
2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

 

VOLUME XX, 2017 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number 

BRIoT: Behavior Rule Specification-
based Misbehavior Detection for IoT-
Embedded Cyber-Physical Systems 
Vishal Sharma

1
, Member, IEEE, Ilsun You

1
, Senior Member, IEEE, KangbinYim

1
, Ing-Ray 

Chen
2
, Member, IEEE, and Jin-Hee Cho

2
, Senior Member, IEEE 

1Dept. of Information Security Engineering, Soonchunhyang University, Asan-si-31538, South Korea 
2Virginia Tech, Department of Computer Science, VA 24061, USA 

 

Corresponding author: Ilsun You (e-mail: ilsunu@gmail.com). 

 

This work was supported by Institute for Information &communications Technology Promotion (IITP) grant funded by the Korea 

government (MSIT) (No.2017-0-00664, Rule Specification-based Misbehavior Detection for IoT-Embedded Cyber-Physical 
Systems). The work was also supported by the U.S. AFOSR under grant number FA2386-17-1-4076. 

ABSTRACT The identification of vulnerabilities in a mission-critical system is one of the challenges faced 

by a Cyber-Physical System (CPS). The incorporation of embedded Internet of Things (IoT) devices makes 

it tedious to identify vulnerability and difficult to control the service-interruptions and manage the 

operations losses. Rule-based mechanisms have been considered as a solution in the past. However, rule-

based solutions operate on the goodwill of the generated rules and perform assumption-based detection. 

Such a solution often is far from the actual realization of IoT runtime performance and can be fooled by 

zero-day attacks. Thus, this paper takes this issue as a motivation and proposes better lightweight behavior 

rule specification-based misbehavior detection for IoT-embedded cyber-physical systems (BRIoT). The key 

concept of our approach is to model a system with which misbehavior of an IoT device manifested as a 

result of attacks exploiting the vulnerability exposed may be detected through automatic model checking 

and formal verification, regardless of whether the attack is known or unknown. Automatic model checking 

and formal verification are achieved through a 2-layer Fuzzy-based Hierarchical Context-Aware Aspect-

Oriented Petri Net (HCAPN) model, while effective misbehavior detection to avoid false alarms is achieved 

through a Barycentric-coordinated based center of mass calculation method. The proposed approach is 

verified by an unmanned aerial vehicle (UAV) embedded in a UAV system. The feasibility of the proposed 

model is demonstrated with high reliability, low operational cost, low false-positives, low false-negatives, 

and high true positives in comparison with existing rule-based solutions. 

INDEX TERMS behavior rules, cyber-physical systems, IoT, specification-based intrusion detection, and 

zero-day attacks. 

I. INTRODUCTION 

Misbehavior detection techniques for Internet of Things 

(IoT) embedded cyber-physical systems (CPS) in general can 

be classified into three types: signature-based, anomaly-

based and specification-based techniques [12, 28]. The 

proposed behavior rule specification-based misbehavior 

detection technique in this work falls under specification-

based detection. The proposed approach disposes of 

signature-based detection so as to deal with zero-day attacks. 

It considers specification-based techniques rather than 

anomaly-based techniques for misbehavior detection to avoid 

the high cost associated with profiling and learning anomaly 

patterns for resource-constrained IoT devices and to avoid 

high false positives (treating good devices as bad devices). 

We argue that contemporary anomaly-based misbehavior 

detection methods for IoT-embedded CPSs based on 

profiling and machine learning through correlation and 

statistical analysis of a large amount of data or logs for 

classifying misbehavior (e.g., [2, 6-7, 10-11, 14-15, 29]) will 

not work for IoT-embedded CPSs because of high memory, 

run time, communication, and computational overhead, 

considering the fact that many embedded IoT devices are 

severely constrained in resources. Specification-based 

misbehavior detection provides a viable approach for 

misbehavior detection of embedded IoT devices because of 

light resource requirements for checking misbehaviors 

against specifications. 
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The goal of this work is to develop a Behavior Rule 

specification-based embedded-IoT misbehavior detection 

technique (called BRIoT for short) to achieve high accuracy 

in detecting misbehavior of an embedded IoT device in a 

CPS against zero-day attacks, without incurring high 

memory, run time, communication, or computation overhead 

by avoiding the high cost of profiling and learning anomaly 

patterns as in anomaly detection. To achieve the goal of 

defending against zero-day attacks, BRIoT detects “intended 

behaviors” specified in the “operational profile” [16] (i.e., 

mission specification) for every IoT device such that 

misbehaviors manifested as a result of attacks exploiting the 

vulnerability exposed may be detected through automatic 

model checking and formal verification. Moreover, our 

method to defend against zero-day attacks that try to avoid 

pre-established rule specification-based misbehavior 

detection is to identify the complete set of misbehaving states 

deriving from the device’s operational profile that can 

possibly fail a mission assigned for execution. A malicious 

UAV can avoid being detected only if it never enters a 

misbehaving state, in which case the IoT device will not 

cause any harm to the mission execution because no failure 

will ever result if the IoT device never enters any 

misbehaving state.  

In a large IoT-embedded CPS, there will be a huge number 

of IoT sensors/actuators and it is neither scalable nor 

practical to rely on a central entity to perform misbehavior 

detection. Since the central entity cannot physically perform 

misbehavior detection itself, it needs to collect misbehavior 

reports/logs from IoT devices. The amount of traffic 

generated will not only consume IoT energy but also cripple 

the CPS communication network. Hence, distributed 

misbehavior detection is the only feasible way. Since IoT 

devices are resource-constrained, the detection must be 

lightweight. For scalability, we propose a methodology to 

transform behavior rules to a state machine, turning behavior 

monitoring of an embedded IoT device into a lightweight 

process because it only involves checking if a monitored IoT 

device is in a safe or unsafe state against the transformed 

state machine.  

The following aspects are novel in our work relative to the 

existing specification-based intrusion detection techniques 

(see Section 2 Related Work for detail): (1) design and 

implementation of a module for automatically modeling and 

deriving behavior rules from an embedded IoT device’s 

operational profile specifications [16];(2) design and 

implementation of a 2-layer Fuzzy-based Hierarchical 

Context-Aware Aspect-Oriented Petri Net (HCAPN [33]) 

model to formally verify that the behavior rules generated are 

correct and cover all the threats (or satisfy the security 

requirements) and that the resulting safe and unsafe states are 

complete and are generated correctly with respect to the 

behavior rules specified;(3) design and implementation of a 

module for automatically transforming behavior rules into 

“attack behavior indicators” (ABIs) and then into a state 

machine for misbehavior detection at runtime;(4) design and 

implementation of a lightweight runtime collection module 

for collecting compliance degree data from runtime 

monitoring of an IoT device based on its derived state 

machine; (5) design and implementation of a lightweight 

statistical analysis module for effective misbehavior 

detection to avoid false alarms through a novel Barycentric-

coordinated based center of mass calculation method; and (6) 

experimental verification by an unmanned aerial vehicle 

cyber physical system (UAV-CPS) demonstrating its 

superior performance over a contemporary specification-

based intrusion detection solution called BRUIDS [18]. 

The rest of the paper is organized as follows: In Section 

II, we survey related work. In Section III, we discuss the 

system model. In Section IV, we describe in detail the 

design and implementation of BRIoT. In Section V, we 

apply BRIoT to misbehavior detection of a UAV embedded 

in a UAV-CPS and perform a comparative analysis of 

BRIoT against BRUIDS. Finally, in Section VI, we 

conclude the paper and outline future work. 

 
II. RRELATED WORK 

In this section, we discuss related work in three areas: 

anomaly-based IoT misbehavior detection, specification-

based IoT misbehavior detection, and verification of 

specification-based IoT misbehavior detection. We 

compare and contrast our work with existing work. 

 

Anomaly-based IoT Misbehavior Detection: Existing 

intrusion detection methods for IoT mostly are designed to 

detect either routing attacks or Denial of Service (DoS) 

attacks (see a survey in [28]). More recent works such as 

[29] also addressed detecting illegal memory accesses in 

low-power IoT. These existing works, however, are based 

on anomaly-based techniques applying profiling and 

machine learning through correlation and statistical analysis 

of a large amount of data or logs for classifying 

misbehavior (e.g., [2, 6-7, 10-11, 14-15, 29]). We believe 

anomaly-based detection techniques will not work for IoT-

embedded CPSs because many embedded IoT devices 

especially battery-operated ones are severely constrained in 

resources. Our work is based on lightweight specification-

based intrusion detection for misbehavior detection of each 

IoT device embedded in a CPS.  

 

Specification-based IoT Misbehavior Detection: In the 

literature, specification-based misbehavior detection has 

been mostly applied to communication networks [4, 8, 21] 

and CPS security [1, 9, 17, 18, 30]. In the context of 

communication networks, DaSilva et al. [4] proposed 

traffic-based rules to detect network intruders: interval, 

retransmission, integrity, delay, repetition, radio 

transmission range and jamming. Ioannis et al. [8] proposed 

auditing the forwarding behavior of suspects to detect 

blackhole and greyhole attacks based on rule specification 

violations. Song et al. [21] proposed specification-based 

detection rules (identifying activity that is monitored) to 
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ensure the global security requirement is obeyed for an IP 

configuration protocol in mobile ad networks. In the 

context of CPS security, Berthier et al. [1] proposed 

specification-based misbehavior detection to audit the 

network traffic among smart meters and access points for 

protocol compliance. Jokar et al. [9] considered 

specification-based misbehavior detection against physical 

and MAC layer attacks in ZigBee networks in smart grids. 

Mitchell et al. [17, 18] discussed a conceptual model of 

behavior rule specification-based intrusion detection for 

CPSs and conducted a proof-of-concept statistical analysis 

using pre-generated data following a probability 

distribution. Khan et al. [30] proposed behavior-based 

executable specification against false data injection attacks 

for industrial control systems. Our contribution relative to 

existing works cited above is that we pioneer the use of 

lightweight behavior rule specification-based misbehavior 

detection for resource-constrained IoT devices embedded in 

a CPS.  

 

Verification of Specification-based Intrusion Detection: 

While specification-based detection in general induces a 

lower false positive rate than anomaly detection, a 

limitation of specification-based approaches is the difficulty 

of verifying that the specifications are correct and cover all 

the threats [1]. Toward this end, Song et al. [21] described a 

formal reasoning framework to first define a global security 

requirement and then defined the specifications of the 

behaviors of local nodes to assure the global security 

property. Utilizing the ACL theorem prover[32], they 

formally proved that the local detection rules (identifying 

local behavior that is monitored against behavior 

specifications) imply the global security requirement. 

Berthier et al. [1] followed a similar approach and proposed 

a formal framework comprising a model of the network, 

monitoring operations, protocol specifications, and security 

policy. The key idea of their framework is to formally 

verify that no network trace can violate the security policy 

without being detected. Utilizing ACL, they verify that all 

possible network traces that respect the network model, 

monitoring operations, and protocol specifications will also 

respect the security policy. Unlike the above-cited work [1, 

21], we start with the “operational profile” [16] of an 

embedded IoT that defines the mission statement of the 

embedded IoT device to derive the security requirements 

and hence the threats of the embedded IoT device. Then we 

derive the behavior rules specifying the intended behavior 

and verify that the behavior rules are correct and cover all 

the threats. We develop a 2-layer Fuzzy-based HCAPN 

model for formal verification. Lastly, unlike [1, 21], our 

approach is specifically designed for intrusion detection of 

lightweight IoT devices embedded in a CPS with energy 

consideration. 

 
III.SYSTEM MODEL 

In this section, the system model, including the 

architecture model, threat model, and monitoring model on 

which the proposed IDS are based upon, is discussed in 

detail.  
A. ARCHITECTURE MODEL 

An embedded IoT device can be a sensor, an actuator, a 

controller, or a combination of the above such as a UAV. 

The architecture model depends on the specific type of IoT 

device under consideration. We illustrate it with an 

embedded UAV device in a UAV-CPS as considered in 

[18] with the addition of the misbehavior detection module 

(labeled as BRIoT) and the external architecture, where the 

information is served with both the distantly placed 

monitoring station and the other UAVs, as shown in Fig.1. 

 

 
Fig. 1: Architecture Model for a UAV-CPS. 

 
B. THREAT MODEL 

We first understand the meanings of threats and attackers 

with the following definitions: 

Definition 1: A threat is a negative event that can lead to 

an undesired outcome, such as damage to or a loss of an 

asset. Threats can use or become more dangerous because 

of a vulnerability (which is simply a weakness in the 

system).  

Definition 2: A threat agent or an attacker is a person, 

actor, entity, or organization that is initiating a threat event.  

In this paper, our primary interest is on attacks of 

embedded IoT devices performing basic sensing, actuating, 

navigating, and networking functions. Our threat model 

considers all threats that target integrity, confidentiality and 

availability aspects of IoT-embedded CPS security. The 

known attacks that have been investigated in the literature 

are summarized in Table 1. Unlike most existing IoT 

intrusion detection approaches which design specific 

intrusion detection functions to detect or prevent specific 

known attacks [28], we take an entirely different approach. 

That is, we use the design concept of “operational profile” 

[16] during the testing and debugging phase of an 

embedded IoT device when the IoT software is built to 

define the embedded IoT device’s security requirements, 

from which the threat model is derived. The threat model 

comprises a list of threats that would fail an embedded IoT 

device’s mission assignment. The threat model leads to a set 
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of behavior rules against which the misbehavior of an IoT 

device would be detected automatically at runtime, 

regardless of if the attack is known (e.g., as listed in Table 

1) or unknown. In our work, we formally verify that the 

behavior rules generated are correct and cover all the 

threats (or satisfy the security requirements). 

C. MISBEHAVIOR MONITORING MODEL 

Our behavior-rule based IDS approach relies on the use 

of monitoring nodes. We assume that a monitoring node 

performs misbehavior detection on a target node. One 

possible design is to have a sensor (actuator) monitor 

another sensor (actuator respectively) within the same CPS. 

