
Multimedia Tools and Applications, 25, 167–185, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Adaptive QoS Control Based on Benefit
Optimization for Video Servers Providing
Differentiated Services

ING-RAY CHEN∗ irchen@cs.vt.edu
Department of Computer Science, Virginia Tech, Northern Virginia Graduate Center, 7054 Haycock Road,
Falls Church, VA 22043, USA

SHENG-TUN LI stli@mail.ncku.edu.tw
Institute of Information Management, National Cheng Kung University, 1 University Road, Tainan, Taiwan,
Republic of China

I-LING YEN ilyen@utdallas.edu
Department of Computer Science, University of Texas at Dallas, Arlington, Texas, USA

Abstract. We propose and analyze quality of service (QoS) control algorithms for video servers designed to
provide differentiated video streaming services. The design concepts are based on resource reservation and benefit
optimization so that resources are reserved dynamically and adaptively for different QoS levels in response to
the changing workload of the system, with the objective of maximizing the benefit throughput obtainable by the
system. We analyze the benefit throughput obtainable by the system for a baseline algorithm for which the QoS
levels of admitted users are not changed during the service lifetime and a greedy algorithm that may raise QoS
levels of admitted users due to resources being free from departure events. We validate the design of these two
QoS control algorithms via a detailed simulation study.

Keywords: video servers, quality of service (QoS), QoS negotiation, streaming video, admission control, disk
scheduling, data placement

1. Introduction

With the deployment of broadband technologies and services lately, it is anticipated that
video streaming over the Internet will soon become a reality within a few years [8]. To
deal with the exponential growth of users demanding streaming services, it is critical to
use efficient quality of service (QoS) control schemes at both the server side and network
switches to fully exploit multiplexing benefits in bandwidth management. Over the past
few years, there has been substantial research effort in the area of QoS control schemes
working toward this goal. On the server end, various algorithms have been proposed to
optimize disk bandwidth allocations for effectively servicing multiple requests by means of

∗This work of Dr. Ing-Ray Chen is supported in part by a National Science Foundation grant #9987586, a Microsoft
Research grant and an Intel grant.



168 CHEN, LI AND YEN

admission control and data placement schemes [5]. The goal is either to reduce the overall
cost per request or to maximize the maximum number of requests the system is able to
service simultaneously with statistical or absolute QoS guarantees. There also have been
research efforts to deal with mixed workloads, again by means of admission control and
disk scheduling mechanisms [13, 14].

This paper also concerns with the server end design. In particular, it addresses the QoS
control and negotiation issues for a video server that provides streaming services to con-
current requests. Here, by “QoS” control, we refer to controlling disk/memory resources at
the server end to satisfy the bandwidth requirements of user video streams. Some of these
QoS control issues considered in the paper have been partly addressed in other multimedia
server designs [2–4, 6, 9–11]. Lee and Sabata [9] propose the concept of benefit functions
and resource demand functions associated with application requests, characterizing each
application with a dimension (or a range) of QoS requirements and its corresponding “ben-
efit” values with which the application brings to the system. They use the concept of benefit
optimization to design QoS-based admission control algorithms, given that each application
is characterized by its own specific set of benefit and resource demand functions. A key
design of their work is that a portion of the resources is reserved specifically to serve re-
quests with degraded QoS. The design thus performs QoS negotiation and adjustment only
to requests admitted into the reserved area. When a request departs, their algorithm adjusts
the QoS levels of requests admitted into the reserved area with the goal of maximizing the
benefit. A shortcoming of their work is that it does not discuss how much resources should
be reserved dynamically in response to changing workloads so that the system benefit is
maximized at run time. It also requires each application to supply a (continuous) benefit
function based on QoS levels (or resources) received from the system; such information re-
quires the application to know a priori how many levels of QoS are offered by a multimedia
server.

Cheng et al. [3, 4] in their work consider a class of priority-based admission control
algorithms for optimizing the same benefit value. They consider a simpler form of benefit
functions, i.e., each application is associated with a benefit value if it is served with a
particular QoS level with the number of QoS levels defined by the system. In addition, they
introduce the concept of “penalty” functions to characterize the loss to the system when
requests must be rejected by the system due to admission control. High-priority requests
are always served with the highest QoS level, while low-priority requests can have a range
of QoS levels, each characterized by a benefit value. They divide the resources into three
parts: one for serving the high-priority requests with the highest QoS level, one for serving
the low-priority requests also with the highest QoS level, and lastly a reserved area for
serving both high- and low-priority with QoS adjustment being performed only on low-
priority requests. They identify the best partition of these three areas for allocating resources
dynamically so as to optimize the system benefit at run time. Their analysis, however, is
based on hypothetical QoS levels (two) with no real data support.

In this paper, we develop a new periodic greedy reservation algorithm based on the use of
benefit/penalty functions, with the goal of optimizing a benefit-based performance metric
of the system, defined as the benefit throughput, or amount of benefit values earned per time
unit. Our work contributes to the field of QoS management and admission control as follows.



ADAPTIVE QoS CONTROL BASED ON BENEFIT OPTIMIZATION 169

First, we consider true QoS characteristics of a video server via actual trace data. Thus,
the QoS levels and their associated resource consumptions are not hypothetical. Second,
we give a theoretical derivation of the benefit throughput obtainable from our algorithm
developed, when given the benefit/penalty and input traffic information of requests. Third,
our algorithm is executed at run time utilizing the theoretical results obtained at static
time for adjusting the resource allocation greedly and periodically so as to optimize the
performance metric dynamically. Lastly, we develop a full disk simulation model for a
video server to evaluate the merit of our periodic greedy reservation algorithm compared
with other QoS control schemes.

