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Abstract 

In this paper we survey trust computation models for Internet of things (IoT) systems for the purpose of service 

management, i.e., whether or not to select an IoT device as a service provider. Future IoT systems will connect 

the physical world into cyberspace everywhere and everything via billions of smart objects, and are expected to 

have a high economic impact. To date there is little work on trust computation in IoT environments for service 

management, especially for dealing with misbehaving owners of IoT devices that provide services to other IoT 

devices in the system. Our approach is to classify existing trust computation models for service management in 

IoT systems based on five essential design dimensions for a trust computation model: trust composition, trust 

propagation, trust aggregation, trust update, and trust formation. We summarize pros and cons of each 

dimension’s options, and highlight the effectiveness of defense mechanisms against malicious attacks. We also 

summarize the most, least, and little visited trust computation techniques in the literature and provide insight on 

the effectiveness of trust computation techniques as applying to IoT systems. Finally, we identify gaps in IoT 

trust computation research and suggest future research directions. 

Keywords: Internet of things; service-oriented computing; service management; trust; classification. 

 

1 INTRODUCTION 

It is envisioned that a future Internet of Things (IoT) system will connect a great amount of smart objects in 

the physical world, including radio frequency identification (RFID) tags, sensors, actuators, PDAs, and 

smartphones, as well as virtual objects in cyberspace such as data and virtual desktops on the cloud [26] [52] [57] 

[59]. The emerging paradigm of IoT has attracted a wide variety of applications running on top of it, including e-

health [33], smart-home, smart-city, and smart-community [65].  

A service-oriented IoT system can be viewed as a peer-to-peer (P2P) owner-centric community with devices 

(owned by humans) requesting and providing services on behalf of the owners, and with devices establishing 

social relationships autonomously with other devices based on social rules set by their owners, as well as 
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interacting with each other opportunistically as they come into contact. To best satisfy the service requester and 

maximize application performance, it is crucial to evaluate the trustworthiness of service providers in IoT 

environments. The motivation of providing a trust management system for IoT systems is clear: there are 

misbehaving owners and consequently misbehaving devices that may perform discriminatory attacks based on 

their social relationships with others for their own gain at the expense of other IoT devices which provide similar 

services. Further, misbehaving nodes with close social ties may collude and monopoly a class of services. Since 

trust provisioning in this environment inherently is fully integrated with service provisioning, the notion of trust-

based service management is of paramount importance [34] [45]. 

The open issue to solve is to devise an effective and efficient trust computation method for an IoT device 

acting as a service requester to dynamically assess the service trustworthiness of another IoT device acting as a 

service provider, taking into consideration of the service history (from either self-observations or 

recommendations) of the target IoT device, and its own social relationships with that target IoT device. An IoT 

system can be viewed as a mix of P2P MANETs, social networks, and service computing systems where “things” 

autonomously establish social relationships according to the owners’ social network, and seek trusted “things” 

that can provide services needed when they come into contact with each other opportunistically in both the 

physical world and cyberspace [8]. Existing trust protocols for P2P MANETs [20] [35] [37] [53] [61] do not 

consider social relationships of IoT device owners. Existing trust protocols for social networks [1] [23] [58] 

consider social relationships. However, they do not consider service experiences and node mobility. Existing trust 

management protocols for service computing systems [29] [44] consider service experiences. However they do 

not consider node mobility and social relationships. Lastly unlike existing trust protocols for P2P MANETs, 

social networks, and service computing systems, a feasible trust protocol for an IoT system must deal with 

scalability and heterogeneity because potentially an IoT system will have a huge number (e.g., millions) of IoT 

devices some of which may be resource-constrained (e.g., smart phones, sensors, etc. that are intermittently 

connected to the Internet with no energy replenishment most of the time) and some of which may be resource-

rich (e.g., a server that is connected to the power source and the Internet all the time). Hence, unlike its 

counterparts for P2P MANETs, social networks, and service computing systems, trust computation for IoT 

remains an open issue as it needs to consider scalability, node mobility, social relationship, and service 

experiences altogether.  