This may require each sensor (actuator) to have multiple 

sensing functionalities. Note that a malicious embedded IoT 

device cannot bypass misbehavior detection because our 

approach is based on a device being monitored by a peer 

device (or more than one peer IoT devices to increase the 

detection strength). If a peer monitoring IoT device is itself 

malicious and performs attacks, its misbehavior would be 

detected by another peer IoT device. Further, whenever an 

IoT device is identified as malicious, its monitoring duty 

would be reassigned to another IoT device. Therefore, no 

malicious IoT device can bypass detection in our approach. 

Another possibility is that each IoT device is built on top of 

secure computational space (e.g., [40]) such that each target 

IoT device can execute misbehavior detection code in a 

secure computation space and self-monitor itself, even if 

the operating kernel has been compromised. In this case, 

once a node identifies itself as misbehaved based on the 

behavior rule specification, it can take itself off the mission 

or even self-shutdown. 

Table 1: “Known” Attacks that Target Integrity, Confidentiality and 

Availability Aspects of IoT-CPS Security 

Attack Type Security Aspect 

  

command spoofing attack [20], 
data spoofing attack [12], 

bad-mouthing/ballot-stuffing attack [3], 
capture attack [13], 

GPS spoofing attack [11, 27] 

 
 

integrity 
 

data exfiltration attack [13] confidentiality 

DoS or jamming attack [12], 
black/grey hole attack [12], 

energy exhaustion attack [25] 

 
availability 

IV. BEHAVIOR RULE SPECIFICATION-BASED 
MISBEHAVIOR DETECTION FOR EMBEDDED IOT  

We first explain the workflow of BRIoT, as illustrated 

in Fig. 2. The automatic derivation of behavior rules is done 

at static time (or compile time) given a target IoT device’s 

operational profile as input. Each behavior rule is then 

converted into a corresponding “attack behavior 

indicator”(ABI) being expressed as a Boolean expression to 

be evaluated true (1) or false (0), indicating whether the 

corresponding behavior rule is violated or not. All ABIs 

thus generated (corresponding to all behavior rules) are 

encoded in XML format and are fed as input to a HCAPN 

tool which does automatic model checking and formal 

verification also at static time. Once the behavior rules are 

formally verified and proven correct, we transform the 

corresponding ABIs into a C-language state machine for 

misbehavior detection of the specified target IoT device. 

This part is also performed at static time. Then we preload 

the state machine into the memory of a monitoring node 

and assign the monitoring node the duty of monitoring and 

detecting misbehavior of the target IoT device. This 

misbehavior detection part is performed at runtime. During 

runtime, misbehavior data detected if any are collected by 

the monitoring node via anon-board lightweight data 

collector. Subsequently the data collected are fed into a 

lightweight statistical analyzer (also on-board as it is 

lightweight) to judge if the target IoT device is malicious. 

 

Fig.2: Workflow of BRIoT. 

 

The HCAPA tool in Fig. 2 is developed to ease 

automation of model checking and formal verification. The 

tool uses basic coding principles which are extended to fit 

into the need of the proposed 2 layers statistical HCAPN 

model. The tool not only helps parse the user’s or expert’s 

inputs but also checks whether the developed rules are 

formally verifiable or not. It further allows visualization of 

the final model in the form of workflow through Petri Net 

visualization. The tool helps generate the reports and obtain 

results to check the basic principles of HCAPN model. In 

addition, it provides a high flexibility to model different 

behavior rules and attack behaviors. Fig. 3 provides an 

overview of our BRIoT design. In the following, we detail 

our BRIoT design in three major areas: automatic modeling 

and verification of behavior rule specification for an 

embedded IoT device through HCAPN (Section IV.A), 

automatic transformation of a behavior rule set to a state 

machine for misbehavior detection (Section IV..B), and 

lightweight runtime collection of compliance degree data 

and statistical analysis (Section IV.C). 
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A. AUTOMATIC MODELING AND VERIFICATION OF 
BEHAVIOR RULE SPECIFICATION FOR AN EMBEDDED 
IOT DEVICE THROUGH HCAPN 

We propose to use “operational profile” [16], which 

essentially is a mission assignment statement generated 

according to the probabilities with which events will 

happen to an embedded IoT device during its mission 

execution as input to BRIoT. A mission assignment 

statement explicitly defines a set of security requirements 

for the mission to be successful, from which a set of threats 

as well as a set of behavior rules to cope with the threats 

may be automatically derived. If the “operational profile” 

of an embedded IoT device (by software engineers who 

developed the IoT device) which defines the security 

requirements is available, then it can be modeled to 

automatically identify the complete set of threats and 

consequently derive the complete set of behavior rules. 

Otherwise, the system designer would be guided to define 

the “anticipated operational profile” as input. 

 

 

Fig.3: Overview of BRIoT design. 

 

The automatic model verification of the behavior rules 

is conducted by verifying that the behavior rules generated 

are correct and covers all the threats (or satisfies the 

security requirements). The basic idea is to prove that the 

behavior rules can guarantee all security requirements are 

not violated, so any violation of the security requirements 

implies violations of the behavior rules. This means all 

attacks that violate the security requirements will be 

detected by the behavior rules.  

The formal proof is made possible by expressing the 

behavior rules generated and the security requirements 

derived in a HCAPN [33] model such that “any violation of 

the security requirements implies violations of the behavior 

rules” is expressed as Boolean expressions in HCAPN. The 

model verification begins with generating a HCAPN model 

from the generated behavior rules. The newly generated 

HCAPN is a fuzzy-based statistical 2-layer model that is 

lightweight on memory and running time.  

More specifically, a system comprising a set I of IoT 

devices is considered, with the cardinality |I| denoting the 

number of IoT devices. Each IoT device must execute 

certain operations leading to a behavior set B generated 

automatically through the operational profile and must be 

verified before deployment. The verification is accounted 

with a behavior recording variable V, a Boolean variable 

that tells whether the behavior set B is verifiable or not. If 

verifiable, it marks whether the verified behavior is correct 

or incorrect by using another Boolean expression (G).The 

correctness variable, G, is accounted through HCAPN 

observations and can be written as G=Fuzzy(H(.)) where (.) 

denotes the functional inputs to the HCAPN model defined 

as in [33]. By extending the initial model, V can be 

expressed as a fuzzy function [42] related to the behavior 

variables from the behavior set B, the degree of dependence 

of behavior represented by a set D, and a statistical 

weightage set W generated based on the dependence value, 

such that V=Fuzzy(B, D, W).Here, V can operate on a 

vector of behavior rules or an individual rule depending on 

the initial observations as well as the supporting model 

available from an expert (E). For an expert, the verification 

function can be modeled as VE=Fuzzy(B, D, W)E. The 

values from an expert remain unchanged for a specified 

duration. However, for observations of the CPS, timing 

represents a key role because it becomes important to 

consider an instance-based (timely) fuzzy function written 

as VT=Fuzzy(B, D, W)T. 

The proposed approach considers users and experts for 

operations, where users are the track-able devices with 

behavior rules whose evaluations are to be verified, 

whereas experts are the original sources available for 

testing, validating and defining the correct system. 

Although, the proposed model can work as an independent 

unit, we model it around the expert’s observations for 

proving correctness. Usually, it is questionable that the 

availability of expert’s values can directly provide 

correctness of the observed or recorded values. Therefore, 

an additional methodology is required. To answer this, an 

expert can provide base values for a given CPS. In practice, 

a user may encounter a different set of metrics, which could 

be dynamically verified and adjusted to form a base for 

timely detection of misbehavior patterns. Moreover, with 

verifications after certain time is elapsed, user’s values can 

replace expert’s values, thereby allowing the approach to 

settle into strong priori-probabilities.  

The use of fuzzy logic [42] for deciding the outcomes of 

V helps to observe a Boolean value from the unevenly 

observable crisp values of B, D, and W. To find D, the 

initial observational values for the behavior rule set B of a 

given device in I are taken, such that a correlation 

coefficient (𝑟𝑈𝐸) [34] is identified for the user’s as well as 

the expert’s sets as follows: 

𝑟𝑈𝐸 =
𝜗  𝛼𝑖𝛽𝑖− 𝛼𝑖  𝛽𝑗

𝜗
𝑗=1

𝜗
𝑖=1

𝜗
𝑖=1

 𝜗  𝛼𝑖
2−( 𝛼𝑖

𝜗
𝑖=1 )2𝜗

𝑖=1  𝜗  𝛽𝑗
2−( 𝛽𝑗

𝜗
𝑗=1 )2𝜗

𝑗=1

,𝜗𝑈 ≠ 𝜗𝐸(1) 
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where 𝜗 is the total number of variables from B with 

uniqueness for user and expert in totality (𝜗 = 𝜗𝑈 +
𝜗𝐸), 𝛼𝑖 is the number of occurrences of variable i in the 

behavior profiling set by the user, and 𝛽𝑖  is the number of 

occurrences of variable i in the behavior profiling set by the 

expert. Now, based on these observations, the dependence 

of the kth behavior rule for the user can be evaluated as: 

𝐷𝑈,𝑘 = 𝑟𝑈𝐸 .
 𝛼𝑗

𝑛1,𝑘
𝑗=1

 𝛼𝑖𝛽𝑖
𝜗
𝑖=1

,𝑛1 ≤ 𝜗𝑈 ,  𝑟𝑈𝐸 ≠ 0  (2) 

where n1,k is the number of variables for a given behavior 

rule k ∈ B of a user’s input. Similarly, the dependence of 

the kth behavior rule for an expert can be written as: 

𝐷𝐸,𝑘 = 𝑟𝑈𝐸 .
 𝛽𝑗

𝑛2,𝑘
𝑗=1

 𝛼𝑖𝛽𝑖
𝜗
𝑖=1

,𝑛2 ≤ 𝜗𝐸 ,  𝑟𝑈𝐸 ≠ 0  (3) 

where n2,k is the number of variables for a given behavior 

rule k ∈ B  of an expert’s input. The ratio of dependence for 

a given behavior rule k ∈ B can be given as 𝑅𝑈𝐸,𝑘 =

 
 𝛼𝑗

𝑛1,𝑘
𝑗=1

 𝛽𝑗
𝑛2,𝑘
𝑗=1

. 

Now, D for each behavior rule k (subscript k is omitted 

below) can be marked as: 

𝐷 =

 
 
 

 
 

𝐷𝑈 = 𝐷𝐸 , 𝑖𝑓 𝑅𝑈𝐸 = 1, 𝑒𝑞𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
𝑅𝑈𝐸 , 𝑖𝑓 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑡𝑒 𝑎𝑛𝑑 𝐷𝑈 ≤ 𝐷𝐸

𝛾𝑈𝐷𝑈 +𝛾𝐸𝐷𝐸

𝛾𝑈 +𝛾𝐸
, 𝛾𝑈 + 𝛾𝐸 ≠ 0 , 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑏𝑎𝑠𝑒𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

𝛾𝑈,𝑡−1 +  𝛾𝑈,𝑡,𝑖𝛼𝑖 +   𝛽𝑗 − 𝛼𝑗
𝑛1
𝑗=1

𝑛1
𝑖=1 , 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔

𝑎𝑛𝑑 𝑛𝑜𝑛𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡𝑕 𝑡𝑕𝑒 𝑎𝑏𝑜𝑣𝑒 𝑡𝑕𝑟𝑒𝑒

 (4) 

Here, 𝛾𝑈  and 𝛾𝐸  are the importance coefficients 

indicating importance of a behavior rule for the user and the 

expert, respectively. They are derived from the behavior set 

B and its contained variables. Specifically, they can be 

derived based on a linear model [35] [36] used in the 

formulation of D, such that  𝜇2𝑛1
𝑖=1  is minimum, where 𝜇 =

𝛾𝐸  𝛽𝑗 −
𝑛2
𝑗=1 𝛾𝑈  𝛼𝑗

𝑛1
𝑗 =1 . With 𝛾𝐸 = 1, 𝜇 can be computed 

as 𝛽𝑗 −𝛾𝑈𝛼𝑗 . If D is higher then it becomes easier to detect 

the possibility of behavior rules being verifiable, which 

otherwise is difficult for isolated variables in the behavior 

rules. Setting D equal to the user to expert ratio of 

dependence, i.e., 𝐷 = 𝑅𝑈𝐸  is convenient to use under the 

given constraints as it allows verification between the 

user’s and the expert’s inputs. The fourth sub-value for D 

helps to evaluate a continuously changing system. 

However, this requires setting certain thresholds on the 

number of new variables in behavior profiling. An 

unlimited number of new variables may cause additional 

overheads as it becomes tedious to find dependence for all 

additional variables with limited knowledge. Here, 

knowledge refers to the available content from the expert 

and device profile available from the manufacturer.  

For W, a memory coefficient (𝜑) is considered for each 

behavior rule, which helps to depict the statistical 

requirement (mean occurrences) of a behavior rule and is 

uniformly distributed with the value given based on CDF, 

such that: 

𝜑𝑖 =  
αi ,j−min  𝛼 +1

max  𝛼 −min  𝛼 +1

𝑛1
𝑗 =1    (5) 

For relative memory, the observations change to: 

𝜑𝑈𝐸,𝑖 =  
||αi ,j−𝛽𝑖,𝑞 ||−min  𝛼,𝛽 +1

max  𝛼,𝛽 −min  𝛼,𝛽 +1

𝑛1 ,𝑛2
𝑗 =1,𝑞=1   (6) 

where the choice between the two is subject to system 

constraints and applicability. Now, W can be accumulated 

through a Wannier function [37], such that: 

𝑊𝑖 = 𝜑𝑖  . 𝑓 𝛼, 𝛽, 𝜑𝑈𝐸 ,𝑖 . 𝑓 𝛼, 𝛽, 𝜀    (7) 

where by definition [37],  

𝑓 𝛼, 𝛽, 𝜑𝑈𝐸,𝑖 =
1

  𝐵 
 𝑒

−𝑗 ||αi ,j−𝛽𝑖,𝑞 ||𝑛1 ,𝑛2
𝑗 =1,𝑞=1  𝑒

𝑗 ||αi ,j−𝛽𝑖,𝑞 ||
. 𝜑𝑈𝐸,𝑖 (8) 

and  

𝑓 𝛼, 𝛽, 𝜀 

=

 
 
 
 
 

 
 
 
 

1, 𝑖𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑎𝑟𝑒 𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

1

sup
0<𝑗≤𝑞

𝜀
 ||α

i,j
− 𝛽𝑖,𝑞 ||

𝑛1 ,𝑛2

𝑗=1,𝑞=1

, 𝑞 > 𝑗, 𝑖𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠  𝜀  𝑎𝑟𝑒

𝑛𝑜𝑛 − 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑

1

  𝐵 
 𝑒−𝑗 ||αi,j−𝛽𝑖,𝑞 ||

𝑛1 ,𝑛2

𝑗=1,𝑞=1

 𝑒
𝑗 ||αi ,j−𝛽𝑖,𝑞 ||. 𝜀𝑖,𝑗  , 𝑖 𝑓𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 (𝜀) 

𝑎𝑟𝑒 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑

  

      (9) 

Here, the localization of residuals refers to the 

identification of errors with respect to a behavior rule. The 

above formulations form the base of fuzzy evaluations and 

help decide whether the available values for a behavior rule 

make it verifiable or not. 