The rest of the paper is organized as follows. Section 2 gives the system model and
states the system assumptions. Section 3 first derives the theoretical benefit throughput
obtainable by considering a baseline QoS control scheme. Then it describes a periodic,
greedy reservation algorithm by utilizing the theoretical results as a basis to further optimize
the benefit throughput at run time. The complexity of these QoS control algorithms based
on benefit optimization is then analyzed, along with a discussion of how the concept of
benefit optimization can be applied to video servers designed to provide streaming services
to users in distinct priority classes. Section 4 presents a simulation model for validating the
baseline and greedy QoS control algorithms developed in the paper. Physical interpretations
of the simulation results are given. Finally, Section 5 concludes the paper and outlines some
future research areas.

2. Background and system model

We assume the video server stores on a single disk multiple video titles, each of which has
multiple QoS versions. For example, a video title may have three versions stored on disk.
The first version is of the highest QoS level, e.g., a compressed MPEG file. The second
version is of the medium QoS level, e.g., a compressed H-263 video file at 64 Kbps × p,
where 1 ≤ p ≤ 32. The final version is of the lowest QoS level, say, based on H-261 format
at 64 Kbps. For scalable videos such as MPEG4, it is also possible to apply a scalable codec
at static time and store the original version along with several scaled-down versions of the
same video title on disk, with each demanding a different disk bandwidth requirement.
Note that storing a single copy of a scalable MPEG-4 video on disk and then applying a
scalable codec to produce scaled videos at run time would not reduce the disk bandwidth
requirement since we need to first retrieve the MPEG-4 video from disk before decoding
can be performed.

We assume that users request streaming services from the video server with an arrival
rate of λ which may change from time to time and a departure rate of µ. No priority
classes exist for users.1 The video server provides streaming services to admitted users
concurrently in cycles so it can use efficient disk scheduling algorithms [5, 12] to minimize
the disk seek overhead when retrieving data needed by all users in each cycle. Assume
that the cycle time is TSR, e.g., 1 second. Further, the video server executes an admis-
sion control algorithm to control who can be admitted into the system and also what QoS
level should be given to an admitted user request so that the total time used to retrieve
data needed by all admitted users in any cycle does not exceed TSR (deterministically or



170 CHEN, LI AND YEN

statistically). When a user request departs, the video server executes a resource reclama-
tion algorithm to deallocate the resources allocated to the departing user, or distribute the
resources to other user requests. Once the system admits a user, the user remains in the
system until the service is completed. We assume that it is disturbing to the user to arbi-
trarily raise and lower the QoS level during the service lifetime since users may prefer to
stay at a particular QoS level upon admission till it departs. Our baseline QoS control al-
gorithm follows this assumption. While our model eliminates the scenario of arbitrary QoS
changes, we assume that in some systems users can accept their QoS levels being raised (but
never lowered) during the service lifetime. Our greedy QoS control algorithm follows this
assumption.

We assume that all video titles stored in the multimedia servers have the same number of
QoS levels. Further, we assume that each QoS level i is associated with a benefit value vi ,
with v j < vi if j > i . That is, the highest QoS version has v1, and the second highest QoS
version has v2, and so on. The assignment of benefit values to QoS levels is done by the
service provider (e.g., pay per view) and the benefit each admitted user request brings to
the system depends on the QoS received by the user during its service period. For systems
that the QoS level granted to a user is never changed during the service lifetime, e.g., fixed
at level i as determined upon admission, the user will pay vi when it departs. Our baseline
QoS control algorithm follows this assumption. For systems that allow the QoS level to
be raised during the service lifetime, we assume that the benefit value obtainable by the
system from a departing user is proportional to the service periods of QoS levels. Suppose
the total service time of a user request is T before it departs. Also suppose that during
one third of the service time the user receives only the 2nd-level QoS (with benefit v2)
and during the remaining time, it receives the highest QoS level (with benefit v1). Then
the total benefit that this user brings to the system when it departs is v2/3 + 2v1/3. For
such systems, the user expects a possible (although not guaranteed) QoS improvement
but never a QoS degradation. The users of the system are aware of differentiated QoS
services provided by the server and that the price to pay depends on the QoS service
received.

As more users are in the system consuming all the system resources, the system has to
reject new users. We assume the system will not lower the QoS of admitted users to make
room to accommodate new users. To model the effect of rejection, we adopt the notion of a
penalty value q being removed from the benefit when the system rejects a user. Adding this
penalty parameter to the cost model is essential because otherwise we can always admit
users into the highest QoS level only until resources are exhausted and then reject all new
arrivals after that so that the benefit received is maximized. From the service provider’s
viewpoint, there is always some loss incurred to the system when a user is rejected (e.g.,
unhappy users); we assume that the penalty parameter is assessed by the service provider.
It can be set to zero if rejecting users is not an issue in the application.

3. Reservation algorithms for QoS control

The QoS control algorithms developed in this paper is based on resource reservation. We
partition the system resources into multiple parts, one for each QoS level. For example,



ADAPTIVE QoS CONTROL BASED ON BENEFIT OPTIMIZATION 171

80% of resources are for the highest QoS; 15% are for the medium QoS and the remaining
5% are for the lowest QoS if three QoS levels exist. The system always admits the users into
the highest QoS region whenever possible; if resources over there are all used-up, it will
admit users into the next QoS region, and so on.2 The best partition of these multiple QoS
admission regions for maximizing the benefit is dictated by the user arrival/departure rate
and benefit/penalty functions. For example, when the arrival rate is low (so the rejection
probability is low) or when v1 is high, it can be that we will allocate 100% to the highest
QoS only, thus leaving no room for other QoS levels.

