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Abstract - In this paper we present a case study of IoT 
cloud participatory sensing where a user sends a query 
to the cloud to the air quality of a location at a 
particular time to decide if it should enter the location 
based on its susceptibility to the air quality detected. 
All IoT devices (e.g., smart phones carried by humans 
or smart cars driven by humans) capable of detecting 
air quality can act as participants and submit sensing 
reports to the cloud for sensing result aggregation. The 
major challenge is the selection of trustworthy 
participants because not all IoT devices will be 
trustworthy. We leverage a “Trust as a Service” (TaaS) 
cloud utility to address the issue of selecting 
trustworthy participants. Using real traces of ozone 
(O3) levels and mobility traces of users in the O3 
community of interest (O3COI) group in the city of 
Houston, we demonstrate that TaaS outperforms 
contemporary IoT trust protocols in selecting 
trustworthy participants. We compare the performance 
of the TaaS cloud utility with two contemporary IoT 
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trust protocols for supporting trust-based IoT 
participatory sensing applications. With the help of the 
TaaS cloud utility, a user in this O3COI group is able 
to obtain O3 readings very close to the ground truth O3 
level despite 30% participants are untrustworthy. 

Keywords - Internet of Things; participatory sensing; 
trust; cloud computing. 

1. Introduction 

The physical world can be monitored by ubiquitous Internet of 
Things (IoT) devices through participatory sensing by which a huge 
amount of data is collected and analyzed for hazard detection and 
response. In this paper we present a case study of IoT participatory 
sensing [2, 4, 5] where IoT devices (e.g., smart phones carried by 
humans or smart cars driven by humans) can act as participants to collect 
air quality data and submit to a processing center located in the cloud for 
environmental data analysis. It is especially applicable to a health IoT 
group [8] where the main concern is about a pollutant (O3 in our case 
study). Users in the group report their O3 sensing results upon receiving 
a query from a member who wishes to find out a location’s O3 level at a 
particular time to decide if it should enter the location based on its 
susceptibility to the O3 level detected. 

The major challenge in IoT cloud participatory sensing is the 
selection of trustworthy participants because not all IoT devices will be 
trustworthy and some IoT devices may behave maliciously to disrupt the 
network or service (e.g., in a terrorist attack scenario) or just for their 
own gain (e.g., in an evacuation scenario following a disaster). We 
leverage a “Trust as a Service” (TaaS) cloud utility [1] to addresses the 
issue of selecting trustworthy participants. We compare the performance 
of TaaS against two contemporary trust protocols, Adaptive IoT Trust 
[3] and ObjectiveTrust [7] in selecting trustworthy participants. We 
show that TaaS can provide better performance than these contemporary 
IoT trust protocols. Using real traces of O3 levels and mobility traces of 
users in the O3 community of interest (O3COI) group in the city of 
Houston [10], we demonstrate that with the help of the TaaS cloud 
utility, a user in this O3COI group is able to obtain close to the ground 
truth O3 level. 
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The rest of the paper is organized as follows. In Section 2, we discuss 
the trace data used for the case study. In Section 3, we describe the 
background of trust-based IoT participatory sensing and the TaaS cloud 
utility used for selecting trustworthy participants for participatory 
sensing. We provide a brief literature survey to compare and contrast 
TaaS with existing distributed and centralized IoT trust protocols. We 
also provide the reason why we select two contemporary IoT trust 
protocols, namely, Adaptive IoT Trust [3] and ObjectiveTrust [7], for 
performance comparison. In Section 4, we conduct a performance 
analysis and compare the performance of TaaS against these two 
contemporary IoT trust protocols for selecting trustworthy participants 
for this case study. Finally Section 5 concludes the paper and outlines 
future work. 