Different mechanisms are used to generate normalized 

inputs for B, D and W to formulate the fuzzy sets for 

generating inference rules. To map B, it is replaced by the 

periodicity of the behavior rule (B’), which is normalized 

using 
𝐵′−min (𝐵′)

max  𝐵′ −min (𝐵′)
. D and W are evaluated for Bayesian 

belief, such that their normalized values are given by 

𝐷(𝑁)
𝑖 =

𝐿(𝐷𝑈,𝑖).𝑃(𝐷𝐸)

𝑃(𝐷𝑈,𝑖)
 and 𝑊(𝑁)

𝑖 =
𝐿(𝑊𝑈,𝑖).𝑃(𝑊𝐸)

𝑃(𝑊𝑈,𝑖)
, 

respectively, where L and P denote the likelihood and the 

probability, respectively. Under relaxed constraints and 

low-complex evaluations, these are obtained as 

0 < 𝑘 ≤ 𝑗       
𝑠𝑢𝑝

0 < 𝑚 ≤ 𝑞
[

𝐷𝑈 ,𝑘

max  𝐷𝑈  
.

𝐷𝐸,𝑚

max (𝐷𝐸)
] and 0 < 𝑘 ≤ 𝑗       

𝑠𝑢𝑝

0 < 𝑚 ≤ 𝑞
[

𝑊𝑈 ,𝑘

max  𝑊𝑈  
.

𝑊𝐸,𝑚

max  𝑊𝑈  
]. 

 

Based on the expert’s recommendations as well as the 

devices' readings, limits are set for the membership values 

observed for the fuzzy set, thus inferencing an output for 

taking a decision on V. For this, Low, Medium, and High 

are marked for B’, and Very Low, Low, Medium, High, and 

Very High are marked for both D and W. Usually, the value 

range is based on beliefs; however, in the proposed 
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approach, these are driven by the max-mean approach. 

Therefore, the limits on the membership values (0, 1) for B’ 

are (0, 0.25, 0.5), (0.25, 0.5, 0.75), and (0.5, 0.75, 1.0) and 

for W and D are (0, 0.125, 0.25), (0.15, 0.25, 0.35), (0.30, 

0.45, 0.60), (0.55, 0.7, 0.85) and (0.75, 0.875, 1.0). Now, 

using inference criteria based on the urgency of a behavior 

rule, the following fuzzy-observations are attainable for V: 

Low, Medium, High, Very High and Extreme with 

membership values of the order, (0, 0.2, 0.4), (0.35, 0.5, 

0.65), (0.6, 0.7, 0.8), (0.75, 0.825, 0.9) and (0.85, 1.0).Fig. 

4 shows how to trace inference rules for their mapping. 

 
(A)Fuzzy (B, D, W) vs. W and B. 

 

 
(B) Fuzzy (B, D, W) vs. W and D. 

Fig.4: A graphical illustration of the fuzzy observations with variations in 
fuzzy function with respect to B’, W, D. The plots help to understand the 

impact of rules on the observation of identifying the verifiability for given 

behavior rules .In both diagrams, the interest is given to a V=Fuzzy (B, D, 
W) value higher than the medium value defined by the expert or the user. 

 

A general procedure for fuzzy evaluations involves 

converting fuzzy observations to crisp values for finalizing 

the value of a function under evaluation. However, in the 

given system, the primary concern is about the belief to 

consider the verification of a behavior rule. Thus, a Boolean 

variable is assigned directly to the fuzzy observations, such 

that any value leading to a medium or lower is marked with 

0, and 1 otherwise. Now, based on these, the final set of 

behavior rules is obtained to further check for correctness. 

 
Fig.5: An illustration of a 2-layer HCAPN model for verifying 

behavior rule correctness. 

 
Let Bd, Wd, and Dd, be the derived sets for the evaluated 

behavior rules, which are to be formally checked for their 

correctness. To handle this task, HCAPN’s 2-layer 

statistical format is used (Fig. 5), which is a variant of the 

original HCAPN. At first, the system is accounted for the 

number of places, passes, and association for building 

transitions. Later, the number of tokens required to evaluate 

the reachability of HCAPN are generated. Finally, the 

statistical evaluations of HCAPN help verify the 

correctness of the shortlisted (decided) behavior rules. The 

details are as follows: 

1. Number of layers: The initial HCAPN model [33] is 

efficient in resolving multi-variable dependencies as 

well as support variable evaluations and formal 

analysis of network entities. However, the initial 

version accounts each entity into the place and builds a 

transition for each of them leading to a complex 

scenario that is heavyweight on memory as well as run-

time. The conditions fail when the real-time 

evaluations involve undecided variables accounting 

verification. Thus, to make it lightweight, we adopt a 

2-layer HCAPN model with statistical decidability, 

which reduces the complexity by lowering the number 

of places, passes, transitions, and tokens for generating 

the required observations. 

2. Number of places: Two sets of places, NU
P  and NL

P , for 

the lower layer and the upper layer of HCAPN, 

respectively, are decided based on the number of 

variables and the number of behavior rules. All 

tracking variables, 𝜗𝑈,are marked as places in the 

HCAPN’s upper layer and all behavior rules,𝐵𝑑 , are 

taken for places in the lower layer, such that: 
NU

P =  𝜗𝑈| 𝜗𝑈 > 0, 𝜗𝑈  is the variables formulating 𝐵𝑑 , 

NL
P =  𝑥 𝑥ϵ𝐵𝑑}    (10) 

3. Number of transitions: The transitions for the upper 

layers involve the evaluation formulas using the 

variables from the places and are represented by a 

set TU
P  (e.g. 3 for ABI 1 - Tables 1-5 ). In the lower 

layer, the transitions are marked by security aspects, 

which are denoted by a set TL
P  (e.g. 13 for given 

behavior rules - Tables 1-5), such that, 
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TU

P =  𝑎| 𝑎 is the equation involving variables from places , 

TL
P =  𝑏 𝑏 is the referral aspects}  (11) 

 

The referral aspects can be any property, condition or 

additional rules. In this work, the referral aspects refer 

to security aspects, which are accounted for based on 

the behavior rules for devices in a CPS. 

4. Number of passes: The number of passes is an integral 

part of HCAPN which provides flexibility of multi-

party verifications without rebuilding new Petri nets 

for the dependent variables. In this work, the number of 

passes is not directly generated based on the rules of 

places/passes. Rather, five main strategies are used 

which are further based on two main properties, 

namely, active passing and passive passing. In the 

passive passing, the number of passes between the 

upper and the lower layer Petri nets is pre-decided and 

any additional inclusion of passes or change in 

transition leads to the fresh derivation of HCAPN. In 

the active passing, the number of passes is decided on-

demand; however, such a situation generates an 

optimization problem which accounts for settling a 

tradeoff between the excessive passes and operational 

time. The excessive passes can lead to far more 

accurate results even for a complex scenario, but at a 

cost of time and memory. While keeping time in 

constraint, the number of passes can still be functional, 

but only under certain conditions leading to the 

verification of strict behavior rules only. Irrespective of 

the mode of operation, the following solutions can be 

used for deciding the number of passes in the 2-layer 

statistical HCAPN model for behavior rule verification: 

a) In case of loops: The active passing can 

especially be used to remove loops during 

evaluations of behavior rules. Any adversary, 

who tends to avoid the verification to prevent its 

detection as misbehavior, can try to fool the 

system by sending similar types of data from the 

same devices again and again. This may result in 

a loop over a particular variable as the behavior 

rule for the verification remains the same. To 

avoid such a situation, the context can be shifted 

while avoiding loops over the involved places 

and transitions, thereby preventing missing 

verification for a non-included behavior rule. 

b) In case of relationships: In case of a direct 

relationship between the variables and behavior 

rules, a pass is needed between the two layers of 

Petri nets. However, the choice of positioning of 

passes and extending a pass from a particular 

variable to a particular behavior rule is again an 

issue related to optimization. 

c) In case of deviation in observations: There are 

certain situations, where the system generates a 

large number of false positives because of 

numerous connectivity or excessive tokens, 

which lead to a deviation of the system from 

generating desired results. In such a case, the 

passes are marked between the variables and the 

behavior rules to avoid false positives. Moreover, 

in such situations, the passes can be considered 

from formulae from the upper layer to the aspects 

of the lower layer via additional places. 

d) In case of high operational time: As expressed 

in the first part, high operational time for 

evaluating the correctness of behavior rules has to 

be avoided in a solution pertaining to the 

identification of misbehavior in a CPS. Thus, 

additional places and transitions need to be 

removed and new passes must be generated to 

increase the performance without compromising 

the verification procedure. 

e) In case of large traversals of places: This is 

similar to loops, the places which are traversed 

several times must have a common variable or 

behavior rule, which can be overlooked, however, 

only at the cost of false negatives. In case the 

system shows an increase in false positives, such 

traversals should be allowed even if the 

computational time increases. The time cost in 

such a situation can be saved by skipping 

variables based on periodicity. 

In a general HCAPN model, the number of layers may 

vary, so is the number of passes. However, there is an 

upper limit for the number of passes to avoid additional 

overheads. In the case of a 2-layer HCAPN model, the 

number of passes is marked by the general distribution 

of the number of variables and the behavior rules. The 

upper limits remain at X(X-1)/2, where X denotes the 

sum of the places and tokens. However, such a 

situation causes more tokens and hinders the timely 

verification of the behavior rule correctness. To resolve 

this, a law of K by K is formulated which means 

finding the value of K such that K variables are always 

in demand by exactly K behavior rules. The value of K 

should be minimized subject to the verification of 

behavior rules. Additionally, the value of K should also 

be maximized subject to the minimization of the 

evaluation time. The value of K remains to be the 

number of passes required for building the 2-layer 

HCAPN model. To solve this, the Walsh matrix 

approach [38] is used, according to which, the number 

of sign changes between the slots refers to the 

requirements of the passes between the two layers. The 

sign changes are derived based on the occurrences of 

variables during a fixed slot. Thus, mathematically, 

number of passes can be expressed as: 

𝐾 =

 
  
 

  
 𝑆𝑡

 𝐶 
 𝑊  𝑍 2𝜗𝑈    , 𝑡1 ≤ 𝑡 ≤ 𝑡2 , 𝑡2 − 𝑡1 ≠ 0, 𝑡1 > 0, 𝑆𝑡

 𝐶  .  ≠ 0

𝑄𝑡
 𝐶 

 𝑊  𝑍 2|𝐵𝑑 |   , 𝑆𝑡
 𝐶  .  = 0, 𝑡1 ≤ 𝑡 ≤ 𝑡2 , 𝑡2 − 𝑡1 ≠ 0, 𝑡1 > 0,

𝑐𝑜𝑚𝑚𝑜𝑛(𝜗𝑈 , 𝐵𝑑)

2
, 𝐵𝑑 = 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡, 𝑆𝑡

 𝐶  .  = 0, 𝑄𝑡
 𝐶  .  = 0 

1, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

      (12) 
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where M is the Walsh matrix derived over the Hadamard 

matrix (Z) for the number of available variables, 𝑆𝑡
 𝐶 

 and  

𝑄𝑡
 𝐶 

are the functions tracking the change in signs for the 

recorded variables and behavior rules, respectively. The 

function 𝑐𝑜𝑚𝑚𝑜𝑛(𝜗𝑈 , 𝐵𝑑) calculates the number of 

variables with a common interest for the behavior rules in 

the lower layer. It is to be considered that the total number 

of passes should not be allowed to go beyond the mesh 

structure (
𝐾(𝐾−1)

2
) and it should be consistent with the rule 

of passes and places followed by the original HCAPN 

model [33]. 

5. Number of tokens: The number of tokens is driven by 

the operational requirements of the 2-layer HCAPN 

model. For initial consideration, each behavior rule as 

well as each variable is provided with a single token, 

whose requirements depend on the number of 

occurrences in the transition-formulae and the security 

aspects, respectively. The periodicity of a behavior rule 

has a definite impact on the number of tokens to be set 

for evaluating the inputs for a device. Thus, for 

verification, the number of tokens is set as𝐵′
 𝛼𝑗

𝜗𝑈
𝑗=1

|𝐵𝑑 |
. 

6. Deciding the input and the outputs: The number of 

inputs is based on the data read for the embedded IoT 

device involved. The number of inputs initially is set to 

that needed by the first behavior rule. The choice after 

the initiation depends on the user, i.e., the 2-layer 

HCAPN model can be operated in a top-bottom or 

bottom-top approach. It can also be initiated in both 

directions to confirm the reachability of all the places 

as well as for checking the firing of all transitions. Note 

that reachability of all places and firing of all 

transitions also depends on the reliability of the system. 

For the outputs, the place formed at last during a given 

slot is taken as an output. Moreover, in any instance, 2-

layer HCAPN can be halted, and, unlike traditional 

Petri nets, any place can be marked as an output. 