We first derive an analytical expression for the theoretical benefit throughput obtain-
able from a baseline QoS control algorithm. Recall that again the baseline QoS control
algorithm is based on the assumption that once a user is admitted, it will stay at the ad-
mitted QoS level till it departs. We later will apply the analytical results to guide the
design of the greedy algorithm at run time, with the goal to further maximize the benefit
throughput dynamically. Recall also that the greedy algorithm is based on the assumption
that the the system can raise (but not lower) the QoS level of users during the service
lifetime.

3.1. Baseline algorithm

Without loss of generality, assume that there are M QoS levels with benefit values vi ,
1 ≤ i ≤ M , respectively. For a video server, it is possible for us to know a priori the resource
(bit rate) requirements of streaming requests at these M QoS levels at the static time via
trace data. Thus, if we are given a resource partition, say, (B1, B2, . . . , BM ), where Bi stands
for the disk bandwidth allocated to QoS level i and

∑M
i=1 Bi = B, the total disk bandwidth,

then based on statistical admission [5] we can estimate the maximum number of users in
each QoS level that the system is able to accept with a threshold disk overload probability,
i.e., 10−4. Let the set of maximum number of user requests statistically admissible be
(n1, n2, . . . , nM ) where ni stands for the maximum number of users admissible in QoS i
level given that the bandwidth allocation is Bi .

Consider a baseline QoS control scheme as follows. The system admits up to a maximum
of n1 users in the highest QoS level; then it admits users up to a maximum of n2 users in the
next QoS level and so on. When a user of QoS level i departs, no QoS adjustment is made
to users in QoS level j , j > i , i.e., no QoS enhancements, so once a user is admitted into
QoS level i , it stays in that level until the service is completed. When slots are free due to
departures, the vacant slots are filled with new arrivals only; the system always fills slots
in decreasing order of QoS. Thus, the system behaves as if it contains M queues with sizes
ni ’s, 1 ≤ i ≤ M , respectively, one for each QoS level. In other words, the system behaves
as if it contains M /m/m/ni/ni queues [7], 1 ≤ i ≤ M , each having ni QoS slots to hold
users at QoS level i . Each of these M queues is characterized by its input user arrival rate
and its per-user departure rate. The per-user departure rate is the same for all queues, i.e.,
µ. The input arrival rate to the queue of the highest QoS level is λ itself. The input arrival
rate to the queue of QoS level i + 1 is the spill-over rate from the queue of QoS level i
when the latter queue is full. Specifically, the input arrival rate to queue 1 is λ1 = λ, and
the input arrival rate to queue i + 1, λi+1 for i > 1, is equal to the input arrival rate to the



172 CHEN, LI AND YEN

queue of QoS level i (i.e., λi ) multiplied with the probability that all ni slots at QoS level i
are filled, i.e.,

λi+1 = λi ×
1

ni !

(
λi
µ

)ni

1 + ∑ni
j=1

1
j!

(
λi
µ

) j

The system rejects incoming users only when all its resources are used up, i.e., when all
slots are used up in all M QoS levels. Thus, the rejection rate is equal to the input arrival
rate to the queue of the lowest QoS level (i.e., λM ) multiplied by the probability that all nM

slots at QoS level M are filled, i.e.,

λrej = λM ×
1

nM !

(
λM
µ

)nM

1 + ∑nM
j=1

1
j!

(
λM
µ

) j

When a user is rejected, the system loses a profit of q and when a user at QoS level i departs,
the system earns a benefit of vi . Therefore, under this baseline QoS control scheme, the
resulting benefit throughput is the sum of that due to users departing at all the M QoS levels,
minus the penalty rate due to users being rejected when all resources are used-up in all QoS
levels. Let BT be the benefit throughput obtainable under the baseline QoS control scheme.
Then,

BT =
M∑

i=1

ni∑
k=1

kµ × vi ×
1
k!

(
λi
µ

)k

1 + ∑ni
j=1

1
j!

(
λi
µ

) j

− q × λM ×
1

nM !

(
λM
µ

)nM

1 + ∑n
j=1

1
j!

(
λM
µ

) j (1)

where λ1 = λ and λi+1 is related to λi , 1 ≤ i < M , as given earlier. The last term accounts
for the penalty rate due to rejecting users.

When given parameter values of λ, µ, v1, v2, . . . , vM , and q , one can statically determine
the best partition of (n1, n2, . . . , nM ), say, (n∗

1, n∗
2, . . . , n∗

M ), for maximizing the benefit
throughput. To search for the best partition set, we formulate the search problem as a linear
programming problem as follows. Let Ni be the maximum number of requests at QoS level
i that the system is able to admit statistically (with a threshold disk overload probability of
10−4) when all the cycle duration period TSR is allocated to service requests at QoS level i
only. Thus, there will be M parameters, i.e., N1, N2, . . . , NM , for M QoS levels, respectively,
which we can compute at static time [5]. Then the best partition set (n∗

1, n∗
2, . . . , n∗

M ) is
the one that maximizes BT (using the equation derived above) subject to the condition
that:

M−1∑
i=1

(⌊
NM

Ni

⌋
× ni

)
+ nM = NM . (2)



ADAPTIVE QoS CONTROL BASED ON BENEFIT OPTIMIZATION 173

3.2. Greedy QoS-control algorithm

For systems that allow the QoS level to be increased during the service lifetime of users,
we use a greedy algorithm to further improve the benefit throughput obtainable. In fact, the
resulting benefit throughput obtainable from the baseline QoS control scheme will become
a lower bound for the greedy algorithm.

