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Abstract—Moving Target Defense (MTD) is the concept of
controlling change across multiple system dimensions, aiming
to disrupt the adversary in the attack sequence for intrusion
prevention. To date, there is a lack of progress in MTD modeling
and evaluation to test the effectiveness of MTD techniques. In
this paper we develop two analytical models based on closed-
form solutions and Stochastic Petri Nets to analyze the effect
of a dynamic platform technique based MTD on attack success
rate. The numerical results from these two models agree with
one another, providing cross-validation. Furthermore, the output
of these models indicates the existence of parameter settings that
decrease the security of the protected resource and settings that
make MTD most effective in terms of minimizing the attack
success probability.

Index Terms—moving target defense; security; modeling

I. INTRODUCTION

Moving Target Defense (MTD) is the concept of controlling

change across multiple system dimensions in order to increase

uncertainty and apparent complexity for attackers, reduce their

window of opportunity and increase the costs of their probing

and attack efforts [1]. In this paper, we propose two analytical

models for dynamic platform technique (DPT) based MTD

effectiveness evaluation for the purpose of cross-validation.

To understand how MTD can be made effective against

attacks, we start with an attack model as illustrated in Figure 1.

The attack model is the six phase attack sequence comprising:

survey, tool, implant, pivot, damage/exfiltration and cleanup

activities. During the survey phase, the attacker identifies the

key locations for the attack: the vulnerable node (e.g., web

server or operator workstation) through which to enter the

defender system, the critical nodes (that control a critical

process or store critical data) and the intermediate nodes

linking the entry node and critical nodes. Survey data may

include host name, subnet, network address, MAC address,

operating system and security and application software.

During the tool phase, the attacker configures existing attack

tools or creates new tools. During the implant phase, the

attacker establishes a presence on the defender system. This

could be from attacking a webserver, phishing a human

operator or tasking an insider. During the pivot phase, the
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Fig. 1. Phased attack sequence.

attacker will transition from the entry node to the critical

node. During a damage phase, the attacker will perform

some application specific action to disrupt the defender’s

core mission. Alternatively, during an exfiltration phase, the

attacker will transfer the defender’s critical data. During the

cleanup phase, the attacker will remove all artifacts from the

attack (e.g., registry entries, covert file systems or tainted

applications or libraries).

While intrusion detection, tolerance and response are

important and effective defensive measures, intrusion

prevention stops attackers earlier in the phased attack

sequence illustrated in Figure 1. MTD is a type of intrusion

prevention that aims to disrupt the attacker across many

stages: First, it distorts the adversary’s picture of the

protected resource in the survey phase. During the tooling



phase, MTD prompts the attacker to spend time and money

developing exploits for multiple platforms. Third, it stops the

adversary from placing and persisting malware in the implant

phase. During the pivoting phase, MTD obscures the identity

of the true target. Finally, it complicates the damage and

exfiltration phases.

Okhravi et al. [2] propose a taxonomy of MTD where

network and host based techniques comprise the first layer of

classification, and host based techniques are further classified

into dynamic runtime environment, dynamic application code

and data, and DPTs.

As will be discussed in Section II, there is considerable

interest in developing MTD techniques such as artificial

diversity, bio-inspired defenses, software-defined network

configuration, system/code diversification, and code mobility.

However, there is a lack of progress in MTD modeling and

evaluation to test the effectiveness of these MTD techniques.

In this paper we develop two analytical models based on

closed-form solutions and Stochastic Petri Nets (SPNs) [3] to

analyze the effect of MTD on the probability of attack success.

Computational efficiency inspired us to pursue a closed-form

solution, and we investigated a SPN-based solution because of

its inherent consideration of time.

The rest of the paper is organized as follows: In Section II,

we survey state-of-the-art MTD techniques and existing MTD

evaluation methods. In Section III, we develop two analytical

models for the purpose of cross-validation. In Section IV, we

apply these two analytical models to various DPT-based MTD

scenarios with physical result interpretations given. Finally,

Section V summarizes the paper and outlines future research

directions.