7. Deciding the aspect and the context: The aspect refers 

to the feature of HCAPN, which is set as “verification” 

for the tracked behavior rules and the context refers to 

an event which causes a transition to fire. Multiple 

transitions can have the same context and each context 

depends on the number of behavior rules and the 

variables which form these behavior rules. The firing 

of the transition is dependent on the tokens with the 

variables in the upper layer and the tokens with the 

behavior rules in the lower layer. The firing of 

transition is based on the requirements of the context 

and the availability of variable information from the 

device under surveillance for behavior verification. The 

firing can also be predicted similar to the general Petri 

nets, provided that accurate transition matrices are 

formed for the tracked behavior rules. The context in 

the proposed set up is marked by C<index> and the 

aspect helps to understand the state of the HCAPN 

model, i.e., whether it is in the verification stage or the 

prediction stage. Moreover, aspect can also be used to 

identify if the system is evaluating the results through 

comparison or ignoring the available inputs. 

8. Deciding Supervisory HCAPN: The supervisory 

HCAPN is the experts’ observations, which are based 

on a prediction as well as the flow of data available 

from the embedded device in the CPS. The decisive 

supervisory HCAPN helps to understand the deviation 

of the system in successfully verifying the behavior 

rules. Moreover, it is used as learning for the system, 

which helps to ignore pre-decided/pre-evaluated 

behavior rules, thereby saving computations as well as 

overheads of misbehavior detection. 

9. Observing G=Fuzzy(H(.)):Once all the above 

requirements are satisfied, the system is ready to verify 

that the behavior rules generated are correct and cover 

all the threats (or satisfy the security requirements) and 

that the resulting safe and unsafe states are complete 

and are generated correctly. For this, by definition of 

HCAPN, we have G=Fuzzy(H(A1, A2,A3, A4, A5, 

A6, A7, A8, A9)), where A1-A9 are the metrics of the 

HCAPN model, such that, A1 is the set of places 

(NU
P + NL

P), A2 is the set of transitions (TU
P + TL

P),A3 is 

the set of connections between A1 and A2, A4 is the 

set of passes (A4={K| K> 0}), A5 is the set of type of 

passes, which is marked with the number of tokens for 

evaluation in BRIoT, A6 is the set of context 

conditions (A6={C| C ∈ ABIs derived from the 

behavior rules}), A7 denotes the aspect, A8 is the 

number of layers, which is 2, and A9 is the set of 

output places, which is 1. The verification is done 

based on correctness properties, which are then fed into 

the fuzzy inference system for generating a Boolean 

output to check the correctness as well as the 

applicability of the behavior rules. The details of the 

properties used for verification [33] are as follows: 

a) Isolation: It refers to the places which are left 

alone and does not have any connectivity within 

the HCPAN based on the given behavior rules. 

The isolation is tested in the upper as well as the 

lower layer of HCAPN by accounting A1 without 

A2 and A6 associated with it. Mathematically, it 

can be written as: 

𝑆𝐼
<𝐿𝑎𝑦𝑒𝑟 >

= 1 −
1

 

  
 N<𝐿𝑎𝑦𝑒𝑟 >

P ′
 

 N <𝐿𝑎𝑦𝑒𝑟 >
P  

 

2

−1

 

 

, |N<𝐿𝑎𝑦𝑒𝑟 >
P ′

| ≠  N<𝐿𝑎𝑦𝑒𝑟 >
P  

     (13) 

where the prime operator(′) denotes the non-

functional places in the HCAPN model. 

𝑆𝐼
<𝐿𝑎𝑦𝑒𝑟 >

 is for an individual layer, subject to the 

identification of error only in the variables (upper 

layer) or behavior rules (lower layer). One can 

also compute isolation collectively based on A1 

as: 

𝑆𝐼
<𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒 > = 1 −

1

  
 𝐴1′ 

 𝐴1 
 

2

−1 

,  𝐴1′ ≠ |𝐴1| 

     (14) 
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b) Non-Reachability: Non-reachability refers to the 

inaccessibility of places in the given HCAPN and 

can be expressed as a counter-value of 

reachability. In the given mode, the reachability 

can be determined by accounting the deflections 

in the number of transitions which are fired and 

the number of tokens retrieved at each place, such 

that: 

𝑅𝐵 =  1 −
1

  
 𝐴2′ 

 𝐴2 
 

2

− 1 

  1 −
1

  
 𝐴5′ 

 𝐴5 
 

2

− 1 

 , 

 𝐴2′ ≠ |𝐴2|,  𝐴5′ ≠ |𝐴5|. 

(15) 

The smaller value of reachability means higher 

non-reachability and vice versa. Similarly, 

reachability can account for the individual layer 

based on the location of the output. Moreover, 

non-reachability is also checked as part of the 

transition matrix by accounting the negatives for 

tokens, which refers to the 

congestion/cycle/conflict and is against the 

policies of a Petri Nets. 

c) Dependability: It defines the relationship 

between the variables and decreases when more 

variables are in the behavior rules without the 

prior knowledge. It is difficult to predict any 

relation between the variables and the existing 

behavior rules without any library, which is not a 

case with real-time evaluations. Thus, 

dependability decreases with an increase in the 

variables with non-availability of relationships 

with any of the existing behavior rules. Based on 

this, the dependability of the 2-layer HCAPN 

model can be given by:  

𝐸𝐷
𝑃 =  

 𝐵𝑑  + 𝐵𝑑 ,𝑥  

𝐽1+𝐽2
    (16) 

 

where 

𝐽1 =   𝐵𝑑   
1

 𝐵𝑑  
  𝜗𝑖 − 𝜗  2 𝐵𝑑  

𝑖=1  +  𝜗 −  
𝜗 +𝜗𝑥

    

2
  

2

 (17) 

        and 

𝐽2 =   𝐵𝑑,𝑥    
1

 𝐵𝑑,𝑥  
  𝜗𝑥,𝑖 − 𝜗𝑥

    
2 𝐵𝑑,𝑥  

𝑖=1   +  𝜗𝑥
   –  

𝜗 +𝜗𝑥
    

2
  

2

 .

 (18) 

Here,  𝐵𝑑,𝑥   is the number of behavior rules with 

new variables, 𝜗  is the average number of 

variables in each behavior rule, 𝜗𝑥  is the number 

of new variables, and  𝜗𝑥
     is the average number of 

variables in the new behavior rules. 

Now, the isolation, non-reachability and dependability 

are normalized by using similar formulations as used for B’. 

Considering this, the fuzzy inference for verification of 

behavior rules is formulated which gives verified or non-

verifiable as an output. It can be expanded to check the 

correctness of variables as well as context used to relate 

variables and the behavior rules. The fuzzy inference rules 

and impact of properties on the decision are illustrated by 

Fig. 6. 

 

 

A. Fuzzy(H(.)) vs. isolation and non-reachability. 

 

B. Fuzzy(H(.)) vs. isolation and dependability. 

 

C. Fuzzy(H(.)) vs. non-reachability and dependability. 

Fig.6: A graphical illustration of fuzzy observations for determining 
the correctness of behavior rules based on the 2-layer statistical 

HCAPN model. The function Fuzzy (H (.)) is contrasting to Fig. 4 

even with different variations in non-reachability, isolation and 
dependability. This depicts the role of the statistical model in the 

verification process. It also verifies that the identification of 

correctness is based on the expert’s module as well as the accurate 
formation of a 2-layer HCAPN model. 

In the fuzzy-based correctness evaluations, isolation and 

non-reachability (lower value on reachability means higher 

non-reachability and vice versa) are marked with low, 

medium, and high membership functions with values (0, 

0.2, 0.4), (0.25, 0.5, 0.75), (0.4, 0.7, 1), and (0, 0.2, 0.4), 

(0.3, 0.45, 0.6), (0.5, 0.75, 1), respectively. Dependability is 

marked with very low, low, medium, high, and very high 

with values (0, 0.1, 0.2), (0.15, 0.25, 0.35), (0.30, 0.45, 

0.60), (0.55, 0.7, 0.85), and (0.75, 0.875, 1), respectively. 

The outputs are marked as low, medium, sensitive, correct, 

strictly correct with values (0, 0.2, 0.4), (0.35, 0.5, 0.65), 

(0.54, 0.65, 0.75), (0.7, 0.825, 0.95) and (0.85, 1, 1), 

respectively. The decision on correctness can be attained 

based on the following conditions: 

𝐺 =  
0, 𝑖𝑓 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝐿𝑜𝑤 ≤ 𝐹𝑢𝑧𝑧𝑦 𝐻 .   ≤ 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

1, 𝑖𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡, 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 ≤ 𝐹𝑢𝑧𝑧𝑦 𝐻 .   ≤ 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡
     (19)  
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In addition to preliminary observations for correctness, 

defuzzification can be used to evaluate the model on crisp 

values. Irrespective of that, the results of the correctness of 

behavior rules will be same as pointed out in (19). Once 

these verifications are done, the system can be operated 

towards the identification of misbehavior in a CPS. The 

details of these procedures for verification and correctness 

of behavior rules are presented in Algorithms 1 and 2. 

ALGORITHM 1: Verifiability and correctness of behavior rules 

Input: B, W, I,𝜸𝑼, 𝜸𝑬[E.g. Table 5], fuzzy range and membership values 

Output: V= True/False (0/1), G=True/False (0/1) 

1. While (I!=NULL) 

2.   Set system and initiate operational profiler 

3.   Obtain values for B ( as shown in Table 5) from experts 

4.   While (Read(B)==True) 

5.         Fetch ABI from experts and users 

6.              Set Value for B 

7.              Calculate D as in (4) using dependants from  (1)~(3) 

8.              If (W==unavailable) 

9.                    Calculate W as in (7) using dependants from (5)~(9) 

10.              End If 

11.              Invoke Fuzzy(B,D,W) with predefined rules 

12.              Obtain V 

13.              If ( V==1) 

14.                    Store Bd, Wd, and Dd 

15.                    G=Initiate HCAPN Tool  HCAPN(Bd, Wd, and Dd) 

16.                    If(G==1) 

17.                          ABI is verifiable and correct. 

18.                    Else 

19.                          ABI is verifiable but incorrect 

20.                    End If 

21.              Else 

22.                    Exit(-1) // return non-verifiable behavior rule 

23.              End If 

24.    End While 

25. End While 

For observations: Vary 𝜺, W,𝜸𝑼, 𝜸𝑬, 𝒇 𝜶, 𝜷, 𝜺  

ALGORITHM 2: G=HCAPN (H (.)) 

Input: Bd, Wd, and Dd, fuzzy range and membership values 

Output: Return G 

1. While (Bd!=NULL) 

2.   Set number of layers = 2 

3.         Lower layer places=behavior rules – follow 𝐍𝐋
𝐏 in (10) 

4.         Upper layer places=variables– follow 𝐍𝐔
𝐏 in (10) 

5.         Set transitions 𝐓𝐔
𝐏 and 𝐓𝐋

𝐏 – follow (11) 

6.        Set passes between Bd and 𝝑 

7.        Resolve loops, relationships, large traversals 

8.        Set tokens and fix input and output places 

9.        Build HCAPN 

10.        While (Observation==True) 

11.          Calculate Isolation as in (14) 

12.          Calculate Non-reachability as in (15) 

13.          Calculate Dependability as in (16) 

14.          Normalize values of (14) ~ (16) and store H (.) 

15.          Invoke Fuzzy (H (.)) 

16.         Obtain G and return 

17.         End While 

18. End While 

 

 

B. AUTOMATIC TRANSFORMATION OF A BEHAVIOR 
RULE SET TO A STATE MACHINE FOR FEEDBACK-
BASED MISBEHAVIOR DETECTION 

We transform behavior rules to a C-language state 

machine labeled with safe and unsafe states, against which 

good (normal) and bad (malicious) behaviors of the IoT 

device can be statistically characterized. Suppose that there 

are n ABIs derived from the corresponding n behavior 

rules. Then all n ABIs (derived from the behavior rules) are 

combined in disjunctive normal form (DNF) into a Boolean 

expression for misbehavior detection. This means that a 

violation of any ABI Boolean variable (meaning taking a 

value of 1) indicates a violation of the corresponding 

behavior rule. The resulting state machine has a total of 

2
n
states, out of which only one is a safe state (when all ABI 

Boolean variables take the value of 0). 

However, environmental and operational conditions 

may change rapidly causing output variations even if an IoT 

device follows the behavior rules. Thus, it is necessary to 

model such variations for effective misbehavior detection. 

The reference point is the state machine generated (a DNF 

Boolean expression) as describe above which resembles an 

expert’s observations. This helps track the feedback for 

each ABI (and hence each behavior rule) and understand 

the limits up to which the variation in the ABI can be 

treated as normal behavior. To model this, 𝜀𝑋
𝐹  is used as an 

accumulated feedback variable, formulated as follows: 

 

F-𝐷𝑁𝐹 = 𝐷𝑁𝐹 → 𝜀𝑋
𝐹 = 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(Misbehavior Range (“ABI”))(20) 

 

where F-DNF is the feedback on DNF for an ABI, and the 

misbehavior range is marked as the feedback value. The 

feedback can be treated as a residual for determining new 

variables in the tracked behavior rule. 

Let 𝑄 𝐵𝑑 , 𝑈, 𝑌 be the bipartite graph between the 

behavior rules and the set U containing all the readable 

variables (ϑ), such that |𝐵𝑑 | ≤  𝑈 . The set 𝑌 contains the 

feedback variable (𝜀𝑋
𝐹) and also forms the edge between the 

behavior rules and the variables. It is accounted for defining 

the F-DNF as well as for determining the misbehavior of an 

IoT device subject to its adjustment to fit into the network 

requirements. The graph operates for each connection 

between the rules and the variables and accumulates 𝜀𝑋
𝐹to 

check any malicious activity. To form an efficient 

feedback-based misbehavior detector, the reference points 

are required, which should not cause any excessive 

computation and must not keep on iterating for identifying 

changes in the same variable. A solution to such a problem 

can be sought from the amalgamation of bipartite graphs 

and the Barycentric coordinate theory for determining the 

center of mass. Both mechanisms are adopted in our 

proposed misbehavior detection method to help identify the 

misbehavior activity with feedback. A visualization of this 

process can be observed in Fig. 7. 
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Fig.7: Illustration of the Bipartite-based center of mass mechanism for misbehavior detection. 