We first notice that the baseline QoS control scheme does not allow resources to be
redistributed when a user departs. That is, the system always statically admits users up
to a maximum of n1 at the highest QoS level and when all n1 slots are filled up, it then
admits users at the next inferior QoS level up to a maximum of n2 and so on. Hence, if
the system is in a state in which n1 slots are all filled but n2 slots are just partially filled,
then if later on a user using one of the n1 slots departs, the system would not do anything
with the vacant slot in n1; instead, it just waits until another user arrives. This is a waste of
valuable resources especially if vacant slots due to user departures are of the highest QoS
quality.

We modify our algorithm to be greedy as follows: When a user in QoS level i departs,
if a user exists at the next inferior QoS level i + 1, then that user’s QoS is raised to QoS i ;
otherwise, raise the QoS of a user at QoS i +2 to QoS i , if a user is found at QoS level i +2,
and so on. Note that since the user departure time is independently distributed, it is possible
that a user admitted into level i + 1 can depart earlier than a user admitted into level i + 2
or even a lower QoS level. Also, when a user at QoS level i + 1 is promoted to QoS level i ,
creating an empty slot at level i + 1, we repeat the same process to raise the QoS level of a
user at i + 2 to i + 1, and if a user is not found at level i + 2, we go to level i + 3, and so on.
Thus a departure of a user at level i triggers a ripple-promotion effect and potentially M − i
users, one from each of the following M − i levels, can have their QoS levels promoted by
one level. As for the selection of the user for QoS upgrade, conceivably there are several
selection policies available such as random, shortest-time first, longest-time first, etc. For
fairness, this paper adopts the longest-time first policy such that a user that stays at level i for
the longest time among all users in the same level will be selected for QoS upgrade. Notice
this greedy policy always improves the benefit throughput. Also, it does not disturb users
since the greedy algorithm only raises the QoS, which in general is likely to be acceptable
to users.

3.3. Periodic and dynamic resource reservation

In both the baseline and greedy algorithms, we use a look-up table listing the best (n∗
1, n∗

2, . . . ,

n∗
M ) value set for each arrival rate value, along with the benefit throughput obtainable at

that arrival rate. This table can be obtained at the design time from the analysis given in
Section 3.1. Our algorithms are dynamic and periodic in resource reservations such that the
best (n∗

1, n∗
2, . . . , n∗

M ) value set is changed dynamically in response to workload changes at
run time. The workload change can be profiled based on historical data collected identifying
arrival rates during peak and off-peak time periods during a day. It can also be monitored by
observing the number of users arriving at the system over an observation period such that
the arrival rate is estimated by dividing the number of users by the observation time period.



174 CHEN, LI AND YEN

Table 1. Baseline (n∗
1, n∗

2, n∗
3) and benefit throughput.

λ (arrivals/minute) (n∗
1, n∗

2, n∗
3) Benefit throughput (sec−1)

10 (41, 69, 4) 2.33

15 (28, 133, 6) 2.94

20 (15, 197, 8) 3.54

25 (10, 197, 58) 3.94

30 (4, 197, 118) 4.22

35 (0, 197, 158) 4.48

40 (0, 174, 204) 4.49

45 (0, 129, 294) 4.48

50 (0, 83, 386) 4.46

55 (0, 36, 480) 4.45

60 (0, 0, 552) 4.44

v1 = 20, v2 = 10, v3 = 5 and q = 1.

Based on the arrival rate monitored at run time or profiled a priori, the system then performs
a table lookup operation at run time to determine the best (n∗

1, n∗
2, . . . , n∗

M ) value set based
on the estimated current arrival rate to maximize the benefit throughput obtainable. Here
we again emphasize that the calculation of the best (n∗

1, n∗
2, . . . , n∗

M ) value set is done at
static time and only a table look-up operation is required to be performed at run time in
response to changing workloads. Table 1 lists an example table for M = 3 to be used at
run time. During an off-peak period in which the arrival rate is 10 arrivals/minute, then
(n∗

1, n∗
2, n∗

3) = (41, 69, 4) should be used. If the arrival rate monitored is changed to 30
arrivals/minutes during a peak period, on the other hand, then (n∗

1, n∗
2, n∗

3) = (4, 197, 118)
should be used to maximize the benefit throughput. For the greedy algorithm, it also per-
forms QoS adjustments dynamically when a user departs to further improve the benefit
throughput obtainable by the system.

The number of possible cases of (n1, n2, . . . , nM ) from which the optimal set (n∗
1, n∗

2, . . . ,

n∗
M ) can be found is upper bounded by the number of ways of dividing NM into M sets subject

to Condition 2 above. Thus the time complexity involved in enumerating and applying Eq. (1)
and Condition 2 is O(N M−1

M ). Since it is unlikely for a service provider to store more than
5 versions of the same video title at different QoS levels, e.g., M < 5, the time complexity
is still manageable in practice.3 Once we find the best (n∗

1, n∗
2, . . . , n∗

M ) set for each arrival
rate λ, we can then build a lookup table recording their relationship, along with the benefit
throughput obtainable.

In special cases where the system does not provide differentiated services such that all
users demand the same QoS level, say i , our method is still applicable by setting ∀ j, v j =
0, j �= i . Then, the best set found would be (0, . . . , 0, n∗

i , 0, . . . , 0), i.e., the system will
reserve slots only for QoS level i so as to maximize the benefit throughput. For systems that
provide differentiated services, the number of QoS levels, M , is essentially driven by user
demands in QoS. In arrival scenarios in which all clients demand at least QoS level i and



ADAPTIVE QoS CONTROL BASED ON BENEFIT OPTIMIZATION 175

nothing less, M = i since QoS level i + 1 or below is not acceptable to users. The static
table generated above can be used by the server to provide “time-differentiated” services,
i.e., in “bargain” time periods (say 5 pm–8 am, noon–2 pm), more QoS levels are offered
to accommodate more users with a larger M value, while in “business” time periods (say
8 am–noon, 2 pm–5 pm), less QoS levels are offered to guarantee a minimum QoS level
with a smaller M value. For example, during a bargain time period, M = 3 and during a
business time period, M = 2. The system can keep a table for M = 2 and another one
for M = 3, giving the optimal resource allocation for M = 2 and M = 3, respectively, to
maximize the benefit throughput obtainable. In this case, the system can switch between
M = 2 and M = 3 by again performing a table lookup operation at run time efficiently for
QoS control based on benefit optimization. These bargain and business time periods can
be advertised by the service provider so that users are aware of the minimum QoS level
guaranteed and the price to pay for the service. Alternatively the service provider can use
multiple video servers, each servicing a class of users with a fixed number of QoS levels,
e.g., M = 3 exclusively all the time.

