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Abstract—In this paper, we propose an adaptive specification- ultra safe and secure UAV applications. Through a compearati
based intrusion detection system (IDS) for detecting malicious analysis, we demonstrate a high detection accuracy of oMr UA
unmanned air vehicles (UAVs) in an airborne system in which i sjon detection technique. Three major contributiohsur
continuity of operation is of the utmost importance. An IDS - . . .
audits UAVs in a distributed system to determine if the UAVs are paper are_ the behawor-_rule based |ntr_US|on detectlo_r_]ryheo
functioning normally or are operating under malicious attacks. the modeling and analysis of our behavior-rule based iitnus
We investigate the impact of reckless, random and opportunistic detection design with simulation validation and a list ofesu
attacker behaviors (modes which many historical cyber attacks that describes the healthy, uncompromised behavior of a UAV

have used) on the effectiveness of our behavior rule-based UAV : PR
IDS (BRUIDS) which bases its audit on behavior rules to quickly . -I;Ee focu(sj on .UAl\.{[ EIetCtromCS Ip,rOZectlﬁrlls PfSt We[géepr:)rted
assess the survivability of the UAV facing malicious attacks. in the academic literature, only |[4]l_[14]._[15]. [25] have

Through a comparative analysis with the multi-agent system/ant- Studied this topic. However, IDS is well assessed in cyber
colony clustering model (MAS/ACCM), we demonstrate a high communications, and vehicle-based electronics protedso
detection accuracy of BRUIDS for compliant performance. By \well known. Blasch et al. [4] proposed a warplanning situa-
adjusting the detection strength, BRUIDS can effectively rag@ i5na) awareness tool that classifies outsiders in the paysi

higher false positives for lower false negatives to cope with more d . friend| tral or belli s ificallysinot
sophisticated random and opportunistic attackers to support omain as friendly, neutral or belligerent. specincailysino

ultra safe and secure UAV applications. an IDS that identifies insider attackers in the cyber domain.
: . : . Trafton and Pizzi[[25] described the role of intrusion d&tet
Index Terms—Intrusion detection, Unmanned air vehicles, . . . o .
security. in airborne military applications. The authors proposeihtJo

Airborne Network Services Suite (JANSS) which provides a
framework to integrate an airborne military network. Among
other services, JANSS covers intrusion detection. However

Unmanned air vehicles (UAVs) comprise a large part afeither concrete solutions nor true/false positive ratesew
the warfighting capability of modern militaries. Also, thase reported. Lauf and Robinsoh [14], [15] investigated Hyi8ID
emerging in civilian applications such as surveillancelfav an anomaly-based approach. HybrIDS comprises two intnusio
enforcement, situational awareness for emergency setviagetection methods: Maxima Detection System (MDS) and
content for news outlets and data collection for reseascheCross-Correlative Detection System (CCDS). MDS detects
While they pose the same risk as piloted aircraft, the operagingle intruders using audit data after a short trainingsplend
is removed from the vehicle in time and space which callzcomplishes a more in-depth training phase for CCDS. CCDS
for enhanced automated security systems to guarantee ¢ha detect cooperating intruders after the longer traipimage
safe operation. Intrusion detection systems (IDSs) ararggc provided by MDS. HybrIDS was evaluated using a metric
appliances that review audit data to identify cyber attackalled “pervasion” defined as the percentage of malicious
that jeopardize this safe operation. Our goal in this woikodes in the system. It was reported that intruders can be
is to provide a general framework for intrusion detection afetected even with a 22% pervasion.
malicious UAVs in an airborne system. With the exception of[]4], existing work [14]] [15][ [25]

In this paper, we propose a specification-based IDS calledd no numerical data regarding the false negative pate
Behavior Rule-based Unmanned Air Vehicle (UAV) Intrusiorfi.e., missing a malicious node) and the false positive pate
Detection System (BRUIDS). It requires minimal run timgi.e., misidentifying a normal node as a malicious node). In
resources and is adaptive, i.e., it can adapt to the attagper this paper we reportpf,, pr,) UAV IDS data to analyze the
and environment changes by adjusting its intrusion detectitradeoff betweemny, andpy, obtained as a result of applying
strength dynamically, so as to satisfy the maximum falggir proposed adaptive UAV IDS techniques. When graphing
negative ratey,) requirement while minimizing the false pos-a standard ROC, we use — pg, versuspg, with 1 — pg,
itive rate (g,). We demonstrate that BRUIDS can effectivelycorresponding to the “true positive rate” the literaturéers
trade false positive rate for true positive rate to cope witl.
sophisticated random and opportunistic attackers to stppo The rest of the paper is organized as follows: In Section

I. INTRODUCTION



[ we discuss the system model, including the UAV referend® Threat Model

model, the threat model and the attacker archetypes. InoBect |; jg important to define the threat model to cover system
[} we describe our UAV intrusion detection design with they|nerabilities since our UAV IDS technique is based on

goal to minimize the false negative rate without compronysi penavior rules specifying expected normal behaviors of a
the false positive rate. In Sectidn]IV, we report numericalansor or actuator embedded in a UAV for detection of these

data. In SectiofLV, we perform a comparative analysis withifreats. We base this threat model on domain experience,
multitrust-based IDS scheme and demonstrate the sud@riofjerature review [13],[[28] and current events [9].

of our design. In Sectiof VI, we survey related work. In \we consider seven threats towards a UAV:
SectionVIIl, we conclude the paper and outline future work. 1) The first threat is an attacker that directs a UAV's

weapon against a friendly resource.
Il. SySTEM MODEL 2) The second threat is an attacker that corrupts data the
A. Reference UAV UAV reports.
3) The third threat is an attacker that promotes confederate
| historian |_| i UAVs and marginalizes legitimate UAVs.
| wireless, long distance

4) The fourth threat is an attacker that captures a UAV by
deploying the landing gear when outside of the air base.

