 = 𝐷𝑁𝐹 → 𝜀𝑋

𝐹 = 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(Misbehavior Range (“ABI: X”)),

where DNF is observable as: (|Location–Planned

Location | >distance(|Trusted Node NPR–Trusted Node

NPS | >NPR-NPS)  (Trusted Node Audit  Monitor Audit)

(|(Trusted Node Data - Monitor Node Data)/Monitor Node

Data| >data) (|Time Received Trusted Node Data –Time

Received Monitor Node Data| >time)(ActionFIRE) 

(Command = AUTHORIZED)((Missile READY) 

(Location = TARGET LOCATION))((Action FIRE) 

(OutcomeSUCCESS))((Gear = DEPLOYED) 

(Location HOME AIRBASE))  (Report Site HOME

GROUND STATION) (|(Trusted Node NPS – Monitor

Node NPS)/Monitor Node NPS | >NPS)  ((Thrust

>MINIMUM THRUST)  (Status = LOITER))(|Trusted

Node RSSI– Monitor Node RSSI | >RSSIand 𝜀𝑋
𝐹

associates the correction values for the Xth ABI, which

helps the system detect misbehavior that accounts for

output variations due to environmental and operational

changes and adjustments in the activity of a UAV during its

mission.

The system performs misbehavior detection as

discussed in Section IV.B by following conditions in (20) ~

(41). The parameter values used in (20) ~ (41) are listed and

explained in Table 6 in the next section.

Table 6: UAV-CPS Observations from the given 13 behavior rules

(Tables4 – 5).

Parameter Meaning Value / derived

using

Type

B Behavior set 13 rules (Table 5) Input

V Verification Function Fuzzy(B, D, W) Output

D Degree of dependence (4) Output

W Statistical Weightage 0 ~ 1 (normalized) Input

𝑟𝑈𝐸 Correlation coefficient
between experts and

user behavior rules

(1) Output

𝜗 Total number of

variables from B

32 (Table 5) Input

𝛼 Number of

occurrences of

variables in the user’s
behavior rules

2~5±5 (Table 5) Input

𝛽 Number of

occurrences of
variables in the

expert’s behavior

rules

1~3 (Table 5) Input

𝐷𝑈,𝑘 Dependence for kth
behavior rule in the

(2) Output

user’s file

𝐷𝐸,𝑘 Dependence of kth

behavior rule in the

expert’s file

(3) Output

𝑅𝑈𝐸,𝑘 Ratio of dependence
for a given behavior

rule in user and expert

file

 (4) Output

𝛾𝑈 Coefficient indicating
importance of a

behavior rule for the

user

0.1~0.5 Input

𝛾𝐸 Coefficient indicating

importance of a

behavior rule for the
Expert

0.1~0.5 Input

𝛼𝑈 mean of occurrences

for 𝜗𝑈variables in all
behavior rules

Table 5 Input

𝜑 Memory coefficient (5) Output

𝜑𝑈𝐸,𝑖 Relative memory

coefficient

(6) Output

𝜀 Residuals 0.1~1 [induced] Input

Bd, Wd, Dd Derived sets of B, W,

and D for the
evaluated behavior

rules

B, with V=True

(Fig. 4)

Output

𝑁𝑈
𝑃 Set of places in the

upper layer of

HCAPN

𝜗 Input

𝑁𝐿
𝑃 Set of places in the

lower layer of
HCAPN

Bd Input

K Number of sign

changes between the
slots

(12) Output

𝑆𝑡
 𝐶

and 𝑄𝑡
 𝐶

 Functions tracking the

change in signs for the

recorded variables and

behavior rules,

respectively

(12) Output

𝑆𝐼
<𝐿𝑎𝑦𝑒𝑟 >

 Layer-wise isolation
in HCAPN

(13) Output

𝑆𝐼
<𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒 > Collective isolation in

HCAPN

(14) Output

𝑅𝐵 Non-reachability in
HCAPN

(15) Output

𝐸𝐷
𝑃 Dependability in

HCAPN

(16) Output

 𝐵𝑑,𝑥 Number of behavior
rules with new

variables

Table 5 Input

𝜗 Average number of
variables in each

behavior rule

Table 5 Input

𝜗𝑥 the number of new

variables

1~5 [induced] Input

 𝜗𝑥
 Average number of

variables in the new

behavior rules

5 [induced] Input

Fuzzy (H (.)) Value of G Fig. 6 Output

𝜀𝑋
𝐹 Accumulated

feedback variable

(20) Output

𝑄 𝐵𝑑 , 𝑈, 𝑌 Bipartite graph

between the behavior
rules

(13, count(𝜗),

count(𝜀𝑋
𝐹))

Input

𝑅𝐸,𝑀
(𝐶)

 Barycentric

coordinate for center
of mass for expert’s

observations

(21) Output

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 19

𝑅𝑅,𝑀
(𝐶)

 Barycentric
coordinate for center

of mass for a given

device

(21) Output

∆𝑅𝑋
𝐹 Difference in the

Barycentric

Coordinates

(24) Output

𝑀𝑏 Misbehavior (25) Output

∆𝑇𝐻 Observational

thresholds for all the
behavior rules.