To date there is limited work on trust computation in IoT environments for security enhancement [66], 

especially for dealing with misbehaving owners of IoT devices that provide services to other IoT devices in the 

system. It is noteworthy that unlike Yan et al. [66] which surveyed architectures and technologies (including trust 

evaluation, trust framework, privacy preservation computation, data, user, application, and communication trust) 

to enable trustworthy IoT, we survey only trust computation models for the purpose of service management (i.e., 

whether to select an IoT device as a service provider) in service-oriented IoT systems. Our approach is to classify 



existing trust computation models based on five design dimensions considered essential for a trust computation 

model: trust composition, trust propagation, trust aggregation, trust update, and trust formation [20]. We 

summarize advantages and drawbacks of each dimension’s options, and highlight the effectiveness of defense 

mechanisms against malicious attacks. We also summarize the most and least studied trust computation 

techniques in the literature and provide insight on the effectiveness of trust computation techniques as applying 

to service-oriented IoT systems. Finally, we identify gaps in IoT trust computation research and suggest future 

research areas. 

The rest of the paper is organized as follows: Section 2 develops a classification tree for organizing existing 

trust computation techniques for IoT systems and explains the dimensions used. Section 3 develops a threat 

model and presents defense mechanisms developed in the literature against malicious attacks. Section 4 classifies 

existing IoT trust computation techniques for service management following the classification tree developed. In 

Section 5, we summarize the most and least studied IoT trust computation techniques in the literature. We 

provide insight on the effectiveness of trust computation techniques as applying to IoT systems and identify 

research gaps that are worthy of further research efforts. Section 6 presents our conclusion and suggests future 

research directions.  

2 CLASSIFICATION TREE 

In this section, we develop a classification tree for classifying trust computation techniques. The intent is to 

identify research gaps in IoT trust computation research. In this section we only classify existing IoT trust 

computation models. The detailed descriptions of existing IoT trust computation models for IoT systems will be 

given further in Section 4. 

Figure 1 shows the classification tree based on five design dimensions: trust composition, trust propagation, 
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Figure 1: Classification Tree. 



trust aggregation, trust update, and trust formation. These 5 dimensions are considered essential for a trust 

computation model [20]. It is color coded with red indicating the most visited, yellow for least visited, and blue 

for little visited. In each color class, we use thick vs. thin line format to differentiate the amount of exposure. 

Also at the bottom leaf level, we put in references for works that have used the approach. Below we discuss each 

classification design dimension in detail.  

2.1 Trust Composition 

Trust composition refers to what components to consider in trust computation. Trust components include 

quality of service (QoS) trust and social trust. 

2.1.1 QoS Trust 

QoS trust refers to the belief that an IoT device is able to provide quality service in response to a service 

request. QoS trust in general refers to performance and is measured by competence, cooperativeness, reliability, 

task completion capability, etc. Nitti et al. [51] used transaction performance to measure QoS trust. Chen et al. 

[7] used end-to-end packet forwarding ratio, energy consumption, and packet delivery ratio to measure QoS trust.  

2.1.2 Social Trust 

Social trust derives from social relationship between owners of IoT devices and is measured by intimacy, 

honesty, privacy, centrality [24], and connectivity. Chen et al. [12] made use of friendship, social contact, and 

community of interest (CoI) to rate a rater. Chen et al. [13] measured social trust by connectivity, intimacy, 

honesty and unselfishness. Social trust is especially prevalent in social IoT systems where IoT devices must be 

evaluated not only based on QoS trust, i.e., a device’s capability to execute a service request, but also based on 

social trust, i.e., s device’s commitment and good will to perform a service request. Moreover, when taking in a 

recommendation, an IoT device may trust its socially connected devices (of their owners) over unrelated devices. 

2.2 Trust Propagation 

Trust propagation refers to how to propagate trust evidence to peers. In general, there are two trust 

propagation schemes – that is, distributed and centralized. 

2.2.1 Distributed 

Distributed trust propagation refers to IoT devices autonomously propagating trust observations to other IoT 

devices they encounter or interact with without the use of a centralized entity. This is particularly the case in 

which it is difficult to setup or access a centralized entity in IoT environments mimicking a mobile ad hoc 

network (MANET) and/or a wireless sensor network (WSN). Chen et al. [12] proposed a distributed trust 

propagation scheme for social IoT systems. In Chen et al. [7], each node in the network maintains a data 

forwarding information table by overhearing activities of its neighboring nodes. 