 

Based on this misbehavior detection method, the 

Barycentric coordinate for the center of mass for the 

misbehavior tracking for an IoT device in a CPS can be 

given as: 

𝑅𝑅,𝑀
(𝐶)

=
1

 𝑤𝑖
|𝐵𝑑 |

𝑖=1

 𝑤𝑗 . 𝑝𝑗
|𝐵𝑑 |
𝑗=1 , 𝑤 ∈ 𝑊𝑑   (21) 

where 

𝑝𝑗 =  
 𝛾𝑚 .𝑉𝑎𝑙 (𝜗)𝑚

𝜗𝑗
𝑚 =1

 𝛾𝑘

𝜗 𝑗
𝑘=1

    (22) 

Similar values are observed for expert’s observations and 

marked as 𝑅𝐸,𝑀
(𝐶)

.The feedback for observable behavior rules 

and the difference in the value of Barycentric coordinates 

for misbehavior detection can be calculated as: 

𝜀𝑋
𝐹 = (𝑤𝑋 . 𝑝𝑋)𝑒𝑥𝑝𝑒𝑟𝑡 − (𝑤𝑋 . 𝑝𝑋)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑   (23) 

and 

∆𝑅𝑋
𝐹 =  𝑅𝐸,𝑀

(𝐶)
− 𝑅𝑅,𝑀

(𝐶)
,∆𝑅𝑋

𝐹 ≥ 0   

      (24) 

where 𝑝𝑋  is derived from (22)for x. Evaluating these, the 

misbehavior can be marked as: 

𝑀𝑏 =  
1, ∆𝑅𝑋

𝐹 ≥ ∆𝑇𝐻
0, 𝑂𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

     (25) 

where ∆𝑇𝐻 marks the observational thresholds for all the 

behavior rules. It can be fixed by an expert or can be fixed 

as a value above which more than y% of behavior rules 

disobeys the principle of accuracy. Once  𝑀𝑏  attains a value 

of 1, it is certain that there is a high probability of 

misbehavior, but the variables primarily causing this 

abnormality are still unclear and may affect the other 

behavior rules, which are dependent on it. To quantify, 

select a subset of behavior rules for which: 

𝜀𝑋
𝐹 ≥    

1

 𝐵𝑑  
  𝑤𝑗 . 𝑝𝑗 − 𝑤. 𝑝      

2

 𝐵𝑑  

𝑗=1
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

−  
1

 𝐵𝑑  
  𝑤𝑗 . 𝑝𝑗 − 𝑤. 𝑝      

2

 𝐵𝑑  

𝑗=1
𝑒𝑥𝑝𝑒𝑟𝑡

   

      (28) 

and parse each behavior rule by following the importance 

of its variables (𝛾), such that, for each behavior rule, the 

alterations in the ith variable can be calculated trivially as 

∆𝜗𝑖 =  𝑉𝑎𝑙(𝜗𝑖)𝑒𝑥𝑝𝑒𝑟𝑡 −  𝑉𝑎𝑙 𝜗𝑖 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 . For a decision on 

adjustments, a local Barycentric coordinate observed by an 

expert can be evaluated as: 

𝐿𝑋,𝑅,𝑀
(𝐶)

=
1

𝑊𝑑,𝑋
 𝑊𝑑,𝑋 . 𝑉𝑎𝑙(𝜗𝑗 )𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

|𝜗𝑋 |
𝑗=1   (29) 

 and 

𝐿𝑋,𝐸,𝑀
(𝐶)

=
1

𝑊𝑑,𝑋
 𝑊𝑑,𝑋 . 𝑉𝑎𝑙(𝜗𝑗 )𝑒𝑥𝑝𝑒𝑟𝑡

|𝜗𝑋 |
𝑗=1   (30) 

Based on these, the adjustments can be evaluated as: 

∆𝐿𝐴
(𝐶)

= 𝐿𝑋,𝑅,𝑀
(𝐶)

− 𝐿𝑋,𝐸,𝑀
(𝐶)

=  
(≈)0, 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡; 𝑐𝑕𝑒𝑐𝑘 𝑜𝑡𝑕𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑁𝑜 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑠
  . (31) 

The above formulation checks if a behavior rule’s overall 

coordinates remain the same or not. If these are the same, 

the device is not misbehaving but merely performing 

certain adjustments to suit dynamically changing 

environmental or operational conditions; otherwise, it is 

treated as misbehaving which requires immediate actions. 

The detailed steps of Feedback-based mechanism can be 

followed in Algorithm 3. 
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ALGORITHM 3: Feedback-based misbehavior detection 

Input: Bd, Wd,, Dd, 𝑸 𝑩𝒅, 𝑼, 𝒀 , 𝜸, ∆𝑻𝑯 

Output: 𝜺𝑿
𝑭, ∆𝑳𝑨

(𝑪)
, 𝑴𝒃 

1. While (Bd!=NULL) 

2.   Set experts inputs and check variables in traced B 

3.   Define local weight w 

4.   Define probability (p)  using (22) 

5.   Perform steps 2, 3, and 4 for experts observations 

6.   Calculate Barycentric coordinates (𝑹𝑹,𝑴
(𝑪)

and  𝑹𝑬,𝑴
(𝑪)

) using (21) 

7.   Calculate 𝜺𝑿
𝑭 using (23) based on expert and observed values 

8.   Calculate difference in Barycentric coordinates ∆𝑹𝑿
𝑭using (24) 

9.   If (∆𝑹𝑿
𝑭 ≥ ∆𝑻𝑯) 

10.        𝑴𝒃=1 

11.         Diff=  
𝟏

 𝑩𝒅 
  𝒘𝒋. 𝒑𝒋 − 𝒘. 𝒑       

𝟐 𝑩𝒅 

𝒋=𝟏
𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅

−  
𝟏

 𝑩𝒅 
  𝒘𝒋. 𝒑𝒋 − 𝒘. 𝒑       

𝟐 𝑩𝒅 

𝒋=𝟏
𝒆𝒙𝒑𝒆𝒓𝒕

  

12.         If (𝜺𝑿
𝑭 ≥ 𝐃𝐢𝐟𝐟) 

13.              Quantification= true 

14.              ∆𝝑𝒊 =  𝑽𝒂𝒍(𝝑𝒊)𝒆𝒙𝒑𝒆𝒓𝒕 −  𝑽𝒂𝒍 𝝑𝒊 𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 

15.                   Calculate 𝑳𝑿,𝑹,𝑴
(𝑪)

 using (29) 

16.                   Calculate 𝑳𝑿,𝑬,𝑴
(𝑪)

 using (30) 

17.                   If(∆𝑳𝑨
(𝑪)

(= 𝑳𝑿,𝑹,𝑴
(𝑪)

− 𝑳𝑿,𝑬,𝑴
(𝑪)

)==0) 

18.     Device is adjusting, check other variables 

19.              Else 

20.    No adjustments, mark misbehavior 

21.                   End If 

22.              Else 

23.                  Quantifications = false 

24.                   Exit(-1) 

25.          End If 

26.       Else 

27.             𝑴𝒃=0 

28.             Exit(-1) 

29.       End If 

30. End While 

For observations: Vary 𝑹𝑹,𝑴
 𝑪 

 and 𝑹𝑬,𝑴
 𝑪 

 as per the behavior rules, p, 𝜸 

and ∆𝑻𝑯 

 

ALGORITHM 4: Lightweight statistical analysis 

Input: T, ρ, Bd, Wd,, Dd, steps tn, 𝜸 

Output: 𝜽, 𝝎𝒈,𝝃(𝝎𝒈),𝝎𝒈
(𝑶)

, 𝝃 𝝎𝒈
 𝑶 

 , 𝑭𝑷, 𝑭𝑵 

1. While (t<= T) 

2.   Calculate compliance constant ρ for given instance 

3.   Calculate ∆𝑳𝑨
(𝑪)

 using (29)~(31) 

4.   Calculate ∆𝑹𝑿
𝑭 using (24) and 𝑹𝑹,𝑴

 𝑪 
 using (21) 

5.   Use 𝜺𝑿
𝑭 from (28) and Algorithm 3 

6.   Set 𝑻 𝜽  

7.   Calculate 𝜽 using (32) 

8.        Perform predictive evaluations for 𝜽𝒑using (35) 

9.   Calculate 𝝎𝒈 using (37) 

10.        Calculate 𝝃(𝝎𝒈) using (38) 

11.        Calculate 𝝎𝒈
(𝑶)

 using (39) 

12.        Calculate 𝝃 𝝎𝒈
 𝑶 

  using (40) 

13.        Calculate adjustments and record 𝛙 

14.           If (𝛙== traceable) 

15.           If(𝝃 𝝎𝒈
 𝑶 

 ≥ 𝝃(𝝎𝒈) + 𝛙) 

16.                     Record FP 

17.                Else if (𝝃 𝝎𝒈
 𝑶 

 ≤ 𝝃(𝝎𝒈) − 𝛙) 

18.                 Record FN 

19.                End If    

20.           Else 

21.                Mark as miss and continue 

22.           End If 

23.   t=t+100 // 10 steps in this case 

24. End While 

For observations: Vary ρ,𝑻 𝜽 , Shuffle rules to change 𝑹𝑹,𝑴
 𝑪 

 and 𝑹𝑹,𝑴
 𝑪 

 

 
 
C. LIGHTWEIGHT RUNTIME COLLECTION OF 

COMPLIANCE DEGREE DATA AND STATISTICAL 
ANALYSIS 

Unlike anomaly detection which frequently requires 

heavy resources to profile/learn anomaly patterns, our 

behavior rule specification-based data collection process is 

lightweight. By using the transformed state machine, we 

only need to periodically monitor if a target IoT device is in 

safe or unsafe states. The periodic evaluations are similar to 

the recording of behavior rules with a periodicity B’. Now, 

considering that the overall evaluations are bounded by 

timestamps, t1, t2… tn, the compliance degree data is 

denoted by θ, which has to be collected for each device for 

a given duration. The compliance degree of data is driven 

by the stiffness of the model and can be modeled using 

Wannier function of weight and the adjustment values of 

each device, such that: 

𝜃 =
1

𝜌 𝑡𝑛
  

1

|𝐵𝑑 |
 

1

𝑓(𝑊,∆𝑅𝑋
𝐹 ,∆𝐿𝐴

 𝐶 
)

|𝐵𝑑 |  t1,t2… tn 𝜌t1,t2… tn  (32) 

where 𝜌 is the compliance constant, which is derived as a 

function of 𝛾 for all the behavior rules aggregated for a 

device under surveillance, such that 𝜌 =  
1

|𝐵𝑑 |
 𝛾𝑖

|𝐵𝑑 |
𝑖=1 . The 

function 𝑓(𝑊𝑑 , ∆𝑅𝑋
𝐹 , ∆𝐿𝐴

 𝐶 
) derives its value from the 

stiffness theory [39], such that: 

𝑓 𝑊, ∆𝑅𝑋
𝐹 , ∆𝐿𝐴

 𝐶 
 =  𝑓 ∆𝑅𝑋

𝐹 , ∆𝐿𝐴
 𝐶 

 + 𝜑 . 𝑓 𝛼, 𝛽, 𝜑𝑈𝐸 . 𝑓 𝛼, 𝛽, 𝜀  (33) 

which traces feedback and availability of residual changes 

to: 

𝑓  𝑊, ∆𝑅𝑋
𝐹 , ∆𝐿𝐴

 𝐶 
 =  𝑓  ∆𝑅𝑋

𝐹 , ∆𝐿𝐴
 𝐶 

 + 𝜑 . 𝑓 𝛼, 𝛽, 𝜀𝑋
𝐹 2 (34) 

where 𝑓 𝛼, 𝛽, 𝜀𝑋
𝐹 2 is derived from (9), and 

𝑓 ∆𝑅𝑋
𝐹 , ∆𝐿𝐴

 𝐶 
  can be set as a product of 0 and 1 based on 

their combinatorial outcome for a variation in Barycentric 

coordinate and adjustments. The compliance degree data 

can be predicted for a continuous interval as: 

𝜃𝑝 =
1

𝜌 𝑡𝑛
 

1

|𝐵𝑑 |
 

1

𝑓 ∆𝑅𝑋
𝐹

,∆𝐿
𝐴

 𝐶 
 +𝜑 .𝑓 𝛼,𝛽,𝜀𝑋

𝐹 𝑝

2 𝐵𝑑  𝜌𝑝(𝜌, 𝑡) 𝑑𝜌 (35) 

where 

 

𝑓 𝛼, 𝛽, 𝜀𝑋
𝐹 𝑝 =  

1

  𝐵 
 𝑒

−𝑗||αi,j−𝛽𝑖,𝑞||𝑛1 ,𝑛2

𝑗=1,𝑞=1  𝑒𝑗||αi,j−𝛽𝑖,𝑞||
.  𝜀𝑃,𝑋

𝐹  𝜀𝑋
𝐹 , 𝑡 𝑑𝜀𝑋

𝐹 (36) 

The observed system model and compliance degree data 

are evaluated using Weibull Distribution [41] as it is 

difficult to predict the type of distribution of data from a set 

of IoT devices in a CPS. Moreover, Wannier formulations 

used in the weight calculations are true for pseudo-periodic 
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behavior rules, as a device may not behave in a similar 

pattern throughout its operations. Furthermore, with 

predictive evaluations, Weibull distribution can be more 

specific and can take dimensions of any well-suited 

statistical model. To keep the entire process light-weighted, 

Weibull reliability is determined which operates over the 

Weibull formation of the Wannier function-based 

compliance degree data and also accounts for the false 

positives and false negatives focusing on the misbehavior 

detection of embedded IoT devices in a CPS. To model 

this, 𝑊𝑑 , ∆𝑅𝑋
𝐹 , ∆𝐿𝐴

 𝐶 
as the instance-based value of 𝜃  are 

used for evaluating the cumulative reliability of the model 

and to specify its capacity in identifying the misbehavior of 

a device [41], such that: 

𝜔𝑔 =
∆𝑅𝑋

𝐹

𝑇(𝜃)
 

t1+t2+⋯+ tn

𝑇(𝜃)
 
∆𝑅𝑋

𝐹−1
𝑒

− 
t1+t2+⋯+ tn

𝑇(𝜃)
 
∆𝑅𝑋

𝐹

, 𝑇 𝜃 ≠ 0, ∆𝑅𝑋
𝐹 ≠ 0 

      (37) 

where 𝑇(𝜃) is the instance evaluating function which 

records the steps for which all the metric values are 

available based on the compliance degree of the data 

collected for a device. Here,  𝜔𝑔  is the Weibull PDF, based 

on which the reliability of the system can be modeled as 

[41]: 

𝜉(𝜔𝑔) =  𝑒
− 

t1+t2+⋯+ tn

𝑇(𝜃)
 

∆𝑅𝑋
𝐹

    (38) 

For actual observations, (37) and (38) are modeled for 

Wannier function, such that: 

𝜔𝑔
(𝑂)

=
𝑅𝑅,𝑀

(𝐶)

𝑇(𝑊𝑑 )
 

t1+t2+⋯+ tn

𝑇(𝑊𝑑 )
 

𝑅𝑅,𝑀
(𝐶)

−1

𝑒
− 

t1+t2+⋯+ tn

𝑇(𝑊𝑑)
 
𝑅𝑅,𝑀

(𝐶)

, 𝑅𝑅,𝑀
(𝐶)

≠ 0, 𝑇(𝑊𝑑) ≠ 0

      (39) 

and 

𝜉 𝜔𝑔
 𝑂 

 =  𝑒
− 

t1+t2+⋯+ tn

𝑇 𝑊𝑑 
 
𝑅𝑅,𝑀

 𝐶 

   (40) 

Formulations in (37) to (40) are only used when the system 

shows a non-approximated value for  ∆𝑅𝑋
𝐹 .Such a situation 

leads to some false positives or negatives in misbehavior 

detection of an IoT device. To understand this, a limiting 

constant (±ψ) is derived, such that the false positives and 

negatives are identified as: 

𝑂𝑢𝑡𝑝𝑢𝑡 =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃), 𝜉 𝜔𝑔

 𝑂 
 ≥ 𝜉(𝜔𝑔) + ψ

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁), 𝜉 𝜔𝑔
 𝑂 

 ≤ 𝜉(𝜔𝑔) − ψ
 . (41) 

The steps for lightweight statistical analysis are provided in 

Algorithm 4. 