10 % ~ 50 % Input

𝐿𝑋,𝑅,𝑀
(𝐶)

 , 𝐿𝑋,𝐸,𝑀
(𝐶)

 Local Barycentric

coordinates

(29) and (30) Output

∆𝐿𝐴
(𝐶)

 Adjustments in the
local Barycentric

Coordinates

(31) Output

t1, t2… tn Timestamps 100 s each Input

𝜃 Compliance degree (32) Output

𝜌 Compliance constant 1

|𝐵𝑑 |
 𝛾𝑖

|𝐵𝑑 |
𝑖=1 ,

𝛾𝑈 𝑜𝑟 𝛾𝐸

Input

𝜃𝑝 Predicted compliance

degree

(35) Output

𝜔𝑔 Weibull PDF (37) Output

𝜉(𝜔𝑔) System’s reliability (38) Output

𝑇(𝜃) Instance evaluating

function

= T Step interval

10

Input

𝜔𝑔
(𝑂)

 Observed Weibull
PDF

(39) Output

𝜉 𝜔𝑔
 𝑂

 Observed System’s

reliability

(40) Output

±ψ Limiting constant (41) [based on
adjustments]

Output

T Total time with step

10

1000s Input

B. EVALUATION

The proposed approach is evaluated against a simulated

UAV-CPS by MATLAB
TM

operating under randomized

scenarios created by different sets of model parameter

values as listed in Table 6.The system comprises good and

bad UAVs in accordance with the true input from an expert.

An expert has a true account of all the 13 behavior rules in

the behavior rule set B listed in Table 4 (correspondingly

the 13 ABIs in Table 5) and each incoming UAV is

evaluated against it. The details of the model parameters

and their values used in evaluation are listed in Table 6.

The values in this table are obtained by following the

formulations of the 13 ABIs in Table 5 as discussed in

Section IV.A. For example, ABI 1 is marked with

“location” and “planned location,” meaning that in this

formulation, ABI 1 operates with these two variables.

Furthermore, the variable “location” appears three times in

ABI 1, ABI 7 and ABI 9, so its 𝛽 value is 3. On the other

hand, the variable “planned location” appears only once in

ABI 1, so its 𝛽 value is 1. Similarly, other variables in other

behavior rules are obtained to generate the experiment

setup in Table 6.

A distinct set of parameter values as listed in Table 6

defines a distinct scenario to the model and the system is

tracked for misbehavior amongst UAVs. To accurately

trace false positives, false negatives, and true positives, a

single UAV is selected in the simulation with a run time of

1000s with 10 evaluation instances of 100s each. It means

that the UAV evaluation is conducted afresh in every 100s.

In each evaluation, a fresh scenario is being tested with the

value of 𝛼being varied by ±5 to check if the system can

track its activity and mark the suspicious activity as

misbehavior. Furthermore, in each evaluation, other

parameters also change their values (can be observed in

graphs) to test the sensitivity of the performance with

respect to these changes. The variation in these values helps

us simulate certain bad behavior UAVs (with incorrect

behavior rules), which allows accounting for false

negatives, false positives and true positives using standard

formulations [18]. The range of compliance degree is

modeled around compliance constant𝜌, which attains its

values from 𝛾 as presented in (32). Note that this paper

does not consider the UAVs’ communication aspect and the

issues related to latency, overheads and real-scenario noise

are to be addressed in future work.

The initial observations help to understand the

dependence of the behavior rules (D), which is verified by

deriving the correlation coefficient in (1). D considers the

importance of behavior rules as the key in deciding whether

it is relevant to decide the misbehavior of a device based on

a particular behavior rule. This also helps to track the

behavior profiling of the entire model as well as its

applicability to a particular scenario. To understand the

impact of D on the behavior rules in Table 4, Fig.11shows

that the variation in the importance of a variable in the

observed rule causes a variation in the dependence value

and it increases with it. Predominately, this graph shows

that it is the expert's profiling which matters and the user's

derived rules (whether generated manually or

automatically) are affected accordingly. This value of D is

crucial in forming the fuzzy set which also helps in the

formal verification of the behavior rules.