2.2.2 Centralized 

Centralized trust propagation requires the presence of a centralized entity, either a physical cloud or a virtual 

trust service implemented by participating IoT devices. Nitti et al. [51] proposed a distributed hash table structure 



to store node trust feedbacks and answer queries for node trust. Saied et al. [57] proposed a centralized trust 

manager keeping trust information of IoT entities and selecting capable IoT devices for answering a service 

request. 

2.3 Trust Aggregation 

Trust aggregation refers to aggregating trust evidence collected through either self- observations or feedbacks 

from peers. Major trust aggregation techniques investigated in the literature Josang et al. [32] include weighted 

sum, belief theory, Bayesian inference (with belief discounting), fuzzy logic, and regression analysis.  

2.3.1 Weighted Sum 

Weighted sum is a popular technique to aggregate evidence. Many reputation systems [56] [60] [68] aggregate 

ratings or feedbacks using weighted sum such that raters with a higher reputation or transaction relevance have a 

higher weight. Martinez-Zulia and Skarmeta [46] used credibility (derived from QoS and social trust) as the 

weight associated with the recommendation or feedback provided by a rater for indirect trust aggregation. Chen 

et al. [12] also used similarity (derived from social trust) as the weight for indirect trust aggregation. Weighted 

sum can also be used to aggregate direct trust (through self-observations) with indirect trust (through feedbacks 

or recommendations) for the same trust property (e.g., service quality). There is a further classification of 

whether the weights assigned to direct trust and indirect trust can be dynamically adjusted or just static at design 

time.  

2.3.2 Belief Theory 

Belief theory, also known as evidence theory or Dempster–Shafer theory (DST), is a general framework for 

reasoning with uncertainty, with connections to other frameworks such as probability, possibility and imprecise 

probability theories. 

Dempster–Shafer theory is based on two ideas: obtaining degrees of belief for one question from subjective 

probabilities for a related question, and Dempster's rule [22] for combining such degrees of belief when they are 

based on independent items of evidence. In essence, the degree of belief in a proposition depends primarily upon 

the number of answers (to the related questions) containing the proposition, and the subjective probability of 

each answer. Yu and Singh [67] adopted Dempster-Shafer Theory as the underlying trust computational model to 

compute trust of agents in autonomous systems. 

2.3.3 Subjective Logic 

Subjective logic operates on subjective beliefs about the world, and uses opinions to denote the representation 

of a subjective belief [31]. The basic idea is to model trust by belief, disbelief and uncertainty. Josang et al. [32] 

described a node’s opinion in another node by (b, d, u, a) where b, d, and u represent belief, disbelief, and 

uncertainty, respectively, with b+d+u=1, and a is the base rate probability in the absence of evidence. The 

average trust is therefore the probability expectation value computed as b+au. Subjective logic operators such as 

the discount and consensus operators are used to combine opinions (either self-observations or 



recommendations).  

2.3.4 Certain Logic 

Ries et al. developed Certain Logic [55] for the evaluation of propositional logic terms under uncertainty that 

is compliant with the standard probabilistic approach and subjective logic. Based on Certain Logic, Ries [54] 

proposed a P2P trust model called CertainTrust that allows agents to choose trustworthy partners for risk 

engagement. The key feature of CertainTrust is that it is capable of expressing the certainty of a trust opinion, 

depending on the context of use. A trust opinion oA about the truth of a proposition A is given as oA = (t, c, f) 

where the parameters are called average rating t ∈ [0, 1], certainty c ∈ [0, 1], and initial expectation value f ∈ [0, 

1]. The average rating t indicates the degree to which previous observations support the truth of the proposition. 

It is associated to the relative frequency of observations supporting the truth of the proposition. The certainty c 

indicates the degree to which the average rating is assumed to be representative for the future. It is associated to 

the number of past observations or collected evidence units. The higher the certainty of an opinion is, the higher 

is the influence of the average rating on the expectation value in relation to the initial expectation. When the level 

of certainty (c = 1) is maximum, the average rating is assumed to be representative for the future outcomes. The 

initial expectation f expresses the assumption about the truth of a proposition in absence of evidence. The 

expectation value of an opinion E(t, c, f) ∈ [0, 1] is calculated by E(t, c, f) = t ∗ c + (1 − c) ∗ f, representing the 

expectation about the truth of the proposition that has taken into account the initial expectation, the average 

rating, and the certainty. 