3.4. Priority-based resource reservation

The baseline and greedy algorithms developed in the paper assume that all users in the
system are in the same priority class, i.e., no priority distinction. This results in a single
set of benefit and penalty values applied to all users. The concept of QoS control based on
benefit optimization can be applied to applications where multiple priority classes of users
exist, such that each priority class has a distinct QoS level. For example, if there are three
QoS levels (M = 3), then three priority classes could exist, each at a distinct QoS level.
In this case, a “priority-based QoS control” algorithm can be developed using the same
methodology discussed in the paper to find the best partition set (n∗

1, n∗
2, . . . , n∗

M ) such that
n∗

i is specifically reserved to serve only users in priority class i with the objective again to
optimize the resulting benefit throughput.

We first recognize that unlike the baseline and greedy algorithms designed for dealing with
users in a single class, the priority-based QoS control algorithm is designed for servicing
users in multiple priority classes. For this reason, we should not compare or contrast the
baseline/greedy algorithms with the priority-based algorithm since they don’t have the
same user basis. For the priority-based QoS control algorithm, users will be arriving from
M distinct sources, one for each priority class. Let �i be the arrival rate from class i . Further,
although v1, v2, . . . , vM can be assigned by the service provider to M priority classes (at M
QoS levels) in a similar way, a distinct qi parameter associated with class i will be required
to characterize the loss to the system when a user in class i is rejected upon admission. Note
that a user in class i is rejected when all n∗

i slots allocated are used up. Also note that n∗
i

is reserved based on the knowledge of the arrival rates and benefit/penalty characteristics
of users in different priority classes such that the benefit throughput would be optimized,
so no “spill-over” into other QoS levels (other priority classes) would be allowed when a
rejection occurs.

Below we give a closed-form expression of the benefit throughput BT p obtainable under
the priority-based QoS control algorithm designed for dealing with users in M multiple



176 CHEN, LI AND YEN

classes (corresponding to M QoS levels):

BT p(n1 . . . nM , �1 . . . �M , µ, v1 . . . vM , q1 . . . qM )

=
M∑

k=1


 nk∑

i=1

iµ × vk ×
1
i!

(
�k
µ

)i

1 + ∑nk
j=1

1
j!

(
�k
µ

) j




−
M∑

k=1


�kqk ×

1
nk !

(
�k
µ

)nk

1 + ∑nk
j=1

1
j!

(
�k
µ

) j


 (3)

The derivation follows the concept that the system behaves as if it contains M separate
m/m/ni/ni queues, with queue i (class i) now having a distinct, independent input arrival
rate �i . Users in class i are served with a departure rate of µ in queue i allocated with
ni slots. When a user departs in queue i , a benefit value of vi is earned and when a user
is rejected by queue i , a penalty of qi is assessed. Equation (3) can be used to find the
the best partition set (n∗

1, n∗
2, . . . , n∗

M ) such that BT p is maximized. The complexity of the
search process and the way the result can be applied are the same as discussed earlier in
Section 3.3.

4. Modeling and analysis

In this section, we demonstrate the effectiveness of the baseline and greedy algorithms
developed in this paper by means of numerical data and simulation studies. As a basis for
comparison, we consider three reference algorithms as follows:

1. Highest-QoS-only (HQO): In this algorithm, we only assign users to the highest QoS
level (despite there are M versions for each video), i.e., (n1, n2, . . . , nM ) is equal to
(N1, 0, . . . , 0).

2. Lowest-QoS-only (LQO): In this algorithm, we only assign users to the lowest QoS
level (despite there are M versions for each video), i.e., (n1, n2, . . . , nM ) is equal to
(0, 0, . . . , NM ).

3. Equal-Share (ES): In this algorithm, we assign equal amounts of resources to each QoS
level, i.e., (n1, n2, . . . , nM ) is equal to (N1/M, N2/M, . . . , NM/M).

Comparing with these algorithms, the baseline and greedy algorithms developed will instead
perform QoS control based on the best partition of (n1, n2, . . . , nM ) as dictated by the input
parameter values of λ, µ, v1, v2, . . . , vM , and q.