Next, the evaluations are conducted to understand the

impact of weight on the derived system as shown in Figs.

12, 13 and 14. These results help to understand the impact

of W through Wannier derivations in (5)-(9). These results

are affected by the residuals and follow different trends on

the identification of errors with a given set of rules. These

results suggest that if the residuals are localized and the

system is aware of them, the possibilities of identification

of errors (misbehavior) increases with an increase in the

residual. Furthermore, with more localized residuals, the

system is able to take a far more appropriate decision in

marking a particular rule form is behavior detection (Fig.

13). In case the residuals are non-localized, the system's

performance degrades as there are high possibilities of the

system being unable to mark certain rules form is behavior

detection (Fig. 14). However, this scenario can return in

favor if the residuals follow a particular trend, as shown in

Fig. 14, because the system can perform better prediction as

expressed in the statistical modeling in (35) and (36).

All these observations impact the proposed center of

mass based misbehavior detection as shown in Fig. 15. This

figure shows the comparison of 𝑅𝑅,𝑀
(𝐶)

vs. probability derived

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 20

over behavior rules with a variation in the types of residuals

through Wannier function for the accurate identification of

misbehavior based on the given behavior rules. These

results comply with the residuals' state and follow the trend

as per the system observation in localization. Furthermore,

this result can be used to check the deviation of the system

from the present state and generate feedback. Such a

solution can be helpful in making devices learn about the

accurate state of operation when deployed in a particular

scenario.

Fig. 11: Dependence vs. the importance of user variables (𝛾𝑈) with a

variation in the importance of experts variable (𝛾𝐸) for the given behavior

rules in Tables 4 and 5.

Fig. 12: Possibilities of identification of errors with a difference in residual

localization through Wannier functions.

Fig. 13: Possibilities of identification of errors with a difference in

localized residuals through Wannier functions.

Fig. 14: Possibilities of identification of errors with difference in non-

localized residuals through Wannier functions.

Fig. 15:𝑅𝑅,𝑀

(𝐶)
 vs probability derived over behavior rules with a variation in

the types of residuals through Wannier function for the accurate
identification of misbehavior based on the given behavior rules.

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 21

The unavailable residuals are generally operated for the

systems with no feedback from the experts and show a less

deviation for Barycentric values as shown in Fig. 15.

However, for localized residuals, accurate readings are

available and the deviation is in control showing the true

nature of the system. For the non-localized scenario, the

system becomes too pessimist and it takes a large value and

marks major of the rules as a possible non-follower with the

expert's policies. Thus, it becomes extremely important to

evaluate the system for all the three conditions to accurately

identify misbehavior amongst the devices. Further, these

results suggest that with an increase in the value of

probabilistic weights, the systems deviation increases with

it; and at a high value, large feedback is generated which

marks the system as misbehavior under all circumstances.

Thus, control overweight is also additionally required to

accurately implant the proposed model. Numerically, the

misidentification of residuals can lead up to 75% error in

the readings, whereas accurate generations can immediately

lower the error readings by 50%, as shown in Fig.15.

Fig. 16: Compliance degree data variation for the observed instances for

given localized and non-localized residuals with a variation of compliance

constant observed for the derived importance of user variables and the

expert variables.

Fig. 17: Misbehavior detection distribution vs. variation in the number of

instances for the derived compliance degree data for localized, non-
localized and unavailable.

Fig. 18: System's reliability vs. variation in the value of residuals at the

observed Barycentric coordinates for the center of mass for the

misbehavior tracking in the defined UAV model.

The compliance degree data collection is a key step

behind the evaluation of the system towards accuracy and

reliability. This model is generated to overcome the issues

of the linear approach used by most existing work, which

limits their applicability to complex systems. The

compliance degree data (θ) varies as per the instance and

better readings for each instance generate better compliance

data as shown in Fig. 16. These results suggest that the

scenario with better feedback and better residuals provide

sufficiently detailed data, which helps to provide better

evaluations for the given system. The localized scenario

offers 11.2% better compliance value than the non-

localized scenario, thus offering a better understanding of

the system and more accurately tracking the behavior.