vehicle

FRERSGRTTTT T T s s : 5) The fifth threat is an attacker that exfiltrates mission
: locative | | inertial | | threat | : data,
sensors sensors sensors ' . . - y
: ; 6) The sixth threat is an attacker that activates a UAV'’s
"""""""""""""" l sen;or countermeasures unnecessarily.
E'caﬁfr'of'“"""""'"9 --------- : 7) The seventh threat is an attacker that decreases a UAV’s
; navigation self-defense ;2323:? © endurance by WaSting Its energy'
o e Threats 1-4 attack the integrity. Threat 5 attacks the cenfid
lf;;gft“ tiality. Threats 6 and 7 attacks the availability.
faciators T e
H control ounter- . . .
| surfaces | | thrust | | gear | | measures C. Monitoring Techniques
""""""""""""""""""""""""""""""""""""""""""""""" Our behavior-rule based IDS approach relies on the use

of monitor nodes. We assume that a monitor node performs
Fig. 1. Reference UAV Key Components. intrusion detection on a trusted neighbor node. One passibl
. i . _ design is to have a sensor (actuator) monitor another sensor
We consider multiple UAVs each embedding cyber physicdciyator respectively) within the same UAV. However, this
system (CPS) physical components (sensors and actuatqfgkign requires each sensor (actuator) to have multipkirggn
Figure [1 illustrates a reference UAV embedding physicglnctionalities. Another design which we adopt is to have

sensors and actuators. One cyber physical loop in this moﬁeheighbor UAV or a remote HMI monitor a trusted UAV.
is the flight control system in each UAV. Inertial sensors/@ri \we model imperfect monitoring by an error parameter,

realtime adjustment of control surfaces and thrust. Intaafdi representing the probability of a monitor node misidertify
locative sensors (navigational components), such as Glogg status of the trusted node due to ambient noise and/or
Positioning System (GPS), Global Navigation Satellitet&ys \yireless communication faults in airborne environments. |
(GL(_)NASS?, Compass, Galileo or inertial sensors drive ”Oﬁ'eneral a node may deduge,. at runtime by sensing the
realtime adjustment of control surfaces and thrust. Amothgmoynt of ambient noise and wireless communication errors
cyber physical loop in this model is the threat countermegioynd it.p,,, is not fixed in a particular detection scenario.
sures system. Raq_ar components _detect physical preseanagf]er’perr spans a range of values to model a dynamically
threats_, and specifically tuned radios detect r_ad|o frecN”er_bhanging mis-monitoring error probability due to ambient
(RF) signatures of threats. These sensors drive the realtijyise and wireless communication faults reflecting dynam-
deployment of countermeasures like flare, chaff and elBIEtrojca)ly changing environment conditions. Here we note that
countermeasures (ECM). Tian et al. [24] discussed majggile perr Changes dynamically depending on environment

issues in jamming that are associated with the communit&tiqongitions, it does not depend on the state a trusted UAV is
literature. On top of UAVSs sit the historian and human maehin,

interface (HMI) modules which may be replicated to provide
UAV control functions over long distance; the literatursal
refers to this segment as a ground control station (GCS). IQ)T
readability, we will use the terms “node” and “UAV” inter- We differentiate three attacker archetypes: recklesslaman
changeably in the paper. The UAV reference model accoud’d opportunistic. A reckless attacker performs attacksnwh
for some general behaviors of a UAV to allow us to quicklgver it has a chance. The main objective is to impair the UAV
assess the survivability of the UAV facing malicious atgack functionality at the earliest possible time. A random dteac

on the other hand, performs attacks only randomly to avoid

detection. It is thus insidious and deceptive with the afbjec

Attacker Archetypes



TABLE |

to cripple the UAV functionality. V\/g model the attacker UAV B EHAVIOR RULES

behawor_ by a random attack probabiljsy. Wh_en_pa =1 the Threat Description Priority Criteria

attacker is a reckless adversary. An opportunistic attdskbe Index

third archetype we consider. It exploits the environmens&o 1 safe weapons if outside integrity

modeled byp... (probability of mis-monitoring) to perform 5 gf‘;ﬂiizagscurate . Gy

attacks. Whl!e a rgndom attackep’§ is fixed, an opportunistic 3 provide frue recommendations integrity

attacker decides its attack probability based orp.,, sensed. 4 stow Tlanding gear if outside | integrity

When p.,. is higher, the system is more vulnerable, so its domestic air base -
. . P . 5 do not send to confidentiality

p. is higher. An opportunistic attacker can be conservative non-whitelisted destinations

or aggressive. We apply the demand-pricing relation fangti 5 turn off countermeasures if | availability

i.e., Demand = C x Pricing™° in the field of Economicd [1], no threat _ -

[8], [29], which describes how demand changes when pricing | * I‘gsif;rri“n'g'm“m thrust if availability

changes, to model the relation between the opportunistic : —
attackers attack probability, (mapped to demand) and the*The trusted node is a UAV, and the monitor is a peer UAV or an Hbfl

) " e . all behavior rules.

imperfect monitoring probability... (mapped to pricing). The

demand-pricing relation function predicts that demandlsha

decrease when pricing increases and vice versa, the defgreeatues, together indicating whether the node is in normal or
which is controlled by the elastic constantvhich determines malicious behavior status (with respect to this rule).

the effect of pricing change. Because bpthandp.,, are real  The following procedure transforms a behavior specificatio

numbers between 0 and 1, let: into a state machine: First we identify the attack behavior
R indicator as a result of a behavior rule being violated. Then
Pa = C X Pory- (@) \we transform this attack behavior indicator into a conjivect
whereC > 0 covers both conservative and aggressive attapRrmal form predicate and identify the involved state com-
behaviors: ponents in the underlying state machine. Next we combine
1) £ = 1: p, increases linearly withp,,; this models a the attack behavior indicators into a Boolean expression in
conservative opportunistic attacker. disjunctive normal form. Then we transform the union of

2) e < 1: p, increases exponentially wigh.,,; this models all pr_edicate variable; into Fhe state components of a state
an aggressive opportunistic attacker, the extent of whighachine and establish their corresponding ranges. Finally
is modeled bye. we manage the number of states by state collapsing and

identifying combinations of values that are not legitimate

1. UAV | NTRUSION DETECTION DESIGN Below we exemp_hfy .hovv. a state machine is derived from

. the behavior specification in terms of behavior rules for the

A. Behavior Rules reference UAV model.

Our IDS design for the reference UAV model relies on the 1) Identify Attack Behavior Indicators: Attacks performed
use of simple specification-baskehavior rules for each UAV. by a compromised sensor (actuator) embedded in a UAV
They are oriented toward detecting an inside attackerfathc will drive the UAV into certain attack behavior indicators
to embedded sensors or actuators, provide a continuoustouigentifiable through analyzing the specification-basedhliein
between 0 and 1, and allow a monitor node to performules. There are seven attack behavior indicators as & sul
intrusion detection on a trusted neighbor through monitpri violating the seven behavior rules for a UAV listed in Talle |
Table[] lists the behavior rules for detecting a malicious"UA The first UAV attack behavior indicator is that a UAV
with the monitor being a peer UAV or an HMI (see Figlife 1yeadies its weapon when outside the battlespace (whemwithi
Since behavior rules are derived from the threat model,€Talils domestic air base or coalition air corridor). This iratior
[Malso lists the threat from which a behavior rule originates catches attackers that intend to direct a UAV’s weapon atjain

We prioritize the behavior rules so that more impactful sulea friendly resource; these attackers attach to the UAV weapo
are searched first. Tablé | organizes the behavior rules fpdule. The second UAV attack behavior indicator is that
decreasing impact. The highest priority behavior ruledqmip a trusted node’'s embedded sensor reading differs from the
integrity, the next priority behavior rules protect confitlal- monitor's embedded sensor reading. The monitor is in the
ity, the third priority behavior rules concern availalyiliifThe neighborhood of the trusted node, measuring the same jathysic
behavior rules are optimally searched with the priorityesia. phenomenon. The third UAV attack behavior indicator is that

a monitor UAV provides bad-mouthing attacks, i.e., provigi
B. Transforming Rules to State Machines bad recommendations regarding a well-behaving trusted, UAV
Each behavior rule does not specify just one state, butgfa\gOOd_mOL.lthmg aFtacks, .., providing good _recpmmenda
. . tipns regarding a misbehaving trusted UAV. This is detected

number of states, some of which are safe states in WhIB . . : . .