4.1. Disk characteristics and data model

The disk we have selected is a Seagate with 20 G bytes disk space with the average seek time
and rotational latency being 16.5 msec, read/write rate 33 MBps, 512 bytes per sector, 64
sectors per track, 4096 tracks per side, and 160 sides on the disk. The disk is filled with video



ADAPTIVE QoS CONTROL BASED ON BENEFIT OPTIMIZATION 177

titles randomly and each video has three versions, i.e., the full MPEG 1 format, the H-261
format, and the H-263 format, all of which are from trace files of the movie “Star Wars”.
Different movie titles are simulated by using different group of picture (GOP) entry points
into the trace files. As the disk is filled, a mapping table is built to map the locations of data
stored on disk with playback cycles for various video titles with their different versions in
TSR = 1 second increment. We compute the values of N1 off-line by using classic statistical
admission control [5] using the trace data for the full MPEG 1 version at the highest QoS
level so that the probability of disk overload does not exceed 10−4. By using the average seek
time and rotational latency of 16.5 msec and the read/write rate of 33.3 MBps, it turned out
that N1 = 55, that is, 55 video requests can be serviced concurrently so that the probability of
disk overload is less than 10−4. Specifically, a three-step procedure is followed to determine
N1 = 55 at static time [5]. First, the total number of blocks which the disk is able to access
in a playback cycle based on the bandwidth characteristics of the disk is calculated. Second,
the probability distribution (a histogram) of the number of disk blocks retrieved by a single
video stream in any playback cycle is obtained by analyzing the video trace data. Note that
the number of disk blocks retrieved in any playback cycle by a video stream is a variable
for VBR video, so a probability distribution is used. Third, the probability distribution of
N video streams is obtained by performing a convolution of the probability distributions of
N video streams. The resulting cumulative probability distribution then is used to calculate
the disk overload probability, that is, the probability that the total number of blocks required
by N video streams is greater than the total number of blocks the disk is able to access in
one playback cycle. For the disk selected in the simulation, it happened that at N = 56, the
disk overload probability exceeds 10−4, so N1 = 55. We performed a similar procedure for
requests being served at the next QoS level, yielding N2 = 197. Lastly, we obtained N3 =
552 for the maximum number of requests that can be served simultaneously at the lowest
QoS level.

4.2. Optimal (n∗
1, n∗

2, n∗
3) under the baseline algorithm

Based on the values of (N1 = 55, N2 = 197, N3 = 552) computed, we consider the arrival
rate of streaming requests in the range of [10, 60] arrivals/minute, with 10 arrivals/minute
representing a lightly-loaded system and 60 arrivals/minute representing a heavily-loaded
system. Thus, based on Eq. (1) and Condition 2 we can easily build a table off-line enumer-
ating the optimal (n∗

1, n∗
2, n∗

3) for each possible arrival rate when the values of v1, v2, v3, and
q are given. The values of v1, v2, v3, and q are application dependent. Table 1 below shows
the optimal (n∗

1, n∗
2, n∗

3) values together with their associated optimal benefit throughput
values, when v1 = 20, v2 = 10, v3 = 5, q = 1, µ = 0.1 departures/minute (10 minutes of
viewing time per user), and the arrival rate λ varies in the range of [10, 60] in increment of
5 arrivals/minute. As expected, the benefit throughput obtained at the optimal (n∗

1, n∗
2, n∗

3)
setting increases as λ increases because the system goes from lightly loaded to heavily
loaded (i.e., more rewards are added due to a higher system throughput); however, as λ

exceeds a threshold, the benefit throughput deteriorates because many clients are rejected
(i.e., more penalties incur due to a higher rejection rate).



178 CHEN, LI AND YEN

4.3. Numerical data

Figures 1–5 compare the benefit throughput (the Y -coordinate) obtainable by the baseline,
highest-QoS-only (HQO), lowest-QoS-only (LQO), and equal-share (ES) algorithms as a
function of the user arrival rate (the X -coordinate) when given a set of input parameter values
on v1, v2, v3 and q. First we note that the unit of the y-coordinate is “value-units/sec,” so even
a difference of 0.1 can be significant, e.g., it can correspond to a difference of 0.1 dollar/sec
to a service provider. Figure 1 shows the extreme case in which v1 � v2, v3. In this case,
the baseline algorithm behaves like the HQO algorithm because when the benefit value
at the highest QoS level is much higher than others, reserving all resources at the highest

Figure 1. Comparing the benefit throughput obtainable: (v1 = 60, v2 = 10, v3 = 5, q = 1).

Figure 2. Comparing the benefit throughput obtainable: (v1 = 40, v2 = 10, v3 = 5, q = 1).



ADAPTIVE QoS CONTROL BASED ON BENEFIT OPTIMIZATION 179

Figure 3. Comparing the benefit throughput obtainable: (v1 = 20, v2 = 10, v3 = 5, q = 1).

Figure 4. Comparing the benefit throughput obtainable: (v1 = 15, v2 = 10, v3 = 5, q = 1).

QoS level would yield the best benefit throughput. On the other hand, figure 5 shows the
extreme case in which v1 = v2 = v3. In this case, the baseline algorithm behaves like the
LQO algorithm, because when the benefit value is the same at all QoS levels, reserving all
resources at the lowest QoS level will allow more users to be admitted and thus a higher
overall benefit received by the system.

Figures 2–4 show three more general cases in which v1 > v2 > v3 holds true but not
necessarily v1 � v2, v3. These three cases exhibit a similar trend that the benefit throughput
obtainable by the baseline QoS control algorithm is much better than the three reference
QoS control algorithms. We see that always serving users at the highest QoS level (under the
HQO algorithm) will result in a heavy loss of benefit to the system except when the benefit
value of the highest QoS level is much higher than those of other QoS levels (as in figures 1



180 CHEN, LI AND YEN

Figure 5. Comparing the benefit throughput obtainable: (v1 = 10, v2 = 10, v3 = 10, q = 1).

and 2), or when the system is very lightly loaded. This means that an algorithm based on not
reserving resources at all for lower QoS levels is unlikely to perform well since when the
traffic is modest, the system may unnecessarily reject users since resources can be quickly
used up by users at the highest QoS level. On the other hand, an algorithm always serving
users at the lowest QoS level (under the LQO algorithm) can perform well only when the
benefit value of the lowest QoS level is about the same as those at other levels (as in figure 5),
or when the system is heavily loaded, in which case the system avoids rejecting too many
users by serving all users at the lowest QoS level. When the system is lightly loaded, in
general the LQO algorithm would yield the worst benefit throughput among all since the
net benefit of successfully completing user services at the lowest QoS level is marginal.
The ES algorithm falls within these two extremes with the benefit throughput obtainable
being modest all the time. However, since the resource allocation to M QoS levels is equal
and indiscriminating in nature, it performs poorly in all cases compared with the baseline
algorithm which allocates resources discriminatively with the goal to maximize the benefit
throughput.