Irrespective of these, the proposed BRIoT model can be

applied to any scenario with adjustments to additional

metrics, such as compliance constants and importance

value. These observations can be seen in Figs. 17and 18,

which complement each other and show that in the case of

non-localized residuals, the system may show a variable

distribution over the compliance data and then gradually

decreases, thus lowering the performance of the entire

model. In contrast to this, the localized model operates with

a much accurate reading and keeps on increasing with the

detailed availability of the compliance data. Additionally,

the exact observation can be marked as reliability in

tracking the misbehavior, which is shown in Fig.18.

Accordingly, the localized and completely available system

shows improved performance compared with a system with

partial observations. This variation lies between 8.10 % and

43.75 %, which decreases as the deviation of the system

from the given (expert's value) Barycentric coordinate

increases. The reliability of the model can be controlled

with better compliance degree and accurate identification of

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 22

compliance constant which is affected by the importance

value of each variable in the observed as well as available

behavior rule. All these evaluations help to understand the

range and limit up to which the proposed BRIoT can be

successfully applied to check whether the generated

behavior rules are correct or not. Furthermore, these results

demonstrate that the proposed BRIoT can accurately mark

misbehavior amongst embedded IoT devices based on the

derived rules.

C.COMPARATIVE ANALYSIS

The proposed BRIoT approach is compared with

BRUIDS [18], which is a well-versed and a competitive

solution in the detection of UAV misbehavior. The

statistical model in BRUIDS considers the compliance

degree as a random variable following Beta distribution

such that a value of zero indicates zero compliance and a

value of one indicates total compliance. It collects a

device’s compliance degree periodically based on the

proportion of time the device stays in a safe state, but it

does not track which state the device is in over time. Once

it parameterizes the Beta distribution using the compliance

degree data collected, it sets a minimum compliance

threshold below which the node is identified as malicious;

otherwise the node is considered good. BRUIDS could fail

when the number of states is large. Also, there is no support

for feedback to allow for output variations which may cause

misdetection of misbehavior. Further, BRUIDS is only

theoretically verified with pre-generated state data. We

compare the performance of BRIoT against BRUIDS using

the exact statistical model used by BRUIDS. The major

difference between the two is the model of statistical

evaluation. The proposed approach with the use of

compliance constant (derived over the importance of each

variable (𝛾)) offers better observations through Weibull-

evaluations. Additionally, the details of variables in the

given rules are kept the same for both the models for a fair

comparison.

Table 7: Performance comparison of BRIoT with BRUIDS for

misbehavior detection of UAVs.

Parameters BRUIDS
BRIoT

(Localized

residuals)

BRIoT

(Non-

localized
residuals)

False

Negative Rate
AVG: 0.229 AVG: 0.137 AVG: 0.022

False Positive

Rate
AVG: 0.059 AVG: 0.045 AVG: 0.040

True Positive

Rate
AVG: 0.771 AVG: 0.863 AVG: 0.978

Compliance
Degree (In-

depth)

RANGE:

0.1~0.9

RANGE:

0.008~0.080

RANGE:

0.008~0.063

Table 7 compares BRIoT (with localized residuals or

non-localized residuals) with BRUIDS in false negative

rate, false positive rate, true position rate, and range of

compliance degree. The core observation of BRIoT is in its

high accuracy in dealing with compliance degree data,

driven by the compliance coefficients and the importance of

the variables in the behavior rules. In contrast, BRUIDS

focuses on collecting instances of compliance degree,

driven by a time model without tracking output values and

may cause high false positives and high false negatives. For

BRUIDS, the compliance data is observed for 10instances

ranging between 0.1 and 0.9, whereas for BRIoT, the range

is much narrower and varies slightly for localized residual-

based and non-localized residual-based evaluations. The

results show that our proposed BRIoT model with localized

residuals (with non-localized residuals) improves the false

negative rate or true positive rate by an average of 9.2%

(20.7% respectively) and false positive rate by an average

of 1.4% (1.9% respectively) in comparison with BRUIDS

over 10 instances.

Fig. 19: Comparison of false negative rate of the proposed BRIoT

with the existing BRUIDS at a variation on the instances and the

available values for the center of masses for the given model.

Fig. 20: Comparison of true positive rate of the proposed BRIoT

with the existing BRUIDS at a variation on the instances and the

available values for the center of masses for the given model along

with the compliance degree data.