V. APPLYING BRIOT TO UAV CPS 

In this section, the proposed BRIoT is applied to a UAV 

embedded in a UAV-CPS as in BRUIDS [18], which is 

used as a baseline model for performance comparison. 

Step-by-step descriptions are given to explain the 

application, including deriving the security requirements of 

a UAV device given its operational profile as input, 

deriving the threats that can violate the security 

requirements, generate the behavior rules, verifying the 

behavior rules are complete and cover all threats (with 

respect to the security requirements), performing the 

transformation from the behavior rules to a state machine 

for misbehavior monitoring, collecting runtime compliance 

degree data, conduct statistical analysis for misbehavior 

detection, and assessing detection accuracy in comparison 

with BRUIDS [18]. 

A. EXPERIMENTAL SETUP 

We first describe the mandatory steps required to setup the 

system to be driven by the proposed BRIoT model. 

 

1) Generation of Behavior Rules and Attack 
Behavior Indicators with Formal Verification 

The first step is to specify the operational profile (or the 

mission assignment) of a UAV in a UAV-CPS. It specifies 

mission events according to the probabilities with which 

they are expected to occur during the operational phase of 

the UAV. Without loss of generality, a special type of UAV, 

a military UAV [11], is considered with the following 

combat mission operational profile during its lifetime: 

 

Navigate to specified locations following specified 

routes, perform correct data routing and IDS functions, 

return correct and timely sensing data to the designated 

ground station only, conserve energy, and upon 

confirmation from an authority, launch a missile at a 

specified battlefield location target and return to the 

home airbase. 

 

Given this operational profile as input, the security 

requirements of this UAV can be automatically derived as 

listed in Table 2 (please refer to Fig. 1 for the physical 

components inside this UAV device). 

 

 

Table 2: UAV Security Requirements. 

ID Security Requirement 

SR 1 The UAV must follow a specified route to reach 

a specified location 

SR 2 The UAV must perform correct data routing 

functions 

SR3 The UAV must perform correct IDS functions 

when serving as a monitor node, i.e., providing 

true recommendations 

SR 4 The UAV must send correct and timely sensing 

data to a specified ground station only 

SR 5 The UAV must ready a missile when it is at the 

specified battlefield location and upon an 

authorized command to fire, must fire the missile 

accurately 

SR 6 The UAV must not be captured 

SR 7 The UAV must consume energy only as needed 

so as not to jeopardize the mission 
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With the system requirements defined, it is relatively 

straightforward to identify the threats that will keep this 

UAV from accomplishing its mission, as listed in Table 3. 

 

Table 3: UAV Threats. 

ID Threat  

THREAT1 The UAV is not able to follow a specified 

route 

THREAT2 The UAV is not able to perform correct data 

routing functions 

THREAT3 The UAV is not able to perform correct IDS 

functions, i.e., not able to provide true IDS 

recommendations 

THREAT 4 The UAV is not able to return correct sensing 

data 

THREAT 5 The UAV is not able to return timely sensing 

data 

THREAT 6 The UAV is not able to follow authorized 

commands 

THREAT 7 The UAV is not able to read a missile when it 

is at the specified battlefield location 

THREAT 8 The UAV is not able to fire a missile 

accurately 

THREAT 9 The UAV takes off/lands from/to an enemy 

airbase 

THREAT 10 The UAV sends data to sources other than 

the specified ground station 

THREAT 11 The UAV unnecessarily consumes energy, 

making it unavailable for mission execution 

 

Here it is noticeable that the threats do not make any 

assumption of the attack types (known or unknown). 

Threats 1 and 3-9 threaten integrity; threat 10 threatens the 

confidentiality, and threats 2 and 11threaten availability. 

One can assign a priority to a threat, thereby making one 

threat more critical than another. For this UAV, one may 

want to consider integrity > confidentiality > availability as 

the priority order. Correspondingly one can assign a 

behavior rule (to be described later) with a priority, thus 

making a behavior rule more critical than another. This can 

change the criticality associated with behavior rules and 

affect the standard by which a node is considered 

malicious.  

Next, the behavior rules can be automatically derived 

for this UAV. Table 4lists the behavior set without priority 

order for simplicity. It also lists the security aspect 

(integrity, confidentiality, or availability) associated with 

each behavior rule. A behavior rule is typically derived 

from a threat because a threat specifying a negative event 

that can lead to an undesired outcome is just opposite to a 

behavior rule specifying a good behavior or a good event 

that can lead to the desired outcome. Consequently, it is 

straightforward to map a threat to a behavior rule(for 

example THREAT 1 in Table 3 leads to BR 1 in Table 4) 

for a negative event that has a single cause or source. 

However, a threat that is too generally specified (e.g., 

THREAT 11 in Table 3 about energy consumption) can 

have more than one cause or source for the negative event 

and can require several behavior rules to specify where 

good behaviors are to be monitored. Out of the 11 threats in 

Table 3, only THREAT 11 has more than one source or 

cause for the negative event, so THREAT 11 maps to BR 

11 – BR 13 in Table 4 specifying several sources where 

excessive energy consumption occurs. 

Table 4: UAV Behavior Rules 

ID Behavior Rule Security Aspect 

BR 1 Fly a specified route integrity 

BR 2 forward data packets availability 

BR 3 provide true recommendations integrity 

BR 4 produce accurate sensing data integrity 

BR 5 produce timely sensing data integrity 

BR 6 accept only authorized commands integrity 

BR 7 ready missile if at target integrity 

BR 8 fire missile accurately integrity 

BR 9 do not deploy landing gear if 

outside home airbase 

integrity 

 

BR 10 send data only to designated 

ground station 

confidentiality 

 

BR 11 do not send an exceptionally 

higher number of packets than 

necessary 

availability  

BR 12 use minimum thrust when loitering availability 

BR 13 do not emit exceptionally higher 

signal strength than necessary 

availability 

 

 

 

Table 5: UAV Attack Behavior Indicators in Conjunctive 

Normal Form. 
ID Attack Behavior Indicator Context 

ABI 1 |Location–Planned Location | >distance C1 

ABI 2 |Trusted Node NPR–Trusted Node NPS | >NPR-NPS C2 

ABI 3 Trusted Node Audit  Monitor Node Audit C3 

ABI 4 |(Trusted Node Data – Monitor Node Data)/Monitor 

Node Data | >data 

C4 

ABI 5 |Time Received Trusted Node Data –Time Received 

Monitor Node Data | >time

C5 

ABI 6 (Action FIRE)  (Command = AUTHORIZED) C6 

ABI 7 (Missile READY)  (Location = TARGET 

LOCATION) 

C7 

ABI 8 (Action FIRE)  (Outcome SUCCESS) C8 

ABI 9 (Gear = DEPLOYED) (Location HOME 

AIRBASE) 

C9 

ABI 10 Report Site HOME GROUND STATION C10 

ABI 11 |(Trusted Node NPS – Monitor Node NPS)/Monitor 

Node NPS  | >NPS 

C11 

ABI 12 (Thrust >MINIMUM THRUST) (Status = 

LOITER) 

C12 

ABI 13 |Trusted Node RSSI– Monitor Node RSSI | >RSSI C13 

 

Table 5 lists 13 one-to-one “attack behavior indicators” 

(ABI 1 – ABI 13) in Conjunctive Normal Form (CNF), 

each being expressed as a Boolean expression to be 

evaluated true (1) or false (0), indicating whether the 
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corresponding behavior rule is violated or not. When a 

Boolean expression is evaluated to true, the UAV is 

detected as misbehaving against the corresponding behavior 

rule. Here we note that each attack behavior indicator may 

have several (internal) state variables. For example, ABI 1 

in Table 5 has two state variables, namely, Location and 

Planned Location. 

The 1st attack behavior indicator (ABI 1 in Table 5) is 

that this UAV deviates too much from its specified route at 

any point in time. The CNF of the Boolean expression is 

|Location–Planned Location | >distance. Here distance stands 

for the maximum distance separation between the UAV’s 

location and its planned location at the monitoring instant.  

The 2nd attack behavior indicator (ABI 2) is that the 

trusted node is not forwarding packets to neighbor nodes 

whenever it should. The CNF is |Trusted Node NPR–

Trusted Node NPS | >NPR-NPS. Here NPR stands for the 

number of packets received per time unit, NPS stands for 

the number of packets sent per time unit, and NPR-NPS 

stands for the maximum difference between this UAV’s 

packet receiving rate and packet sending rate. 

The 3rd attack behavior indicator (ABI 3) is that a 

monitor UAV provides bad recommendations toward a 

behaving trusted UAV (called bad-mouthing attacks), 

or/and good recommendations toward a misbehaving 

trusted UAV (called ballot-stuffing attacks). This is 

detected by comparing recommendations provided by 

multiple monitor UAVs and detecting discrepancies. The 

CNF is Trusted Node Audit  Monitor Node Audit. 

The 4th attack behavior indicator (ABI 4) is that a 

trusted node’s embedded sensor reading differs from the 

monitor node’s embedded sensor reading. The monitor 

node is in the neighborhood of the trusted node, measuring 

the same physical phenomenon. The CNF is|(Trusted Node 

Data – Monitor Node Data)/Monitor Node Data | >data 

where data is the maximum percentage difference between 

the trusted node sensor reading and the monitor node sensor 

reading. 

The 5th attack behavior indicator (ABI 5) is that a 

trusted node is not reporting its sensor reading timely, 

therefore making the delayed sensing outcome practically 

useless. The CNF is |Time Received Trusted Node Data –

Time Received Monitor Node Data | >time where time is the 

maximum time difference between the trusted node sensor 

reading time and the monitor node sensor reading time. 

The 6th attack behavior indicator (ABI 6) is that a UAV 

does not accept authorized commands to fire the missile. 

The CNF is (ActionFIRE)  

(Command=AUTHORIZED). 

The 7th attack behavior indicator (ABI 7) is that a UAV 

could not ready its missile when it is at the specified target 

location. The CNF is (Missile READY)  (Location = 

TARGET LOCATION). 

The 8th attack behavior indicator (ABI 8) is that a UAV 

fires the missile in accurately. The CNF is (ActionFIRE) 

 (OutcomeSUCCESS). 

The 9th attack behavior indicator (ABI 9) is that a UAV 

deploys landing gear when outside its home airbase. The 

CNF is (Gear = DEPLOYED) (Location HOME 

AIRBASE). This indicates that the UAV is likely to be 

captured by the enemy. 

The 10th attack behavior indicator (ABI 10) is that a 

UAV sends sensing results to unauthorized parties (not to 

the specified ground station). This indicator catches 

attackers that intend to exfiltrate sending data. The CNF is 

Report Site HOME GROUND STATION. 

The 11th attack behavior indicator (ABI 11) is that a 

UAV transmits an exceptionally high number of packets 

sent (NPS) per second to consume energy. This UAV is 

also suspicious of performing DoS or jamming attacks 

when the NPS is too high [27]. The CNF is |(Trusted Node 

NPS – Monitor Node NPS)/Monitor Node NPS |>NPS 

where NPS is the maximum percentage difference between 

the trusted node’s NPS and the monitor node’s NPS. 

The 12th attack behavior indicator (ABI 12) is that a 

loitering UAV uses more than the minimum thrust required 

to maintain altitude. This indicator catches attackers that 

intend to decrease a UAV’s endurance by wasting its 

energy; these attackers attach to the UAV thrust module. 

The CNF is (Thrust >MINIMUM THRUST)  (Status = 

LOITER).The 13th attack behavior indicator (ABI 13) is 

that a UAV emits exceptionally high received signal 

strength intensity (RSSI) to consume energy. This UAV is 

also a suspect in spoofing GPS to seize control of another 

neighbor UAV [27]. The CNF is |Trusted Node RSSI– 

Monitor Node RSSI | >RSSI where RSSI is the maximum 

RSSI difference between the trusted node’s RSSI and the 

monitor node’s RSSI. 

 

2) Formal Verification of Behavior Rules  
We conduct automatic model checking and formal 

verification of the behavior rules generated (and the 

corresponding ABIs generated) by verifying that the 

behavior rules are correct and can cover all the threats (or 

satisfy the security requirements). We follow the 

description in Section IV to express the 13 ABIs (in Table 

5) and the security requirements (in Table 2) in a 2-layer 

Fuzzy-HCAPN model, such that “any violation of the 

security requirements implies violations of the behavior 

rules” is expressed as a non-conclusive expression proven 

to be true in HCAPN.  