4.4. Simulation validation

We developed a single-disk simulator based on the disk characteristics and data model
described earlier to validate the design of the baseline and greedy algorithms and to see
the performance gain of the greedy algorithm compared with the baseline algorithm. In
the simulation, we periodically (every 20 minutes) change the arrival rate of requests by
an increment of 5 arrivals/minute, starting from an initial arrival rate of 10 arrivals/minute.
This change is detected as an event to which the system responds by changing to another
(n∗

1, n∗
2, n∗

3) set based on Table 1 for admission control of the three QoS levels. While the
system is under a (n∗

1, n∗
2, n∗

3) set, it admits and rejects users, as well as scheduling requests,
in accordance with the baseline and greedy QoS control algorithms described in Section 3.



ADAPTIVE QoS CONTROL BASED ON BENEFIT OPTIMIZATION 181

Again the departure rate of requests is assumed to be 0.1 departure/minute. All stream-
requests admitted are served based on the SCAN algorithm in each TSR = 1 second cycle,
that is, all admitted requests are arranged in a scheduled queue in every cycle based on the
disk locations of data blocks to be accessed so that the disk read/write heads only need to
scan the disk in one direction once to collect all the data needed for all streams so as to
minimize the seek time overhead. Any stream not having the needed data retrieved prior
to its playback instant suffers a data loss, the probability of which is also a performance
measure to be collected in the simulation.

4.4.1. Simulation results and physical interpretations. Recall that we assume that there
is plenty of buffer space, so the disk bandwidth is the only bottleneck that can cause
data loss. From all the simulation runs we have covered, we observe little data loss under
all algorithms considered. This is expected since all algorithms considered are based on
resource reservation and (statistical) admission control.

Figure 6 compares the benefit throughput BT obtained under the greedy algorithm vs.
that obtained under the baseline algorithm, as a function of the arrival rate. Each interval
covers 20 minutes of simulation time, at the end of which the benefit throughput obtained
in that interval is computed.

We observe that the greedy algorithm always performs better than the baseline algo-
rithm in terms of the total benefit throughput it brings to the system, due to the em-
ployment of dynamic QoS adjustments. Note that in the first few intervals of figure 6
during which the system is lightly-loaded, the system mostly serves clients at the high-
est or the medium QoS level so as to increase the benefit received due to departing
clients, while at the last few intervals during which the system is heavily loaded, the
system serves clients mostly at the medium or the lowest QoS level so as not to reject
too many clients and not to diminish the benefit received. The greedy algorithm, in ad-
dition to following this QoS control strategy as the baseline algorithm, also effectively
adds more benefit values to the system by raising QoS levels of existing users whenever
a higher QoS level client departs. As a result, it always performs better than the baseline
algorithm.

Figure 6. Comparing baseline and greedy algorithms in BT .



182 CHEN, LI AND YEN

Figure 7. Population of high-QoS clients.

Figure 8. Population of medium-QoS clients.

Figure 9. Population of low-QoS clients.

Figures 7–9 compare the average numbers of requests at the highest, medium and lowest
QoS levels, respectively, under the baseline and greedy algorithms, also as a function of the
arrival rate in increment of about 5 arrivals/minute. Figures 7 and 8 indicate that the greedy
algorithm is able to serve more clients at the highest or medium QoS levels compared with the
baseline algorithm especially when the load is modest. This is due to the fact that the greedy
algorithm moves lower-QoS clients to a higher-QoS level greedily whenever a higher-QoS
client departs. Consequently, there are fewer clients being served at the lowest QoS level
under the greedy algorithm when compared with the baseline algorithm, as demonstrated
in figure 9. Allowing more clients to be served at higher QoS levels in our greedy algorithm
has the direct effect of improving the overall benefit throughput obtainable by the system



ADAPTIVE QoS CONTROL BASED ON BENEFIT OPTIMIZATION 183

since when a user departs, the benefit it brings to the system is proportional to the QoS level
received. It should be mentioned that both the baseline and greedy algorithms would yield
the same rejection rate and system throughput (number of users completed per time unit).
Like the baseline algorithm, the greedy algorithm also uses the the optimal (n∗

1, n∗
2, n∗

3) set
for QoS control. Thus, moving users from lower QoS levels to higher QoS levels upon user
departures by the greedy algorithm will not change the total number of users admissible by
the system.

5. Conclusion

We have proposed and analyzed a class of QoS control algorithms applicable to video servers
that support the notion of QoS negotiation and renegotiation. Our design goal is to optimize
the benefit throughput as a result of servicing clients at different QoS levels. We designed
baseline and greedy QoS control algorithms based on the concept of resource reservation
so that resources are reserved a priori for different QoS levels based on the workload to
the system. The system can admit clients based on the allocation. These algorithms can
adapt to workload changes at run time by dynamically re-allocating resources reserved
to requests at different QoS levels by performing a simple table lookup operation (e.g.,
Table 1), so that the benefit throughput can be maximized. Further, for systems that allow
the QoS level to be raised (but not lowered) during the service lifetime of users, the greedy
algorithm can improve the benefit throughput further by performing QoS adjustments, as
opposed to the baseline algorithm designed for systems that do not allow QoS changes
at run time. We validated the greedy algorithm design with simulation and demonstrated
that the greedy algorithm outperforms other algorithms in terms of the benefit throughput
without sacrificing the performance of the system, such as the throughput and rejection
probability.