2. Trace Data Used for the Case Study 

We use real traces of O3 levels and mobility traces of users in the O3 
community of interest (O3COI) group in the city of Houston and apply it 
to our participatory sensing case study. The original dataset in [10] 
covers the socio-demographically relevant activity sequences and the 
movements of each individual in 4.9 million synthetic individuals in the 
Houston metropolitan area. We extract a portion of this huge database to 
cover a smaller set of members in the O3COI group along with their 
mobility and activity data around a smaller area. Figure 1 shows the 
synthetic individuals in the Houston metropolitan area and the zoomed 
view of a small region covering the locations of the target user. The 
coordinates in the figure represents the longitude and latitude of each 
synthetic individual. The zoomed area is divided into 8x8 regions. The 
red curve in the zoomed area represents the mobility of the target user. 
In the case study, we assume a percentage of nodes, denoted by PM in 
the range of [0, 30%], are malicious. Every day this “good” member 
issues queries to its home cloud server before it enters a particular 
location to know the O3 level in the location it is about to step into. 
After collecting a number of O3 reports from other members, it then 
performs a trust-weighted computation to deduce the O3 reading 
(described later in Section 4). If the O3 level is below a threshold, it 
would follow its route; otherwise, it will not enter the location or it will 
detour to avoid the location because the location has a high O3 level that 
can harm its owner’s health. After the query-and-response event is 
completed, this “good” member will assess if an O3 sensing report 
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submitted by another member is satisfactory and will submit the service 
experience to its home server so as to facilitate the implementation of the 
TaaS cloud utility (described later in Section 3). 

 

 
Figure 1: A zoomed view of a small region covering the locations visited 

by a target user in two days. 
 

The Houston area has an extensive air monitoring network including 
47 monitors measuring ozone. The O3 sensing data are not released in 
real time, but on an hourly basis. For our case study, hourly readings of 
ozone concentration levels (O3 ug/m3 hourly) across 39 monitors in the 
Houston metropolitan area are used and served as “ground truth” against 
which a node’s O3 sensing report is checked for service quality and the 
service experience is reported to the cloud server for TaaS service 
management.  

3. Trust to Filter Untrustworthy Sensing Reports 

The major challenge in IoT participatory sensing is the selection of 
trustworthy participants for aggregating sensing results [2, 4, 5]. In this 
section, we first describe our approach, leveraging the TaaS cloud utility 
[1] to filter untrustworthy sensing reports. Then we conduct a brief 
literature survey to compare and contrast TaaS with existing distributed 
and centralized IoT trust protocols.  

 
3.1. Trust as a Service Cloud Utility 

TaaS [1] is characterized by a simple report-and-query paradigm as 
follows: 
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 Reporting: Every user has a home cloud server. Whenever an O3 
sensing report is provided by an IoT device, a user will report to 
its home cloud server whether it is satisfied with the service 
provided by this IoT device via a service rating report. 
Specifically, the user satisfaction experience of user 𝑢௫  toward 
device 𝑑௜ (belonging to a particular user) is assessed based on the 
difference between the actual or ground truth O3 reading (which 
is known to 𝑢௫after fact) and the O3 reading provided by device 
𝑑௜.The user satisfaction experience denoted by 𝑠௜ can be a real 
number in the range of 0 to 1 indicating the user satisfaction level, 
or simply a binary value, with 1 indicating satisfied and 0 not 
satisfied. A timestamp is also sent in the report to indicate the 
time at which this service rating happens. This allows cloud 
servers to know the event occurrence times of reports for 
regression analysis if necessary. Here 𝑠௜  is the first piece of 
information sent from 𝑢௫ to the home cloud server. The second 
piece of information sent from 𝑢௫ to the home cloud server is its 
similarity score with  𝑢௬  in terms of friendship, social contact, 
and community of interest, i.e., 𝑠𝑖𝑚௜൫𝑢௫, 𝑢௬൯, 𝑖 ∈ ሼ𝑓, 𝑠, 𝑐ሽ. Upon 
receiving these similarity scores, 𝑢௫

ᇱ 𝑠 home cloud server uses a 
weighted sum formula 𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯ ൌ ∑ 𝑤௜ ∙௜∈ሼ௙,௦,௖ሽ