; ) ; . . y comparing recommendations provided by multiple monitor

normal behavior (obedience of this behavior rule) is obsgrv : : .

: X : . UAVs and detecting discrepancies. The fourth UAV attack
while others are unsafe states in which malicious behawgr o . ;

S . . . . ehavior indicator is that a UAV deploys landing gear when
(violation of this behavior rule) is observed. A behavioteru L o e

outside its domestic air base. This indicator catches ladtac

thus has a number of state variables, each with a rangeQit intend to capture the UAV; these attackers control thé U



TABLE I TABLE Il

UAV ATTACK BEHAVIOR INDICATORS IN CONJUNCTIVE NORMAL FORM UAV STATE COMPONENTS
Attack Expression Name Control or Range
Behavior Reading
Indicator latitude reading —90°,90°]
1 (Weapons = READY)\ (Location# BATTLESPACE) longitude reading —180°,180°]
2 | Trusted Node Data - Monitor Dafa> ¢ altitude reading —423 m, 15000 m]
3 Trusted Node AuditZ Monitor Audit bank reading —180°, 180°
4 (Gear = DEPLOYED) pitch reading —180°, 180°
A (Location# DOMESTIC AIR BASE) yaw reading —180°, 180°
5 Destination# WHITELISTED threat reading true, false
6 (Countermeasures = ACTIVE) (Threat = FALSE) stall reading true, false
7 (Thrust> T) A (Status = LOITER) data reading match, mismatch
audit reading match, mismatch
thrust control 0,100%)
aileron control 100% left, 100% right
landing gear module. One way an attacker could pursue this e'Z‘(’jator Con:ro: }885’ ??tw?oz(;)% urfi
. . rudder contro o left, % rig
goal is to launch a shellco.de attack that dlverts. thg U_AV to gear control deployed, stowed
an area they control. The fifth UAV attack behavior indicator countermeasurd _control active, inactive
is that a node sends bytes to unauthorized parties. Exyplicit weapon control safe, ready _
authorized parties are said to be “whitelisted.” This iadic destination control | whitefisted, unauthorized

catches attackers that intend to exfiltrate mission dat& Th

sixth UAV attack behavior indicator is that a UAV uses

countermeasures without identifying a threat. This indica we applied this broad strategy:

catches attackers that intend to increase the vulnesahitit 1) identify maximum acceptable state machine size;
decrease the availability of a UAV; these attackers attach t 2) while the state machine is too large:

the UAV countermeasures module. The seventh UAV attack a) choose the state component with the largest do-
behavior indicator is that a loitering UAV uses more than the main:
minimum thrust required to maintain altitude. This indarat b) compress the domain of this state component.

%%anage the number of states, we reduce the size of the state
‘hachine by abbreviating the values for and consolidatimgeso

. . . . . components. Our rules only consider three values for iti
2) Express Attack Behavior Indicators in Conjunctive Nor- P y oS

; L domestic air base, coalition air corridor or battles
mal Form: Table[T] lists the UAV attack behavior |nd|cators( pace)

in Coniunctive N | H te that h att e consolidate latitude, longitude and altitude into a l&ing
In Lonjunctive Normal Form. Here we note that ach attagg, q;;,n, component and restrict this component to threeegl
behavior indicator may have several state variables. Fer

| ttack behavior indicator 1 in Tafilé Il has two st ur rules only consider four values for flight status (takeof
amp EI attack be aV|ort|n Ica orl '\?v a SSL Oﬂz a{?avel, loiter or land), so we consolidate bank, pitch, ystall,
variables (qr componen S)’. namely, Yeapons and Localon, feron, elevator and rudder into a single status compaoaeeht
the underlying state machine.

. . . . . restrict this component to four values. Our rules only coesi
3) Consolidate Predicates in Digunctive Normal Form: P Y

N . three values for thrust (sub-stall, minimal or super-miilm
E\('\I{\rlﬁgtpeodnsN; dleé;);)A (kA%Cne}Ign E’)’é d;iTTgESvP?%E)s)t;/ q SO we restrict this component to three values. This treatmen
Node Audit # Monitor Audit) v ((Gear = DEPLOYED) yields a modest state machine withx 4 X 2 X2 X 2'>< 3 x

. L 2 x 2 x 2 x 2 = 4608 states, out of which 165 are identified
A (Location # DOMESTIC AIR BASE)) v (Destination# as safe states and 4443 are unsafe states.
WHITELISTED) v ((Countermeasures = ACTIVE) (Threat While this flat approach to reducing the state machine
= FALSE)) v ((Thrust> T) A (Status = LOITER))

) Identify State C tsand C t Ranges: Wi met our needs, results with other configurations may vary.
) Identify State Components and Component Ranges: We If this strategy does not yield a reasonably sized automaton

limit the range of _the altltu_de parameter to the lowest POIferarchical state analysis is an orthogonal approachvihiat
on Earth and maximum altitude of a large UAV. further manage the state space.

We quantize continuous components at integer scale |n6) Behavior Rule Sate Machine: For the UAV state ma-
permissible ranges. For example, altitude is in the range c%ne there are 165 safe states and 4443 unsafe statds. Firs
[~423 m, 15000 m] and bank is in the range ¢180°, 180°. we Ia’bel these states as stafe®,...,n = 4608. Next we

Table [Tl shows a complete list of the_ permissible rang%cidepij, the probability that statégoes to statg, for each
of UAV state components. The resulting HMI and UAV,

(4, 7) pair in the state machine to reflect a normal (or malicious)
automatons havées1 x 361 x 15424 x 361 x 361 x 361 x 2 x 2 x UAV's behavior
_ 27 )
2x2x 1E§)1 ;]( 2(121h>< 201 x201x2x2x 2 X|2 = 9'9552 x 1|0 o o 70T @ compromised UAV;; depends on its attacker type: A
states. Both of these automata are too large; we deal Wih thl .y ess attacker will not go from an unsafe state to a safe st
state explosion in the next step.