A future research area is to investigate if the algorithm designed in this paper can be
integrated seamlessly with existing QoS-based cost models in implementing web-based
video servers that support differentiated QoS services and pricing.

Notes

1. Later in Section 3.4, we will discuss how to apply the concept of benefit optimization to priority-based QoS
control.

2. The same QoS control is applied to all users in the system since there is no priority distinction among users,
i.e., only a single priority class exists. Later in Section 3.4 we will treat the case in which multiple priority
classes of users exist, with each priority class corresponding to a distinct QoS level.

3. Note that our method proposed in the paper does not prevent M ≥ 5 although in general we would not expect
M ≥ 5 because of excessive storage requirements.

References

1. C. Aurrecoechea, A.T. Campbell, and L. Hauw, “A survey of QoS architectures,” ACM/Springer Multimedia
Systems, Vol. 6, No. 3, pp. 138–151, 1998.



184 CHEN, LI AND YEN

2. S. Brandt, G. Nutt, T. Berk, and M. Humphrey, “Soft real-time application execution with dynamic
quality of service assurance,” in 6th International Workshop on Quality of Service, Napa, CA, May
1998.

3. S.T. Cheng, C.M. Chen, and I.R. Chen, “A study of self-adjusting quality of service control schemes,” in 1998
Winter Simulation Conference, Washington D.C., 1998, pp. 1623–1628.

4. S.T. Cheng, C.M. Chen, and I.R. Chen, “Dynamic quota-based admission control with subrating
in multimedia servers,” ACM/Springer Journal on Multimedia Systems, Vol. 8, No. 2, pp. 83–91,
2000.

5. E. Chang and A. Zakhor, “Cost analyses for VBR servers,” IEEE Multimedia, Vol. 3, No. 4, pp. 56–71, Winter
1996.

6. T. Henderson, J. Crowcroft, and S. Bhatti, “Congestion pricing,” IEEE Internet Computing, Vol. 5, No. 2,
2001, pp. 85–89.

7. L. Kleinrock, Queueing Systems, Vol. 1: Theory, John Wiley and Sons, 1975.
8. G. Lawton, “Video streams into the mainstream,” IEEE Computer, July 2000, pp. 12–17.
9. W. Lee and B. Sabata, “Admission control and QoS negotiation for soft-real time applications,” in

IEEE International Conference on Multimedia Computing and Systems, Vol. 1, Florence, Italy, 1999,
pp. 147–152.

10. B. Li and K. Nahrstedt, “A control-based middleware framework for QoS adaptation,” IEEE Journal of Selected
Area in Communications, Vol. 17, No. 9, pp. 1632–1650, 1999.

11. G.J. Nutt et al., “Dynamically negotiated resource management for data intensive application suites,” IEEE
Trans. Knowledge and Data Engineering, Vol. 12, No. 1, pp. 78–95, 2000.

12. P.J. Shenoy and H.M. Vin, “Cello: A disk scheduling framework for next generation operating systems,” in
7th ACM Inter. Conf. on Measurement and Modeling of of Computer Systems (SIGMETRICS ’98), Madison,
1998, pp. 44–55.

13. T.-P.J. To and B. Hamidzadeh, “Run-time optimization if heterogeneous media access in a multimedia server,”
IEEE Transactions on Multimedia, Vol. 2, No. 1, pp. 49–61, 2000.

14. R. Wijayaratne and A.L.N. Reddy, “Integrated QoS management for disk I/O,” in IEEE Interna-
tional Conference on Multimedia Computing and Systems, Vol. 1, Florence, Italy, 1999, pp. 487–
492.

Ing-Ray Chen received the BS degree from the National Taiwan University, Taipei, Taiwan, and the M.S.
and Ph.D. degrees in computer science from the University of Houston. He is currently an associate profes-
sor in the Department of Computer Science at Virginia Tech. His research interests include mobile comput-
ing, pervasive computing, multimedia, distributed systems, real-time intelligent systems, and reliability and
performance analysis. Dr. Chen has served on the program committee of numerous conferences, including as
program chair for 29th IEEE Annual International Computer Software and Application Conference in 2005,
14th IEEE International Conference on Tools with Artificial Intelligence in 2002, and 3rd IEEE Symposium
on Application-Specific Systems and Software Engineering Technology in 2000. Dr. Chen currently serves
as an Associate Editor for IEEE Transactions on Knowledge and Data Engineering, The Computer Journal,
and International Journal on Artificial Intelligence Tools. He is a member of the IEEE/CS and
ACM.



ADAPTIVE QoS CONTROL BASED ON BENEFIT OPTIMIZATION 185

Sheng-Tun Li is an Associate Professor in the Institute of Information Management, National Cheng Kung
University, Tainan, Taiwan. He received his Ph.D. in Computer Science from the University of Houston in 1995.
His research interests include multimedia streaming, artificial intelligence, and Java computing. Dr. Li is a member
of the IEEE/CS and ACM.

I-Ling Yen received her BS degree from Tsing-Hua University, Taiwan, and her MS and PhD degrees in Com-
puter Science from the University of Houston. She is currently an Associate Professor of Computer Science at
the University of Texas at Dallas. Dr. Yen’s research interests are in distributed systems, fault-tolerant computing,
self-stabilization algorithms, and security. She has served as program co-chair for the 1997 IEEE High Assurance
Systems Engineering Workshop, the 1999 IEEE Symposium on Application-Specific Systems and Software Engi-
neering Technology, and the 1999 Annual IEEE International Conference on Computer Software and Applications
Conference. Dr. Yen is a member of the IEEE/CS.