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 23

Figs. 19 and 20 compare our proposed BRIoT model

with the existing BRUIDS model for the UAV-CPS in false

negative probability and the true positive probability,

respectively. These results demonstrate the effectiveness of

our proposed BRIoT model in verifying the correctness of

the behavior rules and achieving better convergence than

BRUIDS for identifying true misbehavior amongst UAV

devices in the UAV-CPS. As more instances are observed,

both BRIoT and BRUIDS perform comparably. This refers

to the situation when ∆𝑅𝑋
𝐹(see (24)) becomes too large

showing a major difference from the values of Barycentric

coordinates as per the center of mass defined in (21)-(24). It

means that at a huge gap between the observational and

attained feedback, the performance of the system degrades

yielding almost similar false negatives for all the

approaches. The initial verification of behavior rules helps

control the feedback. in Fig. 19 and Fig. 20, the

performance of both the models is comparable only after

the 9th iteration where feedback has a minimum role to

play. Considering this, BRIoT offers better convergence for

misbehavior detection of UAVs than BRUIDS. Hence,

BRIoT is especially applicable to devices whose initial

states of operations are unknown. It is observed that the

scale parameters show a variation of 41.31% and 83.63%

with the BRUIDS based on localized and non-localized

residuals, respectively. Although the scale parameters show

72.12% variation for localized and non-localized residuals,

the compliance degree operates the entire results and better

convergence of localized approach offers accurate

misbehavior detection of UAVs. The non-localized residual

approach adjusts based on the given compliance values,

thus generating lower false negatives and false positives.

We attribute the superiority of BRIoT over BRUIDS for

its ability to account for runtime output variations using the

feedback mechanism and its effective misbehavior

detection to avoid false alarms through a Barycentric-

coordinated based center of mass calculation method.

Another reason of BRIoT performing better than BRUIDS

is that BRIoT collects compliance data during state

transitions so it can track the current state a target UAV is

in at any time, while BRUIDS only collects the compliance

degree (a value between 0 and 1 representing whether or

not a target UAV complies with the behavior rules) at time

instants without the ability to track state transition history.

This state-tracking ability helps BRIoT achieve higher false

negative rate and false positive rate especially when

evidence is not easily observable until many instances have

been seen.

VI. CONCLUSION

In this paper, a behavior rule specification-based

misbehavior detection method called BRIoT has been

designed and built that can be generally applicable IoT-

embedded CPSs. BRIoT is capable of formally verifying

the correctness of behavior rules for any embedded IoT

device and collecting/analyzing compliance data for

misbehavior detection. BRIoT is especially applicable to

mission-critical CPSs with specified security requirements

regardless if the attacks are known or unknown because it

detects an IoT device’s misbehavior manifested as a result

of attacks.

We have developed BRIoT as a tool allowing a user (or

a domain expert) to specify the operational profile of an

embedded IoT device as input. The tool can then

automatically generate a set of security requirements and a

set of behavior rules, verify the correctness of the behavior

rules generated, and convert the behavior rules into a state

machine for runtime misbehavior detection. The overall

operational cost is very low and it can be operated in both

on-devices as well as off-device mode in three possible

situations, i.e., localized residuals, non-localized residuals,

and unavailable residuals. Through a comparative analysis,

we demonstrated that BRIoT outperforms BRUIDS, a

contemporary specification-based misbehavior detection

method, for misbehavior detection of UAVs in a UAV-CPS

in reliability, false-positives, false-negatives, and true

positives.

In the future, we plan to further analyze the tradeoff

between effectiveness (measured by false negative rate,

false positive rate, and true position rate) vs. efficiency

(measured by memory, run time, communication, and

computation overhead) for BRIoT to apply to practical IoT-

embedded CPSs.

REFERENCES
[1] R. Berthier and W.H. Sanders, “Specification-based Intrusion

Detection for Advanced Metering Infrastructures,” 17th IEEE
Pacific Rim Int.Symp. Dependable Computing, pp. 184-193, 2011.

[2] A. Bezemskij, G. Loukas, R.J. Anthony, and D. Gan, “Behaviour-

based anomaly detection of cyber-physical attacks on a robotic
vehicle,” IEEE Symposium on Cyberspace and Security, pp. 1-8,

Dec. 2016.

[3] I.R. Chen, F. Bao, and J. Guo, “Trust-based Service Management for
Social Internet of Things Systems,” IEEE Transactions on

Dependable and Secure Computing, vol. 13, no. 6, Nov-Dec 2016,

pp. 684-696.
[4] A. DaSilva et al., “Decentralized intrusion detection in wireless

sensor networks,” 1st ACM inter. workshop on quality of service &

security in wireless and mobile networks, pp. 16–23, 2005.
[5] S. Hanna, “A path to securing billions of insecure

devices,”https://www.trustedcomputinggroup.org/wp-

content/uploads/Trusted-Computing-for-IoT-ESC-2015_final.pdf,
2015.