𝑠𝑖𝑚௜൫𝑢௫, 𝑢௬൯ to compute the overall similarity score between 
𝑢௫ and 𝑢௬.  The weights assigned to 𝑠𝑖𝑚௜൫𝑢௫, 𝑢௬൯, 𝑖 ∈ ሼ𝑓, 𝑠, 𝑐ሽ , 
depend on the application characteristics and the designer’s 
belief of what similarity metric is more important than others in 
composing the overall similarity score between two users. If both 
𝑢௫ and 𝑢௬ are in the O3COI group then the community of interest 
similarity can be 1 and the weight on community of interest can 
be higher than those for friendship and social contact, if justified. 
In this case study, we consider equal weight, i.e., 1/3 for each 
weight. 

 Querying: Whenever a user wants to know the trust value of an 
IoT device, it simply sends a query to its home cloud server. Let 
the “subjective” trust value of user 𝑢௫  toward 𝑑௜  (owned by 
another user) be denoted by 𝑡௫,௜.  The home cloud server of 
𝑢௫ computes 𝑡௫,௜  by combining 𝑢௫′s direct trust toward 𝑑௜ ሺ𝑡௫,௜

ௗ ሻ 
based on own service ratings, and 𝑢௫′s indirect trust toward 𝑑௜ 
(𝑡௫,௜

௥ ሻ based on other users’ service ratings, as follows: 
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𝑡௫,௜ ൌ 𝜇௫,௜ ∙ 𝑡௫,௜
ௗ ൅ ሺ1 െ 𝜇௫,௜ሻ ∙ 𝑡௫,௜

௥  (1) 

Here, 𝜇௫,௜  is a weight parameter ( 0 ൑ 𝜇 ൑ 1 ) to weigh the 
importance of direct trust relative to indirect trust. To cope with 
malicious attacks, the home cloud server of 𝑢௫ dynamically 
controls 𝜇௫,௜ in Equation 1 to weigh the importance of direct trust 
𝑡௫,௜

ௗ  relative to indirect trust 𝑡௫,௜
௥  so as to minimize trust bias. The 

home cloud server of 𝑢௫ applies adaptive filtering techniques [3] 
to control 𝜇௫,௜. The direct trust 𝑡௫,௜

ௗ  in Equation 1 is computed by 
Beta Reputation [6] under which the trust value is modeled as a 
random variable in the range of [0, 1] following the Beta ሺ𝛼, 𝛽ሻ  
distribution, and 𝑡௫,௜

ௗ ൌ 𝛼/ሺ𝛼 ൅ 𝛽ሻ  is the mean “direct” trust 
where 𝛼  is the number of positive service experiences and is 
updated by 𝛼 = 𝛼 + 𝑓௜, and 𝛽 is the number of negative service 
experiences and is updated by 𝛽 ൌ 𝛽 ൅ ሺ1 െ 𝑓௜ሻ upon receiving a 
service rating  𝑓௜  from user 𝑢௫  about 𝑑௜

ᇱ𝑠 service quality after 
𝑑௜ completes a service for 𝑢௫. The indirect trust 𝑡௫,௜

௥  in Equation 1 
is computed by the home cloud server of 𝑢௫ by first locating all 
social similarity records 𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯′𝑠 in its local storage. The 
home cloud server of 𝑢௫ then selects top-R raters from R users 
with the highest similarity scores with 𝑢௫  and calculates the 
indirect trust (𝑡௫,௜

௥ ) towards device 𝑑௜ as follows: 

𝑡௫,௜
௥ ൌ ෍

𝑠𝑖𝑚൫𝑢௫, 𝑢௬൯
∑ 𝑠𝑖𝑚ሺ𝑢௫, 𝑢௭ሻ௨೥∈௎

൉ 𝑡௬,௜
ௗ

௨೤∈௎

 (2) 

Here, 𝑈 is a set of up to R raters whose 𝑠𝑖𝑚ሺ𝑢௫, 𝑢௬ሻ scores are 
the highest, 𝑢௬ ∈ 𝑈  is a rater selected, and 𝑡௬,௜