II. LITERATURE SEARCH

Hong and Kim [4] propose a Hierarchical Attack

Representation Model (HARM) to assess the effectiveness of

an MTD. HARM addresses the inability of flat approaches to

scale due to changes in network architecture. They contrast

HARM with the existing Attack Graph (AG) assessment

technique. Furthermore, the authors propose Importance

Measures (IM) to guide the parameterization of an MTD;

Hong and Kim contrast IM with exhaustive search (ES).

They categorized MTD techniques as shuffling, diversity or

redundancy, and the authors incorporated each into a HARM

model to measure effectiveness. Typically, redundancy is

not regarded as a moving target defense. Hong and Kim

found shuffling techniques had scalability issues, randomly

deployed diversity strategies can be inefficient and redundancy

techniques linearly increased system security risk. They use

risk (unitless), probability of attack success and reliability

(probability of attack success at some arbitrary time) as

their metrics. The authors’ model includes insider attacks.

Relative to HARM [4], the closed-form mathematical model

we propose is more intuitive.

Collins [5] proposes a game theoretic way to assess

the effectiveness of MTD. His MTD taxonomy comprises

permutation, ephemeralization and replication techniques,

which are network based, and checkpointing, which is host

based. The author bases his assessment on tags and assets.

Collins’ model includes pivoting and Denial of Service (DoS)

attacks. While this works well for network based MTDs, the

model we propose can analyze both network based and host

based MTDs.

Evans et al. [6] propose a way to assess the effectiveness

of MTD. This study discusses the utilization of a model for

assessing the effectiveness for MTD utilized against various

attack classes. They predict that for most cases (circumvention,

deputy, brute force and probing) in their attack model, their

brands of MTD provide a marginal benefit. However, their

brands of MTD, given a sufficiently high rediversification

rate, provide significant benefit for the incremental attack

case. While their investigation focuses on evaluating dynamic

runtime environment and dynamic application code and data

based MTDs, our proposal in addition can analyze DPT-based

MTDs.

Okhravi et al. [7] propose another way to assess

the effectiveness of an MTD. Their investigation focuses

on evaluating DPTs. The authors describe DPTs using

four features: diversity, multi-instance, limited duration and

cleanup. Their attack model is similar to our own in one sense:

the attacker has exploits for some platforms, but not others.

However, the authors assume a computer network attack

(CNA) type attacker who seeks to disrupt system operation

rather than a computer network exploitation (CNE) type

attacker who seeks to keep the protected resource operating

as normal while exfiltrating sensitive data. Where Okhravi et

al. parameterize the attacker based on how long they seek to

disrupt the protected resource, we parameterize the attacker

based on how long they seek to persist on the protected

resource and how well financed/skilled the attacker is.

Zaffarano et al. [8] propose a technique to assess the

effectiveness of an MTD. They propose four metrics each for

the attacker and defender: productivity, success, confidentiality

and integrity. While the authors provide equations to calculate

these eight metrics, critical pieces such as valuation functions

are missing. In this paper, the authors construct a framework

to quantify the impact of the various MTD systems on the

traditional Confidentiality, Integrity, Availability (CIA) model

of information security. Further, they expand upon these

traditional aspects to measure MTD systems which might fail

to prevent an attack, however still successfully monitor and

log said attack to offer aid in attribution and remediation. The

authors then deployed enterprise level tasks in an effort to

create measurable network activity from which to gauge the

effectiveness of MTDs. The attack model of Zaffarano et al. is

a phased attack sequence similar to what we illustrate in Figure

1. While their approach comprises a constructed framework

consisting of large scale network emulation via hypervisor

virtualization, we propose a closed-form mathematical model

and a stochastic model to predict system performance.