[6] J. Hong, C.C. Liu, and M. Govindarasu, “Integrated Anomaly

Detection for Cyber Security of the Substations,” IEEE Trans. Smart
Grid, vol. 5, no. 4, 2014, pp. 1643-1653.

[7] S. Huda, et al., “Defending unknown attacks on cyber-physical

systems by semi-supervised approach and available unlabeled data,”
Information Sciences, vol. 379, 2017, pp. 211-228.

[8] K. Ioannis, T. Dimitriou, and F. Freiling, “Towards intrusion

detection in wireless sensor networks,” 13th European Wireless
Conference, 2007.

[9] P. Jokar, H. Nicanfar, and V.C.M. Leung, “Specification-based
Intrusion Detection for Home Area Networks in Smart Grids,” IEEE

Int. Conf. on Smart Grid Communications, 2011.

[10] A.M. Kosek, “Contextual anomaly detection for cyber-physical
security in smart grids based on an artificial neural network

model,” IEEE Workshop on Cyber- Physical Security and

Resilience in Smart Grids, 2016.

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 24

[11] C. Kwon, S. Yantek, and I. Hwang, “Real-Time Safety Assessment
of Unmanned Aircraft Systems Against Stealthy Cyber Attacks,”

Journal of Aerospace Information Systems, vol. 13, no. 1, 2016,

pp. 27-46.
[12] R. Mitchell, and I.R. Chen, “A Survey of Intrusion Detection

Techniques in Cyber Physical Systems,” ACM Computing Survey,

vol. 46, no. 4, article 55, 2014.
[13] R. Mitchell and I.R. Chen, “Modeling and Analysis of Attacks and

Counter Defense Mechanisms for Cyber Physical Systems,” IEEE

Transactions on Reliability, vol. 65, no. 1, March 2016, pp. 350-
358.

[14] S. Ntalampiras, “Automatic identification of integrity attacks in

cyber-physical systems,” Expert Systems with Applications, vol.
58, 2016, pp. 164-173.

[15] Y. Zhang, L. Wang, W. Sun, R. Green, and M. Alam, “Distributed

intrusion detection system in a multi-layer network architecture of
smart grids,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 796–808,

Dec. 2011.

[16] J. Musa, “Operational profiles in software reliability engineering,”
IEEE Software, pp. 14–32, Mar. 1993.

[17] R. Mitchell and I.R. Chen, “Behavior Rule Specification-based

Intrusion Detection for Safety Critical Medical Cyber Physical
Systems,” IEEE Transactions on Dependable and Secure

Computing, vol. 12, no. 1, 2015, pp. 16-30.

[18] R. Mitchell and I.R. Chen, "Adaptive Intrusion Detection of
Malicious Unmanned Air Vehicles Using Behavior Rule

Specifications,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 44, no. 5, 2014, pp. 593-604.

[19] I.R. Chen, J. Guo, and F. Bao,"Trust Management for SOA-based

IoT and Its Application to Service Composition," IEEE
Transactions on Services Computing, vol. 9, no. 3, 2016, pp. 482-

495.

[20] P. Xun et al., "Command Disaggregation Attack and Mitigation in
Industrial Internet of Things," Sensors, vol. 17, 2017, article 2408.

[21] T. Song, et al., "Formal Reasoning about a Specification-based

Intrusion Detection for Dynamic Auto-configuration Protocols in
Ad Hoc Networks," Formal Aspects in Security and Trust, pp. 16-

33, 2006.

[22] C.-H. Tsang and S. Kwong. Multi-agent intrusion detection system
in industrial network using ant colony clustering approach and

unsupervised feature extraction. In International Conference on

Industrial Technology, pages 51–56, Hong Kong, December 2005.
[23] D.-T. Ho and S. Shimamoto. Highly reliable communication

protocol for WSN-UAV system employing TDMA and PFS

scheme. In Global Communications Conference Workshops, pages
1320–1324, Houston, TX, USA, December 2011.

[24] C. E. Palazzi, C. Roseti, M. Luglio, M. Gerla, M. Y. Sanadidi, and

J. Stepanek. Enhancing Transport Layer Capability in HAPS-
Satellite Integrated Architecture. Wireless Personal

Communications, 32:339–356, 2005.

[25] R. Mitchell and I. R. Chen. Effect of Intrusion Detection and
Response on Reliability of Cyber Physical Systems. IEEE

Transactions on Reliability, 62(1):199–210, March 2013.

[26] M. Aldebert, M. Ivaldi and C. Roucolle,"Telecommunications
Demand and Pricing Structure: An Econometric

Analysis,"Telecommunication Systems, 25:89–115, 2004.