ௗ  is the service 

rating provided by 𝑢௬  toward device 𝑑௜.  We note that 𝑡௬,௜
ௗ  is 

stored in the home cloud server of 𝑢௬ but it is obtainable after the 
home cloud server of 𝑢௫  communicates with the home cloud 
server of 𝑢௬.  In Equation 2, the service rating provided from 𝑢௬ 
toward 𝑑௜  ൫i. e. , 𝑡௬,௜

ௗ ൯  is weighted by the ratio of the similarity 
score of 𝑢௫ toward 𝑢௬ to the sum of the similarity scores toward 
all raters. If the overall similarity score of 𝑢௫ toward 𝑢௬ is high 
relative to that of 𝑢௫  toward other raters, then the home cloud 
server of 𝑢௫ will put a relatively high weight on the service rating 
𝑡௬,௜

ௗ  provided by 𝑢௬ to compute 𝑡௫,௜
௥ .  
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3.2. IoT Trust Protocols 

Our approach to trust-based IoT participatory sensing of air quality is 
based on integrating cloud service with trust management service to 
create an IoT service-community cloud utility, aka, Trust as a Service 
(TaaS), for centralized or hierarchically structured IoT systems [1, 28]. 
An IoT service-community can be an e-health group (as considered in 
this paper) paying particular attention to air pollution for the welfare of a 
group of users who may suffer from polluted air quality, an intelligent 
your-ride-on-demand IoT group (like Uber), or a smart city group 
consisting of visitors, merchants, restaurants, and entertainment business 
entities, etc. TaaS thus is a service provided by the cloud to members in 
each of these groups. Service feedback along with service context 
information can be fed into the cloud for a complete statistical analysis. 
Users requesting a service or a composite service (i.e., several services 
bundled together via service composition and binding) can be assured of 
trustworthy, high-quality service, as a result of TaaS being applied to a 
service-community group. Here we note that the issue of making the 
TaaS cloud utility more reconfigurable, fault-tolerant, scalable, or 
resilient to a large number of IoT devices as well as cloud and network 
failure [12-17, 21-24, 28] is outside the scope of this paper. In this paper, 
we focus on TaaS being applied to an IoT e-health service-community 
specifically interested in ozone air quality. 

Trust management protocols for IoT systems are still emerging. There 
are only a handful of IoT trust protocols designed and evaluated to-date 
[1, 3, 7-9, 25-28]. Among the contemporary IoT trust management 
protocols, we select two very recent ones, namely, Adaptive IoT Trust 
[3] and ObjectiveTrust [7] as baseline IoT trust protocols against which 
TaaS is compared for performance analysis.  

The reason we select Adaptive IoT Trust [3] is that it, like TaaS, also 
considers adaptive trust management to dynamically combine own 
experiences with recommendation based on the amount of own 
experiences in hand (as described in Equation 1) and uses social 
similarity for recommendation filtering (as described in Equation 2). 
Also, it was shown in [3] that Adaptive IoT Trust outperforms existing 
distributed P2P trust protocols, including EigenTrust [18], PeerTrust 
[19], and ServiceTrust [20], so we are interested in knowing if TaaS, a 
cloud-based IoT trust protocol, can perform better than Adaptive IoT 
Trust, a proven distributed IoT trust protocol. The reason we select 
ObjectiveTrust [7] is that it is the only other centralized IoT trust 
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protocol to-date that considers social standing and relationships for 
credibility rating and recommendation filtering. 

Below we provide an overview of the two baseline IoT trust protocols 
and compare and contrast them with TaaS.  