Crouse et al. [9] propose a method to assess the

effectiveness of an MTD. Their MTD taxonomy classifies

techniques into movement or deception categories. This



paper attempts to model the probability of success for an

attacker attempting to perform reconnaissance on a network

in the presence of either a honey pot defense strategy or

a network address shuffling strategy. The model developed

to gauge the effectiveness of the employed defenses is a

probabilistic measure of the reconnaissance success given an

undefended network. The model is then expanded to account

for employing the above mentioned defenses, and the results

show that honeypot defenses outperform network shuffling,

or deception defenses outperform movement defenses, but

that a combination of both defenses yields the greatest gains

in disrupting attacker reconnaissance. The authors’ attack

model considers probing and surveillance attacks; Crouse et

al. formulate these attacks into foothold, minimum to win and

shuffling drop scenarios. The probing and surveillance attacks

they consider fall into the survey phase of our attack model

(shown in Figure 1). The drawback is that good data for survey

activity is hard to come by because of the large amount of

noise from legitimate scanning and recreational hacking.

Zhuang et al. [10] propose an approach to assess the

effectiveness of an MTD. Their model considers five

parameters: attack interval, adaptation interval, number of

nodes, adaptations per adaptation interval and attack success

likelihood. Like [7], this is interesting work, but does not

consider a persistent attacker who wishes to remain implanted

on a protected resource for a long time rather than an adversary

who gets in once and claims victory. In contrast, our study

focuses on the attacker who persists on the target system for

a long time.

Xu et al. [11] survey current MTD techniques. Their

MTD taxonomy comprises four categories: software based

diversification, runtime based diversification, communication

diversification and DPTs. The authors propose four approaches

to evaluating MTDs: attack based experiments, probability

models, simulation based evaluation and hybrid approaches.

In contrast, we propose closed-form mathematical modeling

and stochastic modeling.

III. MODEL

In this section, we develop two DPT-based MTD modeling

and evaluation techniques for the purpose of cross-validation.

The first technique is based on closed-form solutions. The

second technique is based on SPN modeling techniques. We

will apply these two modeling and evaluation techniques to

example DPT-based MTD techniques in Section IV.

We highlight four particular facets of our threat model: First,

we assume a persistent attack that takes a certain amount

of time and can be resumed. We note that in some cases

attacks may have to restart from scratch; if this is the case,

the attack can never succeed if the churn rate is faster than

the completion rate. Second, we assume the attacker must

implant some malware and persist on a targeted host. For

example, our model does not apply to a DoS attack. Third,

we assume that detecting and attributing an attacker will deter

further efforts. In particular, the political consequences for a

nation state or legal consequences for a criminal outweigh the

potential rewards of a success attack. Finally, we assume a

nondeterministic implant detection process.

A. Closed-Form Mathematical Model

Equation 1 calculates the probability a cyber attack will

succeed. Intuitively, the probability a cyber attack will succeed

is the likelihood an exploit is available for the target (first

term) multiplied by the likelihood the implemented technique

is successful (second term). The probability an exploit is

available for the target is one minus the probability an exploit

is not available for the target. The likelihood the implemented

technique is successful is the complement of the probability of

implant detection raised to the number of implants required.

Equation 2 calculates the number of implants required: The

number of implants required is the cyber attack length divided

by churn time (the victim must be re-implanted after each

virtual machine (VM) reset) multiplied by configuration count

divided by two. To allow for closed-form solutions, we

make two simplifying assumptions: First, configurations are

distributed uniformly so the attacker will need to wait out half

of the configurations on average. Second, the probability an

exploit is available is the same for all configurations. As we

will see later in Section IV, these assumptions greatly improve

solution efficiency without compromising solution accuracy.

a = (1− (1− e)o)(1− p)i (1)

i = (c/h)(o/2) (2)

In Equation 1, a indicates the probability of cyber attack

success; this is the output of our closed-form mathematical

model. e indicates the probability an exploit is available for a

given configuration. Because all software has vulnerabilities,

e is a function of the budget and/or skill level of the attacker.

o indicates the number of MTD configurations; the defender

chooses this value. p indicates the probability of implant

detection; this is a function of the skill level of the attacker

and the skill level of the defender. i indicates the number

of implants required for the cyber attack. c indicates the

cyber attack length in seconds. The attacker chooses this

value because a mature attacker, even a recreational one, will

have an objective in mind before going after the subject.