[27] H. Sedjelmaci, S.M. Senouci, and N. Ansari, "A Hierarchical
Detection and Response System to Enhance Security against Lethal

Cyber-Attacks in UAV Networks," IEEE Transactions on Systems,

Man, and Cybernetics: Systems, 2017.
[28] B.B. Zarpelao, R.S. Miani, C.T. Kawakani, S.C. de Alvarenga, "A

Survey of Intrusion Detection in Internet of Things," Journal of

Network and Computer Architecture, vol. 84, 2017, pp. 25-37.
[29] A. Saeed, A. Ahmadinia, A. Javed, and H. Larikani, "Intelligent

Intrusion Detection in Low-Power IoTs," ACM Trans. Internet

Technology, vol. 16, no. 4, article 27, 2016.
[30] M.T. Khan, D. Serpanos, and H. Shrobe, "ARMET: Behavior-based

Secure and Resilient Industrial Control Systems," Proceedings of

The IEEE, 2017.
[31] D. He, S. Chan, and M. Guizani, "Drone-assisted Public Safety

Networks: The Security Aspect," IEEE Communications

Magazine, 2017, pp. 2-8.

[32] M. Kaufmann and J.S. Moore, A Computational Logic for
Applicative Common Lisp,

http://www.cs.utexas.edu/users/moore/acl2/, 2017.

[33] V. Sharma, G. Choudhary, Y. Ko, I. You, "Behavior and
Vulnerability Assessment of Drones-Enabled Industrial Internet of

Things (IIoT),"IEEE Access, vol. 6, 2018, pp. 43368-83.

[34] D.P. Francis, A.J. Coats, and D.G. Gibson, "How high can a
correlation coefficient be? Effects of limited reproducibility of

common cardiological measures,"International Journal of

Cardiology, vol. 69, no. 2, 1999, pp. 185-9.
[35] J. Creedy and V. Martin,Chaos and non-linear models in

economics, Edward Elgar Publishing, 1994.

[36] A. Bjorck, Numerical methods for least squares problems, Siam;
ISBN 0-89871-360-9, 1996.

[37] N. Marzari, I. Souza, and D.Vanderbilt,"An introduction to

maximally-localized Wannier functions", Psi-K newsletter. 2003,
pp. 57:129.

[38] B.J. Fino and V.R. Algazi, "Unified matrix treatment of the fast

Walsh-Hadamard transform,"IEEE Transactions on Computers,
vol. 1, no. 11, 1976, pp. 1142-6.

[39] R.L. Burden and J.D. Faires,Numerical analysis, Cengage Learning,

2010.
[40] N. Zhang, K. Sun, W. Lou, and Y.T. Hou, “CaSE: Cache-Assisted

Secure Execution on ARM Processors,” IEEE Symposium on

Security and Privacy, 2016.
[41] R. Jiang and D.N.P. Murthy, "A study of Weibull shape parameter:

Properties and significance," Reliability Engineering & System
Safety, vol. 96, no. 12, pp.1619-1626.

[42] V. Novák, I. Perfilieva, and J. Mockor, "Mathematical principles of

fuzzy logic," Vol. 517. Springer Science & Business Media, 2012.

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

VOLUME XX, 2019 25

VISHAL SHARMA (S’13, M’17) received the
Ph.D. and B.Tech. degrees in computer science

and engineering from Thapar University

(2016) and Punjab Technical University
(2012), respectively. He worked at Thapar

University as a Lecturer from Apr'16-Oct'16.

From Nov. 2016 to Sept. 2017, he was a joint
post-doctoral researcher in MobiSec Lab. at

Department of Information Security

Engineering, Soonchunhyang University, and
Soongsil University, Republic of Korea. Dr. Sharma is now a Research

Assistant Professor in the Department of Information Security

Engineering, Soonchunhyang University, The Republic of Korea. Dr.
Sharma received three best paper awards from the IEEE International

Conference on Communication, Management and Information Technology

(ICCMIT), Warsaw, Poland in April 2017; from CISC-S'17 South Korea
in June 2017; and from IoTaas Taiwan in September 2017. He is the

member of IEEE, a professional member of ACM and past Chair for ACM

Student Chapter-TIET Patiala. He has authored/coauthored more than 90
journal/conference articles and book chapters, and co-edited two books

with Springer. He serves as the program committee member for the

Journal of Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications (JoWUA). He was the track chair of MobiSec'16

and AIMS-FSS'16, and PC member and reviewer of MIST'16 and

MIST'17, respectively. He has been the TPC member of ETIC- 2019,
WiMO-2019, ITNAC-IEEE TCBD'17, ICCMIT'18, CoCoNet'18 and

ITNAC-IEEE TCBD'18. Also, he serves as a reviewer for various IEEE
Transactions and other journals. His areas of research and interests are 5G

networks, UAVs, estimation theory, and artificial intelligence.