Adaptive IoT Trust [3] is a distributed IoT trust management protocol 
where each IoT device evaluates other IoT devices using both direct 
service experiences and indirect recommendations. Adaptive trust 
management is achieved by determining the best way to combine direct 
trust (from direct experiences) and indirect trust (from 
recommendations) dynamically to minimize convergence time and trust 
estimation bias in the presence of malicious nodes performing collusion 
attacks. Direct service experiences are collected based on own service 
experiences, while recommendations are collected at the time nodes 
encounter each other through social contacts. They used social similarity 
to rate recommenders. A common problem with a distributed IoT trust 
protocol such as Adaptive IoT Trust [3] is that a node may not encounter 
each other often to collect enough recommendations to make informed 
decisions. Also all trust data are stored by individual IoT devices, which 
can be a problem for resource-constrained IoT devices, especially when 
the number of IoT devices is high in a large-scale IoT system. Our 
approach based on TaaS does not have such constraints. 

ObjectiveTrust [7] is a centralized IoT trust management system that 
assesses the trust score of a node through a weighted sum of the 
“centrality” score and the average opinion score (long term and short 
term) after applying the recommender’s credibility score to filter 
untrustworthy recommendations. Specifically, ObjectiveTrust computes 
the centrality score (in the range of 0 to 1) of j based on if j is central in 
the network and if it is involved in many transactions. The credibility 
score of k (a recommender that provides opinions about i) is proportional 
to k’s trust score because a trustworthy node does not lie, but is inversely 
proportional to the capability of k, the strong object relationship 
(including ownership, co-location, co-work, social, and parental) 
between i and k, and the number of transactions between i and k because 
high-capability and intimate nodes may collude. A common problem of 
a centralized IoT trust protocol such as ObjectiveTrust [7] is that it only 
computes the “objective trust” (common belief or reputation), not the 
“subjective trust” of an IoT device as TaaS and Adaptive IoT Trust do, 
so it does not preserve the notion that trust is subjective and is inherently 
one-to-one. This is especially problematic for IoT systems since IoT 
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devices are owned by humans who have social relationships among 
themselves and the trust of one user toward another user is inherently 
one-to-one and subjective. 

4. Results 

In this section, we present our case study results. Our case study is a 
health IoT application used by O3COI group members whose daily 
mobility and activity levels are composed from real traces as discussed 
in Section 2.  

4.1. Trust-based IoT Participatory Sensing of O3 

A node (node i) in the O3COI group can query the ozone level in a 
particular location and at a particular time via a mobile IoT cloud 
application [8, 11] installed in its smartphone. The mobile application 
would send the query to all O3COI members that are in this particular 
location via the mobile cloud application. Upon receiving O3 sensing 
reports from other members, node i sends queries via TaaS to get the 
trustworthiness scores of these IoT devices who had reported sensing 
reports. To filter out untrustworthy O3 sensing reports, node i first 
accepts a sensing report (𝑆௝) from j only if j is deemed trustworthy for 
O3 sensing service (i.e., i’s trust score toward j, 𝑡௜௝, is higher than 0.5 as 
determined by TaaS by Equation 1). Then it computes a trust-weighted 
O3 level average as follows: 

𝑆 ൌ ෍ሺ𝑡௜௝ / ෍ 𝑡௜௝ሻ

ே

௝ୀଵ

ൈ 𝑆௝.

ே

௝ୀଵ

 (3)  

where N is the number of trustworthy members providing O3 sensing 
reports in the particular location. If the average O3 level exceeds a 
maximum threshold defined by i’s owner, node i will decide not to visit 
the location because the ozone level will cause harm to its owner’s 
health. Figure 2 shows a scenario in which the target node (node i) 
before moving to a new location asks for the ozone level through trust-
based participatory sensing. In this scenario, j and k provide O3 levels 
180 and 40, respectively. However since j’s trust score is only 0.2 
(supplied by TaaS), the O3 level reported by j (180) is filtered out. Node 
k’s trust score is 0.9 (supplied by TaaS), so the O3 level (40) reported by 
k is accepted. Node i then applies Equation 3 to compute the average O3 
level. Since the average O3 level is below the maximum threshold, node 
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i decides to step into the location. Node i later checks the ground truth 
O3 level against sensing readings reported by j and k. As a result, node i 
reports a positive service rating for k because k provided a satisfactory 
O3 level, but a negative service rating against j because of the large 
discrepancy between the ground truth O3 level and the high O3 level 
reported by j.  
 