For example, they may want to deface a web page, steal a

database or compromise a program. The practitioner should

use a high value for c (e.g., months) to model nation state

attackers and a low value to model recreational hackers (e.g.,

hours). The lower success rate associated with higher cyber

attack length does not mean that nation state attackers are

less dangerous than recreational hackers because not all cyber

attacks are equal: A recreational attack will likely have less

severe consequences than a nation state attack. h indicates the

MTD churn time in seconds; the defender chooses this value.

Table I summarizes these parameters.

B. Stochastic Petri Net

Figure 2 shows our SPN model describing the ecosystem

of a cyber engagement. The underlying model of the SPN



TABLE I
CLOSED FORM MATHEMATICAL MODEL PARAMETERS.

Parameter Description

Name

a probability of cyber attack success

e probability an exploit is available for a given configuration

o number of MTD configurations

p probability of implant detection

i number of implants required

c cyber attack length (s)

h MTD churn time (s)

model is a continuous-time semi-Markov process with a state

representation (PID, PSI1, PSI200, PCAS) where PID is a

binary variable with 1 indicating the defender has detected

the attacker and 0 indicating the attacker is undetected, PSI1

is the number of successful malware installations modulo

200, PSI200 is the number of successful malware installations

integer divided by 200, and PCAS is a binary variable with

1 indicating the cyber attack has completed successfully and

0 indicating otherwise. PID is an absorbing state because a

sophisticated attacker wants to avoid attribution at all costs

and will abort the cyber attack after being detected. PCAS is

an absorbing state because a sophisticated attacker will end the

mission after accomplishing the objective to reduce the risk of

detection and attribution. Due to a limitation of the analysis

software [3] which restricts each place to 200 tokens, two

places model the successful implant count component (PSI1

and PSI200). The number of tokens in each place is called

the marking of the Petri net. The SPN model is constructed

as follows:

• We use places to hold tokens. Initially, the attacker is

undetected, no implants have occurred and the cyber

attack has not succeeded. The initial state thus is (0, 0,

0, 0) in the underlying semi-Markov model.

• We use transitions to model events. Specifically,

TCHURN models an MTD reconfiguration;

TDETECTION models the defender detecting the

attacker; TSUCCESS models the attacker implanting the

defender; TSUFFICIENT models the attacker persisting

on the defensive target long enough to complete the

attack. Table II describes the functions governing these

transitions.

• One timed transition, TCHURN, adds tokens to a

vanishing state.

• After each churn, the attacker will need to reimplant the

defender. During this process, the defender may detect

the attacker; this is modeled by associating immediate

transition TDETECTION with a probability. In this case,

a token moves from the vanishing state to PID. On the

other hand, the attacker may elude the defender; this is

modeled by associating immediate transition TSUCCESS

with the complement of TDETECTION’s probability. In

TABLE II
STOCHASTIC PETRI NET PARAMETERS.

Transition Name Function

TCHURN 1/churn time

TDETECTION probability of detection

TSUCCESS 1− probability of detection

TSUFFICIENT
cyber attack length·configuration count

churn time·2

this case, a token moves from the vanishing state to PSI1.

• When 200 tokens accumulate in PSI1, they all move

to become a single token in PSI200 via an immediate

transition; this is a technical constraint of the SPN

analysis software.

• If the attacker persists for long enough on the defender’s

system, they will reach their objective (i.e., exfiltration or

disruption). In this case, a token is placed in PCAS.

Given churn time, probability of detection, cyber attack

length and configuration count as input the underlying semi-

Markov model of our SPN model can be solved using

techniques such as SOR, Gauss Seidel or Uniformization [12]

to yield the probability the cyber attack will be successful, as

well as the expected values of PID, PSI1, PSI200 and PCAS

at time t.

Fig. 2. Stochastic Petri net.