5) M - Reducing the si f 1h because it continuously attacks. g = 0 if ¢ is an unsafe
) Manage Sate Space: Reducing the size of the stateg,;, andj is a safe state. However, the monitoring process

nr"]nachme IS arr:_ important surlla_probledm for this StL;]dy' fRa';]h%r imperfect with error probability,,,, so the monitor node
than approaching state machine reduction in an hoc fashigfl,,, ot ohserve exactly the same state transitions perébrme

by wasting its energy; these attackers attach to the UAVsthr
module.



by the reckless attacker. As a resylt, = p.,, instead of attacker (Figur&l2) versus for a normal node (Fiddre 3). They

pi; = 0 wheni is an unsafe state andis a safe state. look similar because they have the same number of states as
For a random attacker with attack probability, p;; values generated from the behavior rules.

sum top, for a given: for all unsafe stateg andp;; values

sum tol — p, for a giveni for all safe stateg because it e e este state with orobabi o eryags 0%
will stop attacking with probabilityl — p,. With imperfect B
monitoring, a monitor node sees;; values sum tQ, x (1 — . /weapon Weapon Weapon

{ safe, )
*.whitelisted,’
destinatio,

safe,
whitelisted
destination,
data match,
audit match,
coalition air corridor,
travel,
no threat,
minimal,
gear stowed,
inactive
CM

safe,
whitelisted
destination,
data match,
audit match,
battlespace,
travel,
no threat,
minimal,
gear stowed,
inactive
CcM

Perr) + (1 — pa) X pere fOr @ giveni for all unsafe stateg and
pi; values sum tql —p,) X (1 — perr) + Pa X Pere fOr @ given
i for all safe stateg. e
In practice, during the testing phase one will seed arjcoalition g corridor,
attacker and assign a monitor node to observe the statq né‘ﬁ]’fg’g\t,
this attacker enters to assign individyal, values. For the ~minimals,
. . . . gtar deployed,,
special case in which every unsafe state among all is enteredX inactive X
with equal probability and every safe state among all is alsq” o
entered with equal probability, a compromised UAV with
random attack probability, will be observed as having;;
as((1—pq) X (1 = Perr) +Pa X Perr)/165 whenjj is one of the
165 safe states, and §8, x (1 —perr) + (1 —pa) X Porr ) /4443
whenj is one of the 4443 unsafe states. Fidure 2 illustrates the
behavior rule state machine for a compromised UAV. Crossed .
dotted slashes over a state indicate an unsafe state. C. Collect Compliance Degree Data
Here we note that the random attacker behavior-rule stateOur BRUIDS relies on the use of monitor nodes, e.g., a
machine derived above covers all three attacker modelk: retJAV or HMI is a monitor node of another UAV. The monitor
less for whichp, = 1, random for whichp, < 1, and node knows the state machine of the trusted node assigned to
opportunistic for whichp, is related top.,, by Equation L.  it. The monitor node periodically measures the amount oétim
the trusted node stays in safe and unsafe states as thaltruste
node migrates from one state to another triggered by events

Fig. 3. Good Node Behavior Rule State Machine.

all states transition to a safe state with probability:
((1-p_a) * (1-p_err) + p_a * p_err)/165

and an unsafe state with probability: causing state transitions. We consider a binary gradinigypol
(p_a * (1-p_err) + (1-p_a) * p_err)/4443

i.e., assigning a compliance degree of 1 to a safe state and O
to an unsafe state.

Let ¢ be the compliance degree of a node. The compliance
degreec of a node essentially is equal to the proportion of the

destinatiom, destination, destination,

data match, data match, data match, time the node is in safe states. L&the the set of safe states
aud match, audit match, audit match, the trusted node traverses over a period of titheLet ¢; be
coalition a4r corridor, coalition air corridor, battlespace, . .
trave), travel, travel, the amount of time that the trusted node stays in a safe state

né threay, no threat, o threat, i, as measured by the monitor node. Then the monitor node
,Lsminimal,s minimal, minimal, ! i y . '

gtar deployed, gear stowed, gear stowed, collects an instance of compliance degeeey:

» inactive A inactive inactive

CM CM CM

S

i€S

[ [
: : == @
Fig. 2. Random Attacker Behavior Rule State Machine. If a node stays only in safe states durifigthen by Equation

[, its compliance degreeis one. On the other hand, if a node

For a normal UAV, it should stay in safe states 100% aftays only in unsafe states only duriiig then its compliance
the time; however, occasionally it may be misidentified by trdegreec is zero. The monitor node monitors and collects the
monitor node as staying in an unsafe state due to ambiéitsted node’s compliance degree histaty cs,...,c, for
noise, temporary system faults and wireless communicatisnmonitoring periods, where: is sufficiently large, based
faults with error probability.,.. For the special case in whichon which it concludes whether or not the trusted node is
every unsafe state among all is entered with equal probabilcompromised.
and every safe state among all is also entered with equalVe leverage the state machines generated to collect compli-
probability, a normal UAV node will be observed as havingnce degree data of a normal UAV (or a malicious UAV) dur-
pi; as(1—perr)/165 whenj is one of the 165 safe states, andng the testing phase. Following Equatigh 2 which measures
asperr/4443 whenj is one of the 4443 unsafe states. Fidure @mpliance degree as the proportion of time a trusted UAV is
illustrates the behavior rule state machine for a normal UAIn safe states, the compliance degreis essentially equal to
Again, crossed dotted slashes over a state indicate aneunge sum of the probabilities of safe states ie= >_; s,
state. While they look similar, Figurés 2 aht 3 are actuallyherer; is the limiting probability that the node is in state
different because the transition rates are different farmlom j of the state machine anfl is the set of safe states in the



. - . . . TABLE IV
state machine. We utilize Monte Carlo simulation to obtairg \y BeTa(1,8) AND RESULTING py, AND pr, VALUES UNDER VARIOUS

the limiting probabilityr;. Specifically, we collect compliance ~ RANDOM ATTACK MODELS FORUAV (Cr = 0.90, perr = 0.01).