2.3.5 Bayesian Inference with Belief Discounting 

Bayesian inference treats trust as a random variable following a probability distribution with its model 

parameters being updated upon new observations. It is a popular trust computational model because of its 

simplicity and sound statistical basis. Josang et al. [33] proposed a Beta reputation system based on Bayesian 

inference with the trust value modeled as a random variable in the range of [0, 1] following Beta distribution; the 

amounts of positive and negative experiences are mapped to the (α, β) parameters in Beta distribution so that the 

average trust is computed as α
α+ β

. Ganeriwal et al. [25] applied Bayesian inference for a reputation system in a 

WSN, taking binary positive and negative ratings as input, and computing sensor node reputation scores. Belief 

discounting is applied to defend against bad-mouthing attacks (saying a good node as a bad node) and ballot-

stuffing attacks (saying a bad node as a good node). Specifically let node i be the trustor, node j be the trustee, 

and node k be a recommender. Also let (αi,j ,βi,j) be the trustor’s (α, β) toward the trustee, (αk,j,βk,j) be the 

recommender’s (α, β) toward the trustee and (αi,k,βi,k) be the trustor’s (α, β) toward the recommender. Based on 

belief discounting (see the detail in Ganeriwal et al. [25] and Josang et al. [33]), node i will compute its new 

(αi,jnew,βi,jnew) as follows: 



αi,jnew = αi,j +
2αi,kαk,j

[�βi,k + 2��αk,j + βk,j + 2�] + 2αi,k
 

(1)  

βi,jnew = βi,j +
2αi,kβk,j

[�βi,k + 2��αk,j + βk,j + 2�] + 2αi,k
 

(2)  

The basic idea is that if node i does not trust k, it will discount the recommendation provided by node k, so 

αi,jnew~αi,j  and βi,jnew~βi,j  as if the recommendation from k does not have any effect. This can be derived from 

(11) and (12). First of all, if node i does not trust node k then αi,k ≪ βi,k.   In case node k is performing a bad-

mouthing attack on node j, then αk,j ≪ βk,j.Applying these two conditions to (11) and (12), one can easily verify 

αi,jnew~αi,j  and βi,jnew~βi,j .   In case node k is performing a ballot-stuffing attack on node j, then αk,j ≫ βk,j and 

again one can easily verify αi,jnew~αi,j  and βi,jnew~βi,j .   After trust aggregation, the trustor's (or node i’s) trust 

toward the trustee (or node j) is then computed as 
αi,j
new

αi,j
new+βi,j

new.  

2.3.6 Fuzzy Logic 

Fuzzy logic is a form of many-value logic; it deals with reasoning that is approximate rather than fixed and 

exact. Compared to traditional binary sets, fuzzy logic variables may have a truth value that ranges in degree 

between 0 and 1. Fuzzy logic has been extended to handle the concept of partial truth, where the truth value may 

range between completely true and completely false. Furthermore, when linguistic variables are used, these 

degrees may be managed by specific membership functions. Reputation or trust is represented as a fuzzy measure 

with membership functions describing the degrees of trust, e.g., a trust value in the range (−1.25, 1.25) denotes 

very low trust, (0, 2.5) low trust, (1.25, 3.75) medium trust, (2.5, 5) high trust, (3.75, 6.25) high trust, and so on. 

Hence, a node with a trust value of 0.25 is 75% very low trust (a membership function) and 25% low trust 

(another membership function). Fuzzy logic provides rules for reasoning with fuzzy measures. Chen et al. [7] 

used a fuzzy membership function taking into consideration of the number of positive and negative experiences 

together with uncertainty to compute trust. More detail is discussed in Section 4.4. 

2.3.7 Regression Analysis 

Regression analysis is a statistical process for estimating the relationships among variables. It can be applied to 

estimate the relationships between trust and a set of variables characterizing the behavior of a node. Wang et al. 