Cloud

i

j (180,0.2)

k (40,0.9)
En

te
r 

zo
n
e

(60,0.8)

(192,0.3)
(52,0.85) (47,0.92)  

Figure 2: A scenario illustrating how a target node acts in the trust-based 
participatory sensing application before moving to a new location. 

4.2. Experimental Setup 

Using the ns3 simulator, we simulate the participatory sensing system. 
We use real traces of O3 levels and mobility traces of users in the 
O3COI group in the city of Houston [10]. A user follows its mobility 
pattern while performing the report-and-query paradigm to query the O3 
level in a new location it steps into as well as report its user satisfaction 
experience and similarity score with another node it encounters, as 
discussed in Section 3. The O3 level can be classified as in good 
condition (below 50 ug/m3), medium condition (between 51 and 168 
ug/m3) for unhealthy for sensitive groups, poor condition (between 169 
and 208 ug/m3), and severe condition (above 209 ug/m3).  
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The percentage of bad nodes is set at PM in the range of 0% to 30%. 
A malicious node always reports O3 readings in the poor condition 
range (between 169 and 208 ug/m3) regardless of location with the 
intention to break the system.  

A malicious node also performs bad-mouthing attacks (saying a good 
node’s sensing result is not trustworthy in the user satisfaction report) 
and ballot-stuffing attacks (saying a bad node’s sensing result is 
trustworthy) when it submits a service rating report recording its 
satisfaction experience 𝑠௜ toward device 𝑑௜. Specifically, a malicious IoT 
device provides a user satisfaction score of 0 against a good IoT device 
for bad-mouthing attacks, and conversely a user satisfaction score of 1 
for a malicious device for ballot-stuffing attacks. TaaS handles ballot-
stuffing and bad-mouthing attacks by means of social similarity based 
recommendation filtering, i.e., based on Equations 1, 2, and 3. 

4.3. Performance Evaluation 

We measure two performance metrics for performance evaluation:  

 The trust-weighted average O3 reading vs. ground truth (i.e., 
the actual O3 level at a specific location and a particular time).  

 The accuracy of selecting trustworthy participants.   

The goal is to prove that TaaS provides O3 readings close to ground 
truth and can perform better than existing IoT trust protocols.  

We first conduct a performance evaluation of TaaS against 
contemporary distributed IoT trust protocols, including EigenTrust [18], 
PeerTrust [19], ServiceTrust [20], and Adaptive IoT Trust [3] for which 
each IoT device keeps own trust data based on own experiences and 
service satisfaction ratings from peers that it encounters.  
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Figure 3: Performance comparison of TaaS against distributed IoT 

trust protocols in the trust-weighted average O3 reading. 
 

Figure 3 shows the trust-weighted average O3 readings vs. time of a 
selected target node (each time point is an O3 query service request) 
with the percentage of bad nodes PM set at 30%. In the experiment, the 
target node repeatedly queries the ozone level in the location that he will 
visit next over a 250 hour span. Each data point under a particular trust 
protocol is the average O3 level obtained from Equation 3. For example, 
at time t = 10 hours, the target node sends queries via TaaS to get the 
trustworthiness scores of those IoT devices that have supplied O3 
readings in the particular location. The target node accepts results (𝑆௝) 
from 557 trustworthy IoT devices (for which the trust score is higher 
than 0.5) for the O3 sensing service out of all 764 members in that 
particular location at that particular time and it then computes the 
average O3 level based on Equation 3.   

The results indicate that TaaS (red line) can provide O3 readings very 
close to ground truth (black line) as time progresses. Further, TaaS 
outperforms EigenTrust, PeerTrust, ServiceTrust, and Adaptive IoT 
Trust in terms of accuracy (i.e., the difference between ground truth and 
the average O3 levels), convergence (i.e., the speed at which the average 
O3 level curve approaches the ground truth curve), and resiliency 
(against malicious attacks of 30% bad nodes) due to its ability to 
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effectively aggregate trust evidence from all nodes in the system through 
our effective and efficient localized report-and-query paradigm.  