degree _histor)_cl,@, sy Cn qf a UAV with n runs of qute [(pa | B [ »pm_ | pp |
Carlo simulation. In runi, given a normal (or a malicious) 1.00 | 99.3 | <0.001% | 2.30%
UAV's state machine as input, we start from state 0 and then 0.80 | 4.33 | 0.005% 2.30%
. . . 0, 0,

follow the stochastic process of this node as it goes from 0.40 | 1.10 | 8.02% 2.30%
: . : 4 0.20 | 0.632 | 23.3% 2.30%

one state to another. We continue doing this until at least 0.10 | 0.249 | 35.5% >30%

one state is reentered sufficiently often (say 100 timesgnTh
we calculater; using the ratio of the number of transitions TABLE V

|eading to Statej to the tOtal number Of state transitions.ﬁ IN BETA(I,B) AND RESULTINprn AND Dip VALUES UNDER VARIOUS
After 7; is obtained, we collect; in the sth simulation run  OPPORTUNISTICATTACK MODELS FORUAV (Cr = 0.90, perr = 0.01,
by Zjes ;. We repeat a sufﬁciently_larga te_st runs to ¢ = 10).

collectey, ca, . . ., ¢, needed for computing the distribution of [ Model [ 5 [ pw | pp [ € [ Pa ]

the compliance degree of a normal UAV or a malicious UAV aggressive | 0.734 | 18.5% | 2.30% | 0.8 | 0.251

. L aggressive | 0.555 | 27.9% | 2.30% | 0.9 | 0.158
performing reckless, random or opportunistic attacks. conservativel 0449 1 355% T 2.30% T 1.0 1 01

D. Compliance Degree Distribution

~ The measurement of compliance degree of a node frequeRfyn a system minimum compliance thresh6ld then there
is not perfect and can be affected by noise and unreliable; ta1se negative. Suppose that the compliance defiee
wireless communication in the airborne system. We modsf 5 malicious node is modeled by @(-) = Beta(a,B)

the compliance degree by a random variallewith Gi(-) = gistribution. Then the host IDS false negative rageis given
Beta(a, 8) distribution [20], with the value O indicating thaty,, .

Fhe_ ou.tput is totally ynacceptable (zero compliance) and P = PH{X, > Cr} =1-G(Cr). (6)
indicating the output is completely acceptable (perfeatco
pliance), such thafi(a), 0 < a < 1, is given by On the other hand, if a normal node’s compliance degree
a denoted byX, is less thanC'r then there is a false positive.
G(a) :/ an—1(1 — x)ﬂ—l dx (3) Again, suppose that the compliance degreég of a normal
0

L(@)T(B) node is modeled by &(-) = Beta(a, 3) distribution. Then
and the expected value of is given by the host false positive raig;, is given by:
' T(a+B) a = Pr{X, < Cr} = G(Cr) @)
Ep[X] = g Y1 —2) da = Pip g ="=T -
R A o
(4) IV. NUMERICAL DATA

The o and g parameters are to be estimated based on th
method of maximum likelihood by using the complianc

degree history collectedeq, cs,...,c,) during the system’s compliance degree values, (cs, ... , ¢,) for n = 1000 Monte

tesyng phase. .We choose tBe'ta distribution because it is Carlo simulation runs for the UAV. We then apply Equation
defined on the intervdD, 1], continuous and used across mang 1 compute the3 parameter value ofi(-) — Beta(a, )

disciplines. e :
. . o .., for the probability distribution of the compliance degree &
We consider a single parametBeta(S) distribution with normal node or a malicious node. We then calculateand

i . IRV
gfquil lto ldolnﬂ:hls .case_llhthe dqnsﬂy ﬁﬁ(l I'hx)d tfpr o by Equation§16 and 7, respectively. We adjust the minimum
= ¢ = 1 andd otherwise. The maximum fikelinood estima compliance threshold'r to controlps, andpg, obtainable.

Swe report numerical data in this section. We execute the
%rocedure described in Sectign] Ill to collect a sequence of

of §is N n Tables[1V and_V exemplify theS values and the resulting
B = B ) Pm andpg, values obtained whe@'r is 0.9 (Cr is a design
Z log( 1= c‘) parameter to be fine-tuned to trade high false positivesofer |

false negatives) ang.., = 0.01 for random and opportunistic
. ) attackers, respectively.

E. False Positive and Negative Rates Sincea/(a + ) (with o = 1) is the expected compliance
Our intrusion detection is characterized by false negatigkegree detected out of a trusted UAV, thevalue detected is
and false positive rates, denoted y and pg,, respectively. sensitive and adaptive to the attacker archetypes. A regkle

A false positive occurs when a normal UAV is misdiagnoseattacker withp, = 1 will reveal a low compliance degree
as malicious, while a false negative occurs when a malicioasd, hence, will have a high value. A random attacker who
UAV is missed as normal. While neither is desirable, a falggerforms attacks only probabilistically with ratg will have a
negative is especially impactful to the system’s continuitrelatively high compliance degree and, hence, a relatilaly

of operation. While many detection criterial [2],] [6].] [7] are3 value. This trend of increasingwith increasing, is clearly
possible, we consider a threshold criterion in this papbatT shown in Table[TV. For opportunistic attackers, aggressive
is, if a malicious node’s compliance degree denotedXyy attackers tend to reveal a relatively low compliance degree
with a probability distribution obtained by Equatioh 3 igher compared with conservative attackers and, hence, a mlativ



high g8 value. This trend of increasing with increasing
aggressiveness is demonstrated in Table V.

From Table[ TV, we observe that when the random attack o8
probability p,, is high, the attacker can be easily detected as 07

evidenced by a low false negative rate. Especially whee=

1, a reckless attacker can hardly be missed. On the other hand, » os
asp, decreases, a random attacker becomes more hidden and ..

insidious and the false negative rate increases.
From TabldV, we observe that the resulting values ob-

tained depend on the aggressiveness of opportunistikattac
More aggressive opportunistic attackers (those with alsmal
¢) will have a better true positive raté ¢ pg,) because of a

higher attacker probability, being used.
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Figures[#,[b and]6 illustrate the effect ¢f; and pe,,

This is because,,, will obscure some of uniformly hostile
behavior of the reckless attacker but will undermine the de-
ceptively compliant behavior of the random and opportimist
attackers with a smap,,. Figure[® shows that a smallgg,,

will benefit random attackers when, is small (0.2), a larger
perr Will benefit random attackers whem, is large (0.8).

Pp 02

0 01 02 03 04 05 06 07 08 09 1
Cr

Fig. 7. False Positive Rate Versus Compliance Threshold f6oad Node
under Varyingperr -

Figure[T illustrates the effect gf.,, on pg, for a normal
node. It shows the false positive rate increaseSamcreases;
this is because as the compliance threshold increasespahor
node is more likely to be incorrectly misidentified as a
malicious node. Also, it shows a smalleg,.. will benefit
a normal node; this is because,, distorts the uniformly
compliant behavior of a normal node.