ILSUN YOU (SM’13) received the M.S. and

Ph.D. degrees in computer science from

Dankook University, Seoul, Korea, in 1997
and 2002, respectively. He received the second

Ph.D. degree from Kyushu University, Japan,

in 2012. From 1997 to 2004, he was at the
THIN multimedia Inc., Internet Security Co.,

Ltd. and Hanjo Engineering Co., Ltd. as a

research engineer. Now, he is an associate
professor at the Department of Information

Security Engineering, Soonchunhyang

University. He has served or is currently serving as the main organizer of
international conferences and workshops such as MobiWorld, MIST,

SeCIHD, AsiaARES, and so forth. Dr. You is the EiC of Journal of

Wireless Mobile Networks, Ubiquitous Computing, and Dependable
Applications (JoWUA). He is in the Editorial Board for Information

Sciences (INS), Journal of Network and Computer Applications (JNCA),

International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC),
Computing and Informatics (CAI), Journal of High Speed Networks

(JHSN), Intelligent Automation & Soft Computing (AutoSoft), and

Security and Communication Networks (SCN). His main research interests
include Internet security, authentication, access control, and formal

security analysis. He is a Fellow of the IET and a senior member of the

IEEE.

KANGBIN YIM received the B.S., M.S., and

Ph.D. degrees from the Department of
Electronics Engineering, Ajou University,

Suwon, South Korea, in 1992, 1994, and 2001,

respectively. He is currently a Professor with
the Department of Information Security

Engineering, Soonchunhyang University. His

research interests include vulnerability
assessment, code obfuscation, malware analysis,

leakage prevention; secure platform

architecture, and mobile security. Related to these topics, he has involved
in over sixty research projects and published over a hundred research

papers. Prof. Yim has served as an Executive Board Member of the Korea
Institute of Information Security and Cryptology, Korean Society for

Internet Information, and The Institute of Electronics Engineers of Korea.

He also has served as a committee chair of the international conferences
and workshops and the Guest Editor of the journals, such as JIT, MIS,

JCPS, JISIS, and JoWUA.

ING-RAY CHEN (M’90) received the BS

degree from the National Taiwan University,
and the MS and PhD degrees in computer

science from the University of Houston. He is a

professor in the Department of Computer
Science at Virginia Tech. His research interests

are primarily in service and trust management

as well as reliability and performance analysis
of mobile systems and wireless networks,

including Internet of Things, wireless sensor networks, service-oriented

peer-to-peer networks, ad hoc networks, mobile social networks, mobile
web services, mobile cloud services, and cyber physical systems. Dr. Chen

currently serves as an editor for IEEE Transactions on Services

Computing, IEEE Transactions on Network and Service Management, and
The Computer Journal. He is a recipient of the IEEE Communications

Society William R. Bennett Prize in the field of Communications

Networking and a recipient of the U.S. Army Research Laboratory (ARL)
Publication Award.

JIN-HEE CHO (SM’14) is currently an

associate professor in the Department of
Computer Science at Virginia Tech since

Aug. 2018. Prior to joining the Virginia

Tech, she worked as a computer scientist at
the U.S. Army Research Laboratory

(USARL), Adelphi, Maryland, since 2009.

Dr. Cho has published over 100 peer-
reviewed technical papers in leading

journals and conferences in the areas of trust

management, cybersecurity, metrics and measurements, network
performance analysis, resource allocation, agent-based modeling,

uncertainty reasoning and analysis, information fusion / credibility, and

social network analysis. She received the best paper awards in IEEE
TrustCom’2009, BRIMS’2013, IEEE GLOBECOM’2017, 2017 ARL’s

publication award, and IEEE CogSima 2018. She is a winner of the 2015

IEEE Communications Society William R. Bennett Prize in the Field of
Communications Networking. In 2016, Dr. Cho was selected for the 2013

Presidential Early Career Award for Scientists and Engineers (PECASE),

which is the highest honor bestowed by the US government on outstanding
scientists and engineers in the early stages of their independent research

careers. Dr. Cho earned MS and PhD degrees in computer science from the

Virginia Tech in 2004 and 2008, respectively. She is a senior member of
the IEEE and a member of the ACM.