[64] applied logit regression to learn the relation between cumulative evidence gathered by node i toward node j 

and the corresponding environmental context variables including energy-sensitivity, capability-limitation, and 

cost-awareness. This behavior pattern is learned dynamically and can be used to predict node j’s trust behavior, 

i.e., whether node j, from the perspective of node i, can provide good service when service is called for, given an 

environment setting characterized by a set of context variable values as input. 

2.4 Trust Update 

Trust update concerns when trust is updated. In general, there are two schemes - event-driven scheme and 



time-driven scheme. 

2.4.1 Event-driven   

In the event-driven scheme, all trust data in a node get updated after a transaction or event is made. This can 

be when a service is rendered and therefore a feedback regarding service quality is sent to the trust manager in 

the cloud, or recorded in each node cache for trust aggregation. A recommendation can also be sent upon request 

in encounter-based environments [14] where nodes run into each other and request for recommendations for 

other nodes.  

2.4.2 Time-driven 

In the time-driven scheme, evidence (self-observations or recommendations) is collected periodically and trust 

is updated by applying a trust aggregation technique. In case no evidence is collected, trust decay over time is 

frequently applied because one should trust recent information more than past information. The exponential 

decay function with a parameter adjusting the rate of trust decay over time can be used depending on the specific 

application needs [10]. 

2.5 Trust Formation 

Trust formation refers to how to form the overall trust out of multiple trust properties. In the literature, trust 

formation is considered from the aspect of single-trust or multi-trust. 

2.5.1 Single-trust  

Single-trust refers to the fact that only one trust property is considered in a trust protocol. For example, service 

quality is deemed the single most important metric in service-oriented IoT systems [12]. Therefore, an IoT device 

is being evaluated on its ability to produce quality service when called for. In a social IoT system, the service 

quality may be affected by the relationship between the service requester and the service provider, so inherently 

trust in service quality in a social IoT system is pair-wise. In other words, a node is more concerned with one-to-

one trust toward another node based on their relationship, rather than the general reputation of the node derived 

from the public belief. 

2.5.2 Multi-trust 

Multi-trust implements the common belief that trust is multidimensional, so multiple trust properties should 

be considered for trust formation. Chen et al. [13] considered multiple trust properties including intimacy, 

honesty, unselfishness, and competence to assess the overall trust of a MANET node. There are multiple ways to 

do trust formation: 

• One can just use individual trust properties without combining them together but define a minimum threshold 

for each trust property depending on the application requirements. For example, honesty is important, so a high 

threshold is used but competence may not be very critical so a low threshold is set. 

• One can use weighted sum to combine individual trust properties together into an overall trust metric. The 

weight assigned can reflect the application requirements. For example, honesty is important so a high weight is 



used. Furthermore, the weight assignment may be dynamically adjusted to reflect environmental situation 

awareness. For example in a hostile environment where attacks are likely, the weight associated with honesty 

can be set high so as to effectively defend malicious attacks (such as bad-mouthing and ballot-stuffing attacks). 

On the other hand in a friendly environment such as in a club setting, competence is more important than 

honesty, so a higher weight can be placed for competence instead. Chen et al. [12] proposed to readjust the 

weights of direct and indirect trust to maximize the average user satisfaction experiences during the most 

recent time period. Saied et al. [57] proposed to change the weight associated with positive recommendations 

dynamically to derive the overall trust value. Liu et al. [41] [42] proposed to use a penalty coefficient weight 

based on the authentication history to update trust. 

One can use a trust-scaled-by-confidence technique for trust formation. The idea is to scale the most important 

trust property with less important trust properties which serve as confidence. Wang et al. [65] considered 

competence and integrity as two trust properties for rating a node with competence being the more important 

trust metric. It considered two scaling schemes: (a) competence trust drops to zero if integrity trust falls below a 

threshold; (b) competence trust scales up (to 1 maximum) or down (to 0 minimum), depending on whether 

integrity trust is higher or lower than the threshold.  

3 THREAT MODEL 

Trust as a soft security measure is particularly applicable to service-oriented IoT systems because IoT devices 

owned by human beings inherently can be malicious for their own gain. Malicious users can also collude to 

dominate the service provider market. In this section, we enumerate possible threats to IoT systems. Our intent is 

to survey how existing IoT trust management protocols in the literature deal with malicious attacks and identify 

gaps for future research. 