IV. RESULTS

In this section, we apply the two analytical models

developed in Section III to DPT-based MTD scenarios. Figures

3 through 10 reflect the probability of attack success at a

given moment in time; they do not consider the attacker goals

which may have more (nation state) or less (recreational)

consequences.

A. Closed-Form Mathematical Model

Figure 3 plots the probability of cyber attack success as

a function of configuration count; it shows curves for cyber
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Fig. 3. Probability of cyber attack success versus configuration count and
cyber attack length (closed-form model).
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Fig. 4. Probability of cyber attack success versus configuration count and
probability of exploit availability (closed-form model).
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Fig. 6. Probability of cyber attack success versus configuration count and
probability of implant detection (closed-form model).

attacks lasting three different amounts of time. This figure

shows shorter cyber attacks are more likely to succeed. This

is because a shorter attack will require fewer implants which

provide less opportunities for an attack-ending detection.

Figure 4 also plots the probability of cyber attack success as

a function of configuration count; it shows curves for three

different exploit availability probabilities. This figure shows

cyber attacks are more likely to succeed if an exploit is more

likely to be available. This is because there will be more

victim configurations that are vulnerable to a piece of malware.

Figure 5 also plots the probability of cyber attack success as

a function of configuration count; it shows curves for three

different churn times. This figure shows cyber attacks are more

likely to succeed for higher churn times. This is because less

frequent churns will require fewer implants which provide less

opportunities for detection. Figure 6 also plots the probability

of cyber attack success as a function of configuration count;

it shows curves for three different probabilities of detection.

This figure shows cyber attacks are more likely to succeed

if the probability of detection is lower. This is because any

implant will be less likely to be detected.

In addition to the expected basic trends, in all four graphs,

we see two interesting phenomena: First, it is possible to

make a system less secure by instrumenting a DPT-based

MTD if the parameterization is unfavorable; this is because

the attacker may have exploits for one platform in the

MTD but not others. The left most point in each curve

(configuration count equal to 1) represents a protected resource

without DPT-based MTD instrumented. Dynamic platform

technique based MTD is beneficial when the configuration

count is above some breakeven point. This breakeven point

is higher for shorter campaigns, higher exploit availabilities,

higher churn times and lower probabilities of detection. Also,

there is an optimal configuration count for the attacker. This

optimal configuration count is lower for longer cyber attacks,

higher exploit availabilities, lower churn times and higher

probabilities of detection.

B. Stochastic Petri Net
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Fig. 7. Probability of cyber attack success versus configuration count and
cyber attack length (stochastic model).

We apply the same MTD scenarios to the SPN model. We

observe that Figures 7 - 10 generated from the SPN model

match Figures 3 - 6 generated from the closed-form solutions
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probability of implant detection (stochastic model).

very closely. This close match validates the analysis results

presented in these figures. The mean square error between the

closed-form and stochastic results is on the order of 10−9.

V. CONCLUSIONS

In this paper, we developed two analytical models for

evaluating the effect of DPT-based MTD on attack success

rate. We showed that it is possible to mistakenly instrument

an MTD in a way that makes the protected resource more

vulnerable to attack. Consequently, given knowledge of the

attacker strength and vulnerability in terms of attack length and

exploit availability, we can identify the best defense parameter

settings in terms of configuration count, implant detection

probability, and churn time, under which DPT-based MTD is

most effective to minimize the attack success probability. Two

models, one closed-form and one stochastic, cross-validate and

support these results.

There are four clear next steps in this line of investigation:

First, we will instrument a simulation or emulation involving

real, specific DPTs to further validate our models. Also,

we will derive additional models that cover other forms

of MTD, such as network based techniques, dynamic

runtime environments and dynamic application code and data

techniques. Third, our future threat models will consider

attacks that must be restarted. Finally, we will relax

four assumptions: that dynamic platform configurations are

uniformly distributed, that the probability an exploit is

available is the same for all configurations, that the adversary

must implant malware in order to prosecute a cyber attack and

that detection and attribution will deter an attacker.
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