The results obtained above can be used by the system
to adaptively select the minimur@r value dynamically to
satisfy the imposegy, requirement while minimizingy, as
much as possible in response to the environment condition
(e.g., ambient noise) and the suspected attacker typetelétec

on pg, of different types of attackers. They show the fals@t runtime (e.g., a random attacker). Tabld VI illustrates a
negative rate decreases@s increases; this is because as thgcenario in which the maximumy, allowable is 1%, which
compliance threshold increases, a malicious node is lesly li Must be satisfied. Given p... value and the attacker type

to evade detection. While Figuré 4 shows that a lapggrwill
benefit a reckless attacker, a smaller. will benefit random
and opportunistic attackers with a small attack probahbjljt.

as input, there is @7 value at whichpy, = 1% as decided
from Figured #[ B[ 16 (following the horizontal dashed line at
pm = 0.01). Then from theC'; value selected, one can decide



TABLE VI
Cr TO SATISFY pg, (1%) WHILE MAXIMIZING pgp, GIVEN pery AND ATTACKER TYPE ASINPUT (pg = 0.2, ¢ = 0.8)

Reckless Random Opportunistic
Perr cVT Pfn Pfp CT Pfn Pfp CT Pfn Pfp
0.01 | 0.045313 0.01 0.000468 0.999315 0.01 0.070959 0.998123 0.01 0.061446
0.02 | 0.088882 0.01 0.001898 0.999219 0.01 0.135857 0.977295 0.01 0.07434
0.03 | 0.131062 0.01 0.00433% 0.999109 0.01 0.195247 0.905752 0.01 0.070442
0.04 | 0.171620 0.01 0.007814 0.998992 0.01 0.249849 0.749324 0.01 0.056019
0.05 | 0.210615 0.01 0.012370 0.998862 0.01 0.300077 0.475645 0.01 0.033407

the resultingpg, based on Equationl 7. TaklelVl summarizesufficiently highCr, i.e., an attacker is always detected with
the Cr settings for all attacker types over a rangepgf. For probability 1 without false negatives, while bounding thésé
example, the system manager should@gto 0.905752 when positive rate to below 0.05% for reckless attackers, beltv 7
facing an opportunistic attacker wigh,, = 0.03, ande = 0.8 for random attackers with attack probability as low as O] a
to achieveps, = 1% andpg, = 7%. This Cr value is obtained and below 6.1% for opportunistic attackers, whep = 1%
by following the middle curve in Figurk] 6 intersecting with(the first entry in Table_VI1). Note the ROC surfaces for
the horizontal dashed line af, = 1%. random and opportunistic attackers cross over roughlygalon

Table[V1 illustrates adaptive IDS design: the system seled curve atp.,, = 0.015, indicating that wherp.,, < 0.015
the minimumC7 value that would satisfy the maximupy, an opportunistic attacker with = 0.8 is more difficult to be
requirement while providing @g, as small as possible, givendetected than a random attacker with= 0.2, and vice versa
knowledge of the attacker type ang,.. An an example, afterp., > 0.015. The highlighted dots show the points on the
suppose a suspected attacker is of opportunistic type whaseresponding surface that meet the maximugrequirement
attacking behavior is characterized by- 0.8 as described in (1%) while minimizingpg,. Our adaptive IDS design allows
Table[V]. After determining.,, = 0.01 (which is detectable), the system to adaptively adjust: dynamically to satisfy the
the system would select a high- value (i.e.Cr = 0.998123) imposedps, requirement while minimizingy, in response to
to yield pp, = 1% while minimizing pg, to 6.1446%. If the dynamically changing environment conditions (through)
attacker type is reckless, on the other hand, then the systemi the suspected attacker type detected at runtime (e.g., a
would select a lonCr value (i.e.,Cr = 0.045313) to yield random attacker).
P = 1% while minimizing pg, to 0.0468%.

V. COMPARATIVE ANALYSIS

In this section, we compare our IDS design with a multitrust
anomaly-based IDS called Multi-agent System (MAS) devel-
oped by Tsang and Kwong@ [26] intended for industrial CPSs.
MAS includes an analysis function called Ant Colony Clus-
tering Model (ACCM) to reduce the characteristically high
N false positive rate associated with anomaly-based appesac
Lo O IO — while minimizing the training period by using an unsupeeds

approach to machine learning. MAS uses a standard data set,
KDD Cup 1999, for testing. We use it as a benchmark against
which our IDS is compared for three reasons: First, there is
no existing UAV IDS available for performance comparison;
industrial process control environments of MAS/ACCM are
close to UAV environments with similar safety requirements
Second, MAS/ACCM reported false positive rate and false
Fig. 8. BRUIDS Receiver Operating Characteristic Graph. negative rate data for ease of comparison. Third, unlike
anomaly-based IDS approaches, ACCM generated good false

By adjusting Cr, our specification-based IDS techniqueositive rates (reported 1 to 6%). We visualize Tsang and
can effectively trade higher false positives for lower éalskwong's results in Figur€]9.
negatives to cope with more sophisticated and hidden randontigure[10 visually compares the ROC graphs (true positive
attackers. This is especially desirable for ultra safe auwi® rate orl — pg, versuspg,) for BRUIDS and ACCM. We set
UAV applications for which a false negative may have a dirg,,, = 0.010 for UAVs. This is because 1% of mis-monitoring
consequence. Figuré 8 shows a ROC graph of true positive rdtee to ambient noise, temporary system faults and wireless
(1—psm) versus false positive ratey,) obtained as a result of communication faults in airborne environments is reastenab
adjustingCr for reckless, random and opportunistic attackefbhis is based on Ho and Shimamoto reporting.2— 7.5%
given differentp.,.. As we increas& ', the true positive rate packet error rate (depending on altitude, network size and
increases while the false positive rate increases. We sge tthannel access techniquie)[11] and Palazzi et al. expetiimgen
with our specification-based IDS technique, the true pasitiwith packet error rates between 0.1 and 1.0% [18]. Figuie 10
rate can approach 100% for detecting attackers when usinghews for reckless and highly aggressive random attackers,

reckless
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Fig. 11. Detail for AUC Inspection.

BRUIDS outperforms ACCM across the domaingf. Also,

it shows that BRUIDS outperforms ACCM fgr;, > 0.02 for  exjsting work in airborne systems IDS in the literature.

cautious random attackers. Because airborne system applications may be deployed in
We first note that the coverage area (out of a one byopjle ad hoc networks (MANETS) with embedded CPS

one area) below the ROC curve, referred to as Area Unqs{ysical components, we also survey related IDS techniques
the Curve (AUC), measures the IDS accuracy. An area ofid MANETs and CPSs.

represents a perfect test; an area of 0.5 represents a egxthl
test. .