It is noteworthy that the threat model covers threats that will disrupt the trust system. While trust can be used 

to enhance security of IoT systems [40], the threat model discussed here does not cover threats to security in 

general. 

In an IoT system, every IoT device can be a service provider (SP) or a service requester (SR) itself. Therefore 

every IoT device wants to be selected to provide service for profit when it is a SP and wants to find the best SPs 

for best service available when it is a SR.  A malicious SP node acts for its own benefit and would like to be 

selected for service even if the service provides is inferior. In the context of IoT, we are concerned with trust-

related attacks that can disrupt the trust system. Bad-mouthing and ballot-stuffing attacks are the most common 

forms of reputation attacks [30]. Self-promoting and opportunistic service attacks are the most common forms of 

attacks based on self-interest [12]. On-off attacks are often used by malicious nodes to evade detection. Thus, a 

malicious IoT device (because its owner is malicious) can perform the following trust-related attacks: 



1. Self-promotion attacks (SPA): a malicious node it can promote its importance (by providing good 

recommendations for itself) so as to be selected as a SP, but then can provide bad or malfunctioned service. 

2.  Bad-mouthing attacks (BMA): a malicious node can ruin the trust of a well-behaved node (by providing bad 

recommendations against it) so as to decrease the chance of that node being selected for service. This is a 

form of collusion recommendation attack, i.e., a malicious node can collaborate with other malicious nodes to 

ruin the trust of a good node. 

3. Ballot-stuffing attacks (BSA): a malicious node can boost the trust of a malicious node (by providing good 

recommendations) so as to increase the chance of that malicious node being selected as a SP. This is another 

form of collusion recommendation attacks, i.e., it can collaborate with other malicious nodes to boost the 

trust of each other. 

4. Opportunistic service attacks (OSA): a malicious node can provide good service to gain high reputation 

opportunistically especially when it senses its reputation is dropping because of providing bad service. With 

good reputation, it can effectively collude with other bad node to perform bad-mouthing and ballot-stuffing 

attacks. 

5. On-off attacks (OOA): instead of always performing best service, a malicious node can perform bad service. 

With on-off attacks, a malicious node performs bad service on and off (or randomly) so as to avoid being 

labeled as a low trust node and risk itself not being selected as a SP, as well as not being able to effectively 

perform bad-mouthing and ballot-stuffing attacks. One can view on-off attacks as random attacks. 

A collaborative attack means that the malicious nodes in the system boost their allies and focus on particular 

victims in the system to victimize. We note that bad-mouthing and ballot-stuffing attacks are a form of 

collaborative attacks to the trust system to ruin the reputation of (and thus to victimize) good nodes and to boost 

the reputation of malicious nodes. 

4 SURVEY AND CLASSIFICATION OF EXISTING IOT TRUST COMPUTATION MODELS 

IoT trust computation is still in its infancy with limited work reported in the literature to date, possibly due to 

limited experiences with IoT platforms and experimentations. We only found [3] [4] [7] [8] [12] [17] [28] [43] 

[47] [50] [51] [57] and [63] in the literature to date. In particular, [28] [63] do not consider all five design 

dimensions in trust composition, trust propagation, trust aggregation, trust update, and trust formation. In this 

section, we follow the classification tree to classify existing IoT trust computation models based on the 

techniques used in trust composition / trust propagation / trust aggregation / trust update / trust formation. Based 

on the classification tree, we identify 8 classes as summarized in Table 1. It is noteworthy that the classification 

is based on the underlying trust techniques adopted in the five design dimensions. So works will fall into the 

same class only if they use identical trust techniques in all five design dimensions. A deviation of trust 

techniques used in just one design dimension will put the works in separate classes. By this way, we can compare 



trust computation models class by class and identify the most effective class for trust computation for service 

management (whether to select a device as a service provider) in service-oriented IoT systems.  For works that 

fall under the same class, we also survey defense mechanisms used (if any) to defend against malicious attacks 

discussed in Section 3. 

We discuss these 8 classes identified in the 8 subsections below, with the subsection title reflecting the 

classification based on the techniques used in trust composition / trust propagation / trust aggregation / trust 

update / trust formation. A missing dimension is denoted by “-” in the class name (as in the last entry of Table 1). 