 

 
Fig. 8: Fuzzy rule observations for ABI1. 
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More specifically, using the 13 ABIs (in Table 5) and 

the security requirements (in Table 2) a monitor UAV 

initiates the verification by creating V=Fuzzy(B, D, W) 

based on the variables defined in each behavior rule by 

using conditions (1) ~ (9). We take ABI 1 as our running 

example to illustrate the process. ABI1 has “location” as 

the main variable which also appears in ABI 7 and ABI 9 

for both the user and the expert. Now, since  𝑅𝑈𝐸𝑘 =
1based on (2) ~ (3) as both the incoming UAV and the 

monitor UAV share the same set of behavior rules in a 

mission, D will attain a value of 0.33 based on (4). With W 

being defined as a function of available residual, W is 

varied between 0 and 1, for which the fuzzy rule 

observations for ABI 1 can be seen in Fig. 8. 

This figure helps to understand the impact of each 

behavior rule and tells whether each behavior rule is 

verifiable or not based on the values set for V. Furthermore, 

V=Fuzzy (B, D, W) can be tracked for individual behavior 

rules considering the occurrences of each variable in it as 

well as a collective model by considering variables in all 

the available behavior rules. However, in such a case, 

micro-management is not possible and additional overheads 

are accumulated for massive computations. 

Note that the model will be operated in localized, non-

localized, or non-available forms depending on the 

presence of an expert’s information. Once fixed, a HCAPN 

model based on (10) ~ (18), as shown in Fig. 9, can be built 

using all 13 behavior rules available from the expert. The 

upper layer is formed by using the variables from the 

individual behavior rules. To keep it simple, we only show 

the variables of ABI 1. For ABI 1, there are two variables, 

namely, location and planned locations. Thus, two places, 

V1 and V2, are shown in the upper layer. The relations 

between the places in the lower layer are governed by the 

principle of having common variables with each other. The 

passes are marked by checking the dependency of behavior 

rules. The transitions are fired if the actual data for the 

variables are available. 

 

 
Fig. 9: An illustration of the HCAPN model using 13 behavior rules 

and ABI 1 as the verifiable content. 

 

Next, by using fuzzy observations (Fig. 6) and (19), a 

decision is taken to determine if ABI 1 with a defined set of 

variables is correct or not. To understand this, put the fuzzy 

output V for ABI 1 to Fuzzy(H(.)) along with the range of 

isolation, dependability, and non-reachability (as discussed 

in (13)~(18)) of ABI 1 by using Fig 9. For ABI 1, isolation 

and non-reachability have the same value (i.e., 𝑅𝐵 =

 1 −
1

  
 𝐴2′ 

 𝐴2 
 

2

−1 

 ) as the second term of non-usability passes is 

1 since the no-extra pass is used and no-pass remains 

unused for ABI 1. Now, by putting values of the total 

number of places, i.e., 13, and the total number of unused 

places, i.e., 4 based on (13) and (14), a value of 2 for 

isolation and non-reachability is obtained. Upon 

normalizing on the maximum values, i.e., 7 and 8 attained 

by using the maximum value of unused places=13-1=12 

and the minimum value, i.e., 1, isolation and non-

reachability are given the values of 0.16 or 0.14. For 

dependability, (16) and (17) yield a dependability value of 

1 since no additional variables are included and the average 

number of variables in ABI 1 for the user’s model and the 

expert’s model is the same, we set 𝜗  at 2 as two variables 

are required for ABI 1 (thresholds can be ignored). 

 

 
(A) 

 
(B) 

Fig. 10: Observed values of G alongside Fuzzy(H()) for ABI 1 at two 
different values of isolation and non-reachability (A: isolation and non-

reachability=0.14; and B: isolation and non-reachability=0.16). 

 

Now, placing these values in Fig. 6, it can be 

determined that ABI 1 is greater than the range defined for 

correctness. As illustrated in Fig. 10, the observed output 

from Fuzzy(H()) is 0.949~0.951 based on fuzzy inference 

rules. By (19) we obtain G= 1, meaning that ABI 1and its 

two variables are verifiably correct. 

 

3) State Machine Generation and Feedback-based 
DNF for UAV Misbehavior Detection 

For the UAV state machine, there are 13 Boolean 

variables (each taking the value of either 1 or 0) in the state 

representation, resulting in the total number of states being 

2
13

= 8192, out of which only one is a safe state (when all 13 

Boolean variables are false or take the value of 0) and all 

other 8191 states are unsafe states. This acts as the expert’s 

model in the identification of UAV misbehavior. Here, it is 

to be noted that there are many variables in these 13 attack 

behavior indicator expressions, including Location, Planned 

Location, Trusted Node NPR, Trusted Node NPS, Trusted 

Node Audit, Monitor Node Audit, Trusted Node Data, 

Monitor Data, Time Received Trusted Node Data, Time 

Received Monitor Node Data, Action, Command, Missile, 

Outcome, Gear, Report Site, Monitor Node NPS, Thrust, 

Status, Trusted Node RSSI, and Monitor Node RSSI. 

However, these variables are internal variables maintained 

by a monitor UAV who updates these internal variable 

values at monitoring intervals to determine the true/false (or 

1/0) of the 13 Boolean variables for a trusted UAV that is 

being monitored on. 
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The state machine generated is equivalent to connecting 

the 13ABIs in Table 5 in disjunctive normal form (DNF). In 

other words, it is a Boolean expression of the 13 ABIs 

connected in DNF, representing the expert’s opinion on 

UAV misbehavior. To account for output variations which 

may be caused by rapid environmental and operational 

changes and UAV dynamic adjustments in response to 

environmental changes, we apply feedback-based DNF as 

discussed in Section IV.A.3, such that: 

 
F-𝐷𝑁𝐹 = 𝐷𝑁𝐹 → 𝜀𝑋

𝐹 = 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(Misbehavior Range (“ABI: X”)), 

 

where DNF is observable as:  (|Location–Planned 

Location | >distance(|Trusted Node NPR–Trusted Node 

NPS | >NPR-NPS)  (Trusted Node Audit  Monitor Audit) 

(|(Trusted Node Data - Monitor Node Data)/Monitor Node 

Data| >data) (|Time Received Trusted Node Data –Time 

Received Monitor Node Data| >time)(ActionFIRE)  

(Command = AUTHORIZED)((Missile READY)  

(Location = TARGET LOCATION))((Action FIRE)  

(OutcomeSUCCESS))((Gear = DEPLOYED)  

(Location HOME AIRBASE))  (Report Site HOME 

GROUND STATION) (|(Trusted Node NPS – Monitor 

Node NPS)/Monitor Node NPS  | >NPS)  ((Thrust 

>MINIMUM THRUST)  (Status = LOITER))(|Trusted 

Node RSSI– Monitor Node RSSI | >RSSIand 𝜀𝑋
𝐹  

associates the correction values for the Xth ABI, which 

helps the system detect misbehavior that accounts for 

output variations due to environmental and operational 

changes and adjustments in the activity of a UAV during its 

mission. 

The system performs misbehavior detection as 

discussed in Section IV.B by following conditions in (20) ~ 

(41). The parameter values used in (20) ~ (41) are listed and 

explained in Table 6 in the next section. 

 
Table 6: UAV-CPS Observations from the given 13 behavior rules 

(Tables4 – 5). 

 

Parameter Meaning Value / derived 

using 

Type 

B Behavior set 13 rules (Table 5) Input 

V Verification Function Fuzzy(B, D, W) Output 

D Degree of dependence (4) Output 

W Statistical Weightage 0 ~ 1 (normalized) Input 

𝑟𝑈𝐸  Correlation coefficient 
between experts and 

user behavior rules 

(1) Output 

𝜗 Total number of 

variables from B 

32 (Table 5) Input 

𝛼 Number of 

occurrences of 

variables in the user’s 
behavior rules  

2~5±5 (Table 5) Input 

𝛽 Number of 

occurrences of 
variables in the 

expert’s behavior 

rules 

1~3 (Table 5) Input 

𝐷𝑈,𝑘  Dependence for kth 
behavior rule in the 

(2) Output 

user’s file 

𝐷𝐸,𝑘  Dependence of kth 

behavior rule in the 

expert’s file 

(3) Output 

𝑅𝑈𝐸,𝑘  Ratio of dependence 
for a given behavior 

rule in user and expert 

file 

 (4) Output 

𝛾𝑈  Coefficient indicating 
importance of a 

behavior rule for the 

user 

0.1~0.5 Input 

𝛾𝐸  Coefficient indicating 

importance of a 

behavior rule for the 
Expert 

0.1~0.5 Input 

𝛼𝑈  mean of occurrences 

for 𝜗𝑈variables in all 
behavior rules 

Table 5 Input 

𝜑 Memory coefficient (5) Output 

𝜑𝑈𝐸,𝑖  Relative memory 

coefficient 

(6) Output 

𝜀 Residuals 0.1~1  [induced] Input 

Bd, Wd, Dd Derived sets of B, W, 

and D for the 
evaluated behavior 

rules 

B, with V=True 

(Fig. 4) 

Output 

𝑁𝑈
𝑃 Set of places in the 

upper layer of 

HCAPN 

𝜗 Input 

𝑁𝐿
𝑃 Set of places in the 

lower layer of 
HCAPN 

Bd Input 

K Number of sign 

changes between the 
slots 

(12) Output 

𝑆𝑡
 𝐶 

and 𝑄𝑡
 𝐶 

 Functions tracking the 

change in signs for the 

recorded variables and 

behavior rules, 

respectively 

(12) Output 

𝑆𝐼
<𝐿𝑎𝑦𝑒𝑟 >

 Layer-wise isolation 
in HCAPN 

(13) Output 

𝑆𝐼
<𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒 > Collective isolation in 

HCAPN 

(14) Output 

𝑅𝐵 Non-reachability in 
HCAPN 

(15) Output 

𝐸𝐷
𝑃 Dependability in 

HCAPN 

(16) Output 

 𝐵𝑑,𝑥   Number of behavior 
rules with new 

variables 

Table 5 Input 

𝜗  Average number of 
variables in each 

behavior rule 

Table 5 Input 

𝜗𝑥  the number of new 

variables 

1~5 [induced] Input 

 𝜗𝑥
     Average number of 

variables in the new 

behavior rules 

5 [induced] Input 

Fuzzy (H (.)) Value of G Fig. 6 Output 

𝜀𝑋
𝐹 Accumulated 

feedback variable 

(20) Output 

𝑄 𝐵𝑑 , 𝑈, 𝑌  Bipartite graph 

between the behavior 
rules 

(13, count(𝜗), 

count(𝜀𝑋
𝐹)) 

Input 

𝑅𝐸,𝑀
(𝐶)

 Barycentric 

coordinate for center 
of mass for expert’s 

observations 

(21) Output 



2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917135, IEEE Access

 

VOLUME XX, 2019 19 

𝑅𝑅,𝑀
(𝐶)

 Barycentric 
coordinate for center 

of mass for a given 

device 

(21) Output 

∆𝑅𝑋
𝐹 Difference in the 

Barycentric 

Coordinates 

(24) Output 

𝑀𝑏  Misbehavior  (25) Output 

∆𝑇𝐻 Observational 

thresholds for all the 
behavior rules. 

10 % ~ 50 % Input 

𝐿𝑋,𝑅,𝑀
(𝐶)

 , 𝐿𝑋,𝐸,𝑀
(𝐶)

 Local Barycentric 

coordinates 

(29) and (30) Output 

∆𝐿𝐴
(𝐶)

 Adjustments in the 
local Barycentric 

Coordinates 

(31) Output 

t1, t2… tn Timestamps 100 s each Input 

𝜃 Compliance degree (32) Output 

𝜌 Compliance constant 1

|𝐵𝑑 |
 𝛾𝑖

|𝐵𝑑 |
𝑖=1 , 

𝛾𝑈  𝑜𝑟 𝛾𝐸  

Input 

𝜃𝑝  Predicted compliance 

degree 

(35) Output 

𝜔𝑔  Weibull PDF (37) Output 

𝜉(𝜔𝑔) System’s reliability (38) Output 

𝑇(𝜃) Instance evaluating 

function 

= T Step interval 

10 

Input 

𝜔𝑔
(𝑂)

 Observed Weibull 
PDF 

(39) Output 

𝜉 𝜔𝑔
 𝑂 

  Observed System’s 

reliability 

(40) Output 

±ψ Limiting constant (41) [based on 
adjustments] 

Output 

T Total time with step 

10 

1000s Input 

 

 
B. EVALUATION 

The proposed approach is evaluated against a simulated 

UAV-CPS by MATLAB
TM 

operating under randomized 

scenarios created by different sets of model parameter 

values as listed in Table 6.The system comprises good and 

bad UAVs in accordance with the true input from an expert. 

An expert has a true account of all the 13 behavior rules in 

the behavior rule set B listed in Table 4 (correspondingly 

the 13 ABIs in Table 5) and each incoming UAV is 

evaluated against it. The details of the model parameters 

and their values used in evaluation are listed in Table 6. 

The values in this table are obtained by following the 

formulations of the 13 ABIs in Table 5 as discussed in 

Section IV.A. For example, ABI 1 is marked with 

“location” and “planned location,” meaning that in this 

formulation, ABI 1 operates with these two variables. 

Furthermore, the variable “location” appears three times in 

ABI 1, ABI 7 and ABI 9, so its 𝛽 value is 3. On the other 

hand, the variable “planned location” appears only once in 

ABI 1, so its 𝛽 value is 1. Similarly, other variables in other 

behavior rules are obtained to generate the experiment 

setup in Table 6.  

A distinct set of parameter values as listed in Table 6 

defines a distinct scenario to the model and the system is 

tracked for misbehavior amongst UAVs. To accurately 

trace false positives, false negatives, and true positives, a 

single UAV is selected in the simulation with a run time of 

1000s with 10 evaluation instances of 100s each. It means 

that the UAV evaluation is conducted afresh in every 100s. 