We clearly see that for BRUIDS with, = 1 or 0.8, the true A. Unmenned Aircraft Systems
positive rate is always higher than ACCM, given the sameefals Blasch et al.[[4] proposes a warplanning situational aware-
positive rate. Therefore the AUC of BRUIDS is clearly greatéhess tool that classifies outsiders in the physical domain
than that of ACCM for these configurations. For BRUIDS wittds friendly, neutral or belligerent. Specifically, it is nam
pa = 0.4 (a more cunning attacker), the detection rate is ndS that identifies insider attackers in the cyber domain.
always higher than ACCM; however, a closer look throughhe authors use several metrics to evaluate their classifier
Figure[T1 reveals that the AUC of BRUIDS is still greaterecision, recall, accuracy, activities of interest, timess and
Moreover, in the experiment conducted by Tsang and Kwotigroughput. They use ROC plots to visualize their classfier
[26], presumably only reckless attackers were considemedéffectiveness: they transform their recall metric intoetru

which case BRUIDS with a AUC nearly equal to 1 clearlypositive rate and their precision metric into the false fessi
outperforms ACCM. rate. In particular, Blasch et al. include a 3D ROC plot where
classification latency is the third dimension.

T Trafton and Pizzi[[25] did an investigation which motivated
ool i and broadly described the role of intrusion detection irs thi
0sl = 8 | application but did not propose let alone measure a solution
[ The authors proposed Joint Airborne Network Services Suite
s ] (JANSS) which provides a framework to integrate an air-
el 1 borne military network. Among other services, JANSS covers
Topn OSF 1 intrusion detection. They describe IDS as part of a larger
0all } < Information Assurance strategy. They only say that the IDS
0sl * i should be host-based; the alternative is a network-bas&d ID

‘ Lauf and Robinson[]14] investigated Distributed Apt Re-
source Transference System (DARTS). DARTS is an intrusion
. tolerance strategy that reallocates resources to toléaatts
O T oo osr 005  oor  om 006 o7 oo ooo and attacks. It built on their prior work, HybrIDS [15], wiic

1

0.2 7 q

; P
0.1 ¥ UIDS p,
i P

Zunn
Jooo
<

=3

o prompts (triggers) resource reallocation. The key inriovat
_ _ DARTS s its service discovery protocol (SDP): It combines
Fig. 10. BRUIDS and ACCM ROC Graph Comparison. an on-demand flooding approach with a gossip approach to

get the benefits while masking the drawbacks of each. The
drawback of an on-demand flooding SDP is an intractable
VI. RELATED WORK burst of communications. The drawback of a gossiping SDP
The topic of IDS and airborne networks is not widelys staleness. The authors measure the effectiveness of BART
discussed in the academic literature, so we highlight soriging communications overhead (messages exchanged for re-
related examples that motivated our work. We first surveg}location) and downtime (time to reallocation).
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HybrIDS is an anomaly-based approach. Specifically, Hyeputation score as the weighted sum of the locally observed
brIDS comprises two semi-supervised approaches resuftingeputation score, the Neighbor Reputation Table (NRT)ezalu
three operational phases: MDS training, MDS testing/CCDO8storical global reputation score, the Global Reputafiahle
training and CCDS testing. They chose a behavior-bas@8RT) value and a third party recommendation; the design
approach rather than a traffic-based approach due to tiages scores such that the reputation of inactive nodes de-
and memory constraints of an embedded system. HybrIDStésiorates. One con of this study is that nodes that do not
distributed for scalability. HybrIDS comprises two intims have a demand for forwarding will be penalized unfairly.
detection methods: Maxima Detection System (MDS) ardoreover, only reputation scores over time for normal, sklfi
Cross-Correlative Detection System (CCDS). MDS detecamd malicious nodes were reported, without providing false
single intruders after a short training phase and accohgsis positive rates, true positive rates or accuracy data. Tdesign
more in-depth training phase for CCDS. CCDS can detect de-geared toward detection of misbehaving nodes, rather tha
operating intruders after the longer training phase peidy detection of compromised nodes.

MDS. Lauf et al. measure the performance of HybrIDS using Buchegger and Le Boudet![5] propose a distributed IDS
pervasion, which they define as the percentage of maliciocalled CONFIDANT which extends dynamic source rout-
nodes in the system. The authors could detect intruders eweg (DSR) by measuring reputation with “no forwarding”
with a 22% pervasion; a Byzantine fault model establishesbahavior. The authors distinguish three levels of mubitru
theoretic limit of 33%. During the training/MDS phase, theyxperienced data is a firsthand account which has the most
collect data regarding system state. They sequence thanabmiveight, observed data which has less weight than experienced
system states for use by CCDS so that the probability densitsta happens in the neighborhood (within radio range) and
function (PDF) resembles a chi-squared distribution. Letuf reported data which has less weight than experienced or
al. [15] use applications’ system call history as their audobserved data is an account coming from outside the neigh-
data. The authors identify two parameters to create ante#ec borhood. Borrowing from the field of ecology, they classify
IDS for a resource constrained application: audit coltetti nodes into one of three categories: suckers (who alwaystassi
period [data collection cycle (DCC)] and audit analysisigetr neighbors), cheats (who never assist neighbors) and guidge
[data processing cycle (DPC)]. A longer DCC increases tl@ho assist neighbors until they experience non-recigiaca
memory stress while increasing the detection accuracy of @me strength of this study is the capability for reformed or
intrusion detector, and a shorter DPC increases the pracedalsely detected nodes to rejoin the network. Buchegger and
stress while decreasing the detection latency of an imtrusiLe Boudec measured packet drops, packet drop rate, goodput
detector. No analysis was given regarding the tradeoff @etw (which they define as packets received over packets sourced)
DCC and DPC. More importantly| [14][_T15]._[25] did notthroughput and overhead; time, network size and level of
report false negative rate, (i.e., missing a malicious node)network hostility were their independent variables. Agaia

and the false positive ratgy, (i.e., misidentifying a normal data were reported on false positive rates, true posititesra
node as a malicious node). or accuracy data in this study.