 

Table 1: Eight Classes of IoT Trust Computation Models based on the Techniques used in Trust Composition / Trust Propagation 
/ Trust Aggregation / Trust Update / Trust Formation.  

Classification Work SPA BMA BSA OSA OOA 
QoS + Social / Distributed 
/ Bayesian inference + 
Dynamic weighted sum / 
Event + Time-driven / 
Single-trust 
(Section 4.1) 

2013 Bao, 
et al. [4], 
and 2015 
Chen, et 
al. [12] 

Direct service 
quality trust 
assessment 
and feedback 
propagation 

Social 
similarity to 
rate a 
recommender 

Social 
similarity to 
rate a 
recommender 

Adaptive filtering 
to adjust the 
weights of  direct 
and indirect service 
quality trust 
dynamically   

NA 

QoS + Social / Distributed 
+ Centralized / Static 
weighted sum / Event-
driven / Multi-trust with 
static weighted sum  
(Section 4.2) 

2014 
Nitti, et 
al. [51] 

Direct service 
quality trust 
assessment 
and feedback 
propagation 

Credibility to 
rate a 
recommender 

Credibility to  
rate a 
recommender 

Long-term and 
short-term direct 
service quality 
trust assessment  

NA 

QoS / Centralized / 
dynamic weighted sum / 
Event-driven / Single-
trust  
(Section 4.3) 

2014 
Saied, et 
al. [57] 

Direct service 
quality trust 
assessment 
and feedback 
propagation 

Recommender 
trust to rate a 
recommender 

Recommender 
trust to rate a 
recommender 

NA  NA 

QoS / Distributed / Fuzzy 
logic + Static weighted 
sum / Time-driven / 
Single-trust with static 
weighted sum 
(Section 4.4) 

2011 
Chen, et 
al. [7] 
 

Direct service 
quality trust 
assessment 
and feedback 
propagation 

NA NA NA NA 

2013 
Mahalle, 
et al. [43] 

NA NA NA NA NA 

QoS + Social / Distributed 
/ Static weighted sum / 
Event + Time-driven / 
Multi-trust with static 
weighted sum 
(Section 4.5) 

2012 Bao,  
et al. [3], 
and 2015 
Chen, et 
al. [8] 

Honesty trust 
assessment 
and feedback 
propagation 

Honesty trust 
assessment and 
feedback 
propagation 

Honesty trust 
assessment and 
feedback 
propagation 

NA NA 

2015 
Chen, et 
al. [17] 

Direct service 
quality trust 
assessment 
and feedback 
propagation 

Recommender 
trust to rate a 
recommender 

Recommender 
trust to rate a 
recommender 

NA NA 

QoS / Distributed / Static 
weighted sum / Event-
driven / Single-trust 
(Section 4.6) 

2015 
Mendoza, 
et al. [47] 

NA NA NA NA Reward and 
punishment 
scheme 

QoS / Centralized / Static 
weighted sum / Time -
driven / Single-trust with 
static weighted sum 
(Section 4.7) 

2015 
Namal, et 
al. [50] 

NA NA NA NA NA 

QoS / Centralized / - / - / 
Single-trust 
(Section 4.8) 

2013 
Gu, et al. 
[28] and 
Wang, et 
al. [63] 

NA NA NA NA NA 



4.1 Class 1: QoS + Social / Distributed / Bayesian inference + Dynamic weighted sum / Event + Time-

driven / Single-trust 

  
Figure 2: The General Approach Taken by Class 1. 

 
Class 1 is characterized by the general approach of taking QoS and social for trust composition, distributed for 

trust propagation, Bayesian inference and dynamic weighted sum for trust aggregation, event and time-driven for 

trust update, and single-trust for trust aggregation, as illustrated in Figure 2 

Among all works listed in Table 1, only Bao et al. [4] and Chen et al. [12] fall into this classification with Bao 

et al. [4] being the preliminary work of Chen et al. [12]. 

Bao et al. [4] and Chen et al. [12] used service quality (a QoS trust metric) to rate a SP, and social similarity (a 

social trust metric) to rate a recommender based on the concept of collaborative filtering to select feedbacks 

using similarity rating of friendship, social contact, and community of interest relationships as the filter. 

In trust propagation, every node acts autonomously to collect evidence (through self-observations or 

recommendations) and also