In each evaluation, a fresh scenario is being tested with the 

value of 𝛼being varied by ±5 to check if the system can 

track its activity and mark the suspicious activity as 

misbehavior. Furthermore, in each evaluation, other 

parameters also change their values (can be observed in 

graphs) to test the sensitivity of the performance with 

respect to these changes. The variation in these values helps 

us simulate certain bad behavior UAVs (with incorrect 

behavior rules), which allows accounting for false 

negatives, false positives and true positives using standard 

formulations [18]. The range of compliance degree is 

modeled around compliance constant𝜌, which attains its 

values from 𝛾 as presented in (32). Note that this paper 

does not consider the UAVs’ communication aspect and the 

issues related to latency, overheads and real-scenario noise 

are to be addressed in future work.  

The initial observations help to understand the 

dependence of the behavior rules (D), which is verified by 

deriving the correlation coefficient in (1). D considers the 

importance of behavior rules as the key in deciding whether 

it is relevant to decide the misbehavior of a device based on 

a particular behavior rule. This also helps to track the 

behavior profiling of the entire model as well as its 

applicability to a particular scenario. To understand the 

impact of D on the behavior rules in Table 4, Fig.11shows 

that the variation in the importance of a variable in the 

observed rule causes a variation in the dependence value 

and it increases with it. Predominately, this graph shows 

that it is the expert's profiling which matters and the user's 

derived rules (whether generated manually or 

automatically) are affected accordingly. This value of D is 

crucial in forming the fuzzy set which also helps in the 

formal verification of the behavior rules. 

Next, the evaluations are conducted to understand the 

impact of weight on the derived system as shown in Figs. 

12, 13 and 14. These results help to understand the impact 

of W through Wannier derivations in (5)-(9). These results 

are affected by the residuals and follow different trends on 

the identification of errors with a given set of rules. These 

results suggest that if the residuals are localized and the 

system is aware of them, the possibilities of identification 

of errors (misbehavior) increases with an increase in the 

residual. Furthermore, with more localized residuals, the 

system is able to take a far more appropriate decision in 

marking a particular rule form is behavior detection (Fig. 

13). In case the residuals are non-localized, the system's 

performance degrades as there are high possibilities of the 

system being unable to mark certain rules form is behavior 

detection (Fig. 14). However, this scenario can return in 

favor if the residuals follow a particular trend, as shown in 

Fig. 14, because the system can perform better prediction as 

expressed in the statistical modeling in (35) and (36).  

All these observations impact the proposed center of 

mass based misbehavior detection as shown in Fig. 15. This 

figure shows the comparison of  𝑅𝑅,𝑀
(𝐶)

vs. probability derived 
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over behavior rules with a variation in the types of residuals 

through Wannier function for the accurate identification of 

misbehavior based on the given behavior rules. These 

results comply with the residuals' state and follow the trend 

as per the system observation in localization. Furthermore, 

this result can be used to check the deviation of the system 

from the present state and generate feedback. Such a 

solution can be helpful in making devices learn about the 

accurate state of operation when deployed in a particular 

scenario. 

 

 

 

 
Fig. 11: Dependence vs. the importance of user variables (𝛾𝑈) with a 

variation in the importance of experts variable (𝛾𝐸) for the given behavior 

rules in Tables 4 and 5. 

 
 

 

 

 
Fig. 12: Possibilities of identification of errors with a difference in residual 

localization through Wannier functions. 

 

 
 

 
Fig. 13: Possibilities of identification of errors with a difference in 

localized residuals through Wannier functions. 

 

 

 
 

 

 
Fig. 14: Possibilities of identification of errors with difference in non-

localized residuals through Wannier functions. 

 

 
Fig. 15:𝑅𝑅,𝑀

(𝐶)
 vs probability derived over behavior rules with a variation in 

the types of residuals through Wannier function for the accurate 
identification of misbehavior based on the given behavior rules. 
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The unavailable residuals are generally operated for the 

systems with no feedback from the experts and show a less 

deviation for Barycentric values as shown in Fig. 15. 

However, for localized residuals, accurate readings are 

available and the deviation is in control showing the true 

nature of the system. For the non-localized scenario, the 

system becomes too pessimist and it takes a large value and 

marks major of the rules as a possible non-follower with the 

expert's policies. Thus, it becomes extremely important to 

evaluate the system for all the three conditions to accurately 

identify misbehavior amongst the devices. Further, these 

results suggest that with an increase in the value of 

probabilistic weights, the systems deviation increases with 

it; and at a high value, large feedback is generated which 

marks the system as misbehavior under all circumstances. 

Thus, control overweight is also additionally required to 

accurately implant the proposed model. Numerically, the 

misidentification of residuals can lead up to 75% error in 

the readings, whereas accurate generations can immediately 

lower the error readings by 50%, as shown in Fig.15. 

 
Fig. 16: Compliance degree data variation for the observed instances for 

given localized and non-localized residuals with a variation of compliance 

constant observed for the derived importance of user variables and the 

expert variables. 
 

 
Fig. 17: Misbehavior detection distribution vs. variation in the number of 

instances for the derived compliance degree data for localized, non-
localized and unavailable. 

 

 

 

 
Fig. 18: System's reliability vs. variation in the value of residuals at the 

observed Barycentric coordinates for the center of mass for the 

misbehavior tracking in the defined UAV model. 

 
 

 

The compliance degree data collection is a key step 

behind the evaluation of the system towards accuracy and 

reliability. This model is generated to overcome the issues 

of the linear approach used by most existing work, which 

limits their applicability to complex systems. The 

compliance degree data (θ) varies as per the instance and 

better readings for each instance generate better compliance 

data as shown in Fig. 16. These results suggest that the 

scenario with better feedback and better residuals provide 

sufficiently detailed data, which helps to provide better 

evaluations for the given system. The localized scenario 

offers 11.2% better compliance value than the non-

localized scenario, thus offering a better understanding of 

the system and more accurately tracking the behavior. 

Irrespective of these, the proposed BRIoT model can be 

applied to any scenario with adjustments to additional 

metrics, such as compliance constants and importance 

value. These observations can be seen in Figs. 17and 18, 

which complement each other and show that in the case of 

non-localized residuals, the system may show a variable 

distribution over the compliance data and then gradually 

decreases, thus lowering the performance of the entire 

model. In contrast to this, the localized model operates with 

a much accurate reading and keeps on increasing with the 

detailed availability of the compliance data. Additionally, 

the exact observation can be marked as reliability in 

tracking the misbehavior, which is shown in Fig.18. 

Accordingly, the localized and completely available system 

shows improved performance compared with a system with 

partial observations. This variation lies between 8.10 % and 

43.75 %, which decreases as the deviation of the system 

from the given (expert's value) Barycentric coordinate 

increases. The reliability of the model can be controlled 

with better compliance degree and accurate identification of 
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compliance constant which is affected by the importance 

value of each variable in the observed as well as available 

behavior rule. All these evaluations help to understand the 

range and limit up to which the proposed BRIoT can be 

successfully applied to check whether the generated 

behavior rules are correct or not. Furthermore, these results 

demonstrate that the proposed BRIoT can accurately mark 

misbehavior amongst embedded IoT devices based on the 

derived rules. 

 

 
C.COMPARATIVE ANALYSIS 

The proposed BRIoT approach is compared with 

BRUIDS [18], which is a well-versed and a competitive 

solution in the detection of UAV misbehavior. The 

statistical model in BRUIDS considers the compliance 

degree as a random variable following Beta distribution 

such that a value of zero indicates zero compliance and a 

value of one indicates total compliance. It collects a 

device’s compliance degree periodically based on the 

proportion of time the device stays in a safe state, but it 

does not track which state the device is in over time. Once 

it parameterizes the Beta distribution using the compliance 

degree data collected, it sets a minimum compliance 

threshold below which the node is identified as malicious; 

otherwise the node is considered good. BRUIDS could fail 

when the number of states is large. Also, there is no support 

for feedback to allow for output variations which may cause 

misdetection of misbehavior. Further, BRUIDS is only 

theoretically verified with pre-generated state data. We 

compare the performance of BRIoT against BRUIDS using 

the exact statistical model used by BRUIDS. The major 

difference between the two is the model of statistical 

evaluation. The proposed approach with the use of 

compliance constant (derived over the importance of each 

variable (𝛾)) offers better observations through Weibull- 

evaluations. Additionally, the details of variables in the 

given rules are kept the same for both the models for a fair 

comparison. 
 

Table 7: Performance comparison of BRIoT with BRUIDS for 

misbehavior detection of UAVs. 

Parameters BRUIDS 
BRIoT 

(Localized 

residuals) 

BRIoT 

(Non-

localized 
residuals) 

False 

Negative Rate 
AVG: 0.229 AVG: 0.137 AVG: 0.022 

False Positive 

Rate 
AVG: 0.059 AVG: 0.045 AVG: 0.040 

True Positive 

Rate 
AVG: 0.771 AVG: 0.863 AVG: 0.978 

Compliance 
Degree (In-

depth) 

RANGE: 

0.1~0.9 

RANGE: 

0.008~0.080 

RANGE: 

0.008~0.063 

 

Table 7 compares BRIoT (with localized residuals or 

non-localized residuals) with BRUIDS in false negative 

rate, false positive rate, true position rate, and range of 

compliance degree. The core observation of BRIoT is in its 

high accuracy in dealing with compliance degree data, 

driven by the compliance coefficients and the importance of 

the variables in the behavior rules. In contrast, BRUIDS 

focuses on collecting instances of compliance degree, 

driven by a time model without tracking output values and 

may cause high false positives and high false negatives. For 

BRUIDS, the compliance data is observed for 10instances 

ranging between 0.1 and 0.9, whereas for BRIoT, the range 

is much narrower and varies slightly for localized residual-

based and non-localized residual-based evaluations. The 

results show that our proposed BRIoT model with localized 

residuals (with non-localized residuals) improves the false 

negative rate or true positive rate by an average of 9.2% 

(20.7% respectively) and false positive rate by an average 

of 1.4% (1.9% respectively) in comparison with BRUIDS 

over 10 instances. 

 

 
Fig. 19: Comparison of false negative rate of the proposed BRIoT 

with the existing BRUIDS at a variation on the instances and the 

available values for the center of masses for the given model. 

 

 
Fig. 20: Comparison of true positive rate of the proposed BRIoT 

with the existing BRUIDS at a variation on the instances and the 

available values for the center of masses for the given model along 

with the compliance degree data. 
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Figs. 19 and 20 compare our proposed BRIoT model 

with the existing BRUIDS model for the UAV-CPS in false 

negative probability and the true positive probability, 

respectively. These results demonstrate the effectiveness of 

our proposed BRIoT model in verifying the correctness of 

the behavior rules and achieving better convergence than 

BRUIDS for identifying true misbehavior amongst UAV 

devices in the UAV-CPS. As more instances are observed, 

both BRIoT and BRUIDS perform comparably. This refers 

to the situation when ∆𝑅𝑋
𝐹(see (24)) becomes too large 

showing a major difference from the values of Barycentric 

coordinates as per the center of mass defined in (21)-(24). It 

means that at a huge gap between the observational and 

attained feedback, the performance of the system degrades 

yielding almost similar false negatives for all the 

approaches. The initial verification of behavior rules helps 

control the feedback. in Fig. 19 and Fig. 20, the 

performance of both the models is comparable only after 

the 9th iteration where feedback has a minimum role to 

play. Considering this, BRIoT offers better convergence for 

misbehavior detection of UAVs than BRUIDS. Hence, 

BRIoT is especially applicable to devices whose initial 

states of operations are unknown. It is observed that the 

scale parameters show a variation of 41.31% and 83.63% 

with the BRUIDS based on localized and non-localized 

residuals, respectively. Although the scale parameters show 

72.12% variation for localized and non-localized residuals, 

the compliance degree operates the entire results and better 

convergence of localized approach offers accurate 

misbehavior detection of UAVs. The non-localized residual 

approach adjusts based on the given compliance values, 

thus generating lower false negatives and false positives. 

We attribute the superiority of BRIoT over BRUIDS for 

its ability to account for runtime output variations using the 

feedback mechanism and its effective misbehavior 

detection to avoid false alarms through a Barycentric-

coordinated based center of mass calculation method. 

Another reason of BRIoT performing better than BRUIDS 

is that BRIoT collects compliance data during state 

transitions so it can track the current state a target UAV is 

in at any time, while BRUIDS only collects the compliance 

degree (a value between 0 and 1 representing whether or 

not a target UAV complies with the behavior rules) at time 

instants without the ability to track state transition history. 

This state-tracking ability helps BRIoT achieve higher false 

negative rate and false positive rate especially when 

evidence is not easily observable until many instances have 

been seen. 

 

VI. CONCLUSION 

In this paper, a behavior rule specification-based 

misbehavior detection method called BRIoT has been 

designed and built that can be generally applicable IoT-

embedded CPSs. BRIoT is capable of formally verifying 

the correctness of behavior rules for any embedded IoT 

device and collecting/analyzing compliance data for 

misbehavior detection. BRIoT is especially applicable to 

mission-critical CPSs with specified security requirements 

regardless if the attacks are known or unknown because it 

detects an IoT device’s misbehavior manifested as a result 

of attacks.  

We have developed BRIoT as a tool allowing a user (or 

a domain expert) to specify the operational profile of an 

embedded IoT device as input. The tool can then 

automatically generate a set of security requirements and a 

set of behavior rules, verify the correctness of the behavior 

rules generated, and convert the behavior rules into a state 

machine for runtime misbehavior detection. The overall 

operational cost is very low and it can be operated in both 

on-devices as well as off-device mode in three possible 

situations, i.e., localized residuals, non-localized residuals, 

and unavailable residuals. Through a comparative analysis, 

we demonstrated that BRIoT outperforms BRUIDS, a 

contemporary specification-based misbehavior detection 

method, for misbehavior detection of UAVs in a UAV-CPS 

in reliability, false-positives, false-negatives, and true 

positives. 

In the future, we plan to further analyze the tradeoff 

between effectiveness (measured by false negative rate, 

false positive rate, and true position rate) vs. efficiency 

(measured by memory, run time, communication, and 

computation overhead) for BRIoT to apply to practical IoT-

embedded CPSs. 
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