While we address which type of style the player (UAV- Michiardi and Molva[[16] propose an IDS called Collabora-
target jamming) is using, i [22], Shen et al. use game thediye Reputation Mechanism (CORE). Neighbors of a suspect
to model the different types of approaches. The authors usdculate itssubjective reputation score from experience of
their model to generate flight plans for a fleet of UAVsome property (for example, DSR routing or packet forward-
that will maximize target coverage and UAV survivabilitying) weighting earlier and later observations differentind
Their model has three levels: object, situation and threaides calculate a suspedtmctional reputation over multiple
Shen et al. consider cooperative effects of defending nodgsveighting variousf differently and aging (decreasing over
by distinguishing self-protection from support jamming. |time) the reputations of inactive nodes. In CORE, each node
[21], Shen et al. consider six types of attack: buffer overflo regards every other node as either trusted (positive repoja
semantic URL attack, e-mail bombing, e-mail spam, malwaoe misbehaving (negative reputation); nodes deny sengee r
attachment and DoS. The authors consider four defenstygests and ignore reputation information from misbehaving
measures: IDS deployment, firewall configuration, emaifil nodes. Strengths of this study are the toleration of slander

configuration and server shutdown or reset. attacks and distinct sanctions for selfish and maliciouseaod
Michiardi and Molva did not report any numerical data.
B. Ad Hoc Networks Tseng et al.[[27] use an AODV-based finite state machine

Existing IDS techniques for MANETSs are centered aroundSM) to establish a specification for a traffic-based IDS-Di
secure routing, using monitoring techniques to detectadieri  tributed network monitors maintain an FSM for each routing
of normal behaviors in data routing or forwarding. Oftertransaction (request and reply). States are normal, alarm o
specific MANET routing protocols such as Dynamic Sourcguspicious; in suspicious states, the network monitor é@sks
Routing (DSR) and Ad hoc On-Demand Distance Vectqreers for additional audit data for the transaction. Thekvi®r
(AODV) are being considered in IDS design. specific to AODV for secure routing. However, no data were

Bella et al. [3] propose a reputation-based IDS that baseported on false positive and negative probabilities.
node reputation on the energy it uses for others in compariso Hadjichristofi et al.[[10] studied an integrated management
with the energy it uses for itself: specifically, the ratiopafck- framework for MANET which encompasses routing, security,
ets forwarded to packets sourced. They calculate aggregatsource management and network monitoring functions. The



11

authors propose a novel routing protocol that informs thmay be uniformly or normally distributed, while cyber attac
resource management function. The security function dedu are not random. Faults do not seek to evade detection, while
a trust management approach. The trust management appraathders do. While faults cannot be attributed to a human
begins with authentication and updates scores based on dbtor, intrusions can.
trusted node’s behavior.

Kiess and Mauvel[12] survey real-world implementations VIl. L ESSONSLEARNED
of MANETS in order to identify viable test beds for MANET
research. The authors motivate this study by highlighthmey t
shortcomings of MANET simulations and emulations.

One practical consideration is that behavior rules are di-
rectly derived from threats. Hence, the threat model must be
broad enough to cover all possible threats that exploitsyst
C. CPs vulnerabilities. This places the responsibility for dehg

a complete attack model with the system designers. When a

Another broader research area that could encompass ({fyeat is overlooked, the state machine will lack unsaftesta
trusion detection for airborne networks and communication ssociated with the overlooked attack behavior indicatod
are CPSs. CPSs typically have multiple control loops, Strihe attack will go undetected by BRUIDS. A second consider-
timing requirements, a wireless network segment, preieta 4iion is that when new threats are discovered and introduced
network traffic and contain physical components! [23]. CP$§ the threat model, new behavior rules corresponding to the
fuse cyber (network components and commodity servers) agdy threats must be added to the rule set because behavior
physical (sensors and actuators) domains. They may conigifys are derived directly from threats. BRUIDS allows newl
human actors and mobile nodes. The focuses for CPS IDg8niified threats to be added to the threat model and heece th
are leveraging unique CPS traits (sensor inputs, algosiémd ., responding new behavior rules to be derived from which
control outputs) and detecting unknown attacks. the state machine is automatically generated for intrusion

Porras and Neumann [19] study a hierarchical multitrugkection. Finally, while BRUIDS can adaptively adjust the
behavior-based IDS called Event Monitoring Enabling R%’etection strength in terms of the, value to satisfy the

sponses to Anom.alous Live Disturbances (EMERALD) UsiNGaximum pr, requirement while providing @, as small
complementary signature based and anomaly-based analyaféspossible given knowledge of the attacker type ang,

The authors identify a signature-based analysis traded®#tw yotarmination of the attacker type apd. with precision at
the state space created/runtime burden imposed by rich rll&iime deserves more research efforts.

sets and the increased false negatives that stem from a less
expressive rule set. Porras and Neumann highlight two spe-
cific anomaly-based techniques using statistical analysie ) o
studies user sessions (to detect live intruders), and ther ot For UAVS, being able to detect attackers while limiting
studies the runtime behavior of programs (to detect maliciothe false positive rate is of utmost importance to proteet th
code). EMERALD provides a generic analysis frameworkontinuity of operation. In this paper we proposed an adepti
that is flexible enough to allow anomaly detectors to rupehavior-rule specification-based IDS technique for siom
with different scopes of multitrust data (service, domain dlétéction of compromised UAVs using an applied rule set
enterprise). However, Porras and Neumann did not repae fafiérived from the UAV threat model. We demonstrated that
positive or false negative rate data. the true positive rate approaches one (that is, we can always
Tsang and Kwong[[26] propose a multitrust IDS calle@atch the attacker without false negatives) while boundieg
Multi-agent System (MAS) that includes an analysis functiofalse positive rate to below 0.05% for reckless attackeskmp
called Ant Colony Clustering Model (ACCM). The authors’% for random attackers with.at.tack probability as low as
intend for ACCM to reduce the characteristically high fals8-2 and below 6% for opportunistic attackers, when the error
positive rate of anomaly-based approaches while minirgizi®f monitoring due to environment noise is at 1%. Through
the training period by using an unsupervised approach goComparative analysis, we demonstrated our behavior-rule
machine learning. MAS is hierarchical and contains a lar§@ecification-based IDS technique outperforms an existing
number of roles: monitor agents collect audit data, degisifultitrust anomaly-based IDS approach in detection aogura
agents perform analysis, action agents effect responsesiie In the course of thIS. stu_dy, we |de_nt|f|ed a number of future
nation agents manage multitrust communication, userfager resegrch areas. The flrst. is to consider additional perfocema
agents interact with human operators and registrationtageetrics such as detection latency. The second open area
manage agent appearance and disappearance. Their re§QR§EMS the attack model. One can consider additionaensi
indicate ACCM slightly outperforms the true positive ratedttack behaviors such as insidious attackers that lie irt wai
and significantly outperforms the false positive rates of kintil they have co-opted enough nodes to launch a devagtatin
means and expectation-maximization approaches. Becdus@rck. The third line of investigation concerns the deésisd
the good false positive results reported, i.e., the ACCMefal"e€Sponsel[17]. For example, the IDS can perform better if it
positive rate ranges from 1 to 6%, we uSe|[26] as a benchm&gkunes its parameters (such as compliance threshold{ audi
in our comparative analysis in Sectibn V. interval and state machine granularity) based on the type an
Ying et al. [30] model fault diagnosis related to a medicatrength of adversary it faces.
CPS with a Hidden Markov Model. There are critical differ-
ences between fault diagnosis and intrusion detectionltdau

VIII. CONCLUSIONS
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