Figure 4 shows the percentage of bad nodes selected to provide 
sensing results of a selected target node. TaaS outperforms EigenTrust, 
PeerTrust, ServiceTrust, and Adaptive IoT Trust as time progresses 
because TaaS is not being limited by encountering experiences and can 
leverage cloud service to aggregate broad evidence from all nodes who 
have had sensing service experiences with a target IoT device.   

 
Figure 4: Performance comparison of TaaS against distributed IoT 

trust protocols in the percentage of bad IoT devices selected to provide 
O3 sensing service. 

 
Next we compare TaaS with a contemporary centralized IoT trust 

protocol, ObjectiveTrust [7]. From Figures 3 and 4, we know Adaptive 
IoT Trust [3] provides the best performance among existing distributed 
IoT trust protocols. Therefore, in the performance analysis below, we 
also include Adaptive IoT Trust [3] for performance comparison.  
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Figure 5: Performance Comparison of Trust-Weighted Average O3 

Readings. 
 

Figure 5 shows the trust-weighted average O3 readings vs. time of a 
target node randomly selected (again each time point is an O3 detection 
service request) with the percentage of bad nodes PM set at 30%. Similar 
to Figure 3 we again observe that TaaS (red line) can provide O3 
readings very close to ground truth (black line) as time progresses. TaaS 
outperforms Adaptive IoT Trust (orange line) and ObjectiveTrust (green 
line) in terms of accuracy (i.e., the difference between ground truth and 
the average O3 levels) and resiliency (against malicious attacks of 30% 
bad nodes). We draw a line “Dangerous O3 Level” for a user whose 
“dangerous O3 level” is 68 as diagnosed by his/her doctor as vulnerable 
to O3 exposure for more than 4 hours. We see that at time t=130, 180, or 
235 (the last three peaks in the figure) only TaaS will correctly identify 
the fact that O3 level is below the dangerous level, while either Adaptive 
IoT Trust or ObjectiveTrust will raise a false alarm that the dangerous 
O3 level for this user is already reached.   
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Figure 6 shows the percentage of bad nodes selected to provide 
sensing results to a selected target node. TaaS again outperforms 
Adaptive IoT Trust and ObjectiveTrust as time progresses. The results 
can be explained as follows: Compared with Adaptive IoT Trust, TaaS is 
not being limited by encountering experiences and can leverage cloud 
service to aggregate broad evidence from all nodes who have had 
sensing service experiences with a target IoT device.  Compared with 
ObjectiveTrust which is based on “objective trust” (i.e., common belief), 
TaaS is based on “subjective trust” (one-to-one trust evaluation) and can 
adaptively put a higher weight on a participant if it has had good O3 
sensing experiences with the particular participant. This allows TaaS to 
more effectively select trustworthy participants among all participants 
that had submitted O3 sensing reports.   

 
Figure 6: Percentage of Bad IoT Devices Selected to Provide O3 

Sensing Service. 

5. Conclusion 
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by leveraging the TaaS cloud utility, a user can obtain ozone readings 
close to the ground truth readings. The main reason is that TaaS can 
effectively filter untrustworthy sensing reports from users who are not 
trustworthy, i.e., having a low trust value in ozone sensing service based 
on past history collected in the cloud for the O3 health group. Also TaaS 
outperforms contemporary distributed and centralized IoT trust protocols 
in the case study using real traces. We attribute the effectiveness to the 
TaaS cloud utility to its ability to adaptively and effectively combine 
own experiences and trust evidence from a broad set of IoT participants 
who have had experiences with a target IoT device in O3 sensing service, 
thus allowing a user to be able to accurately assess if a target IoT device 
providing O3 sensing service is trustworthy or not. In the future, we plan 
to conduct more experiments to quantify the gain of our design in terms 
of performance metrics such as resource overhead, energy consumption, 
and service latency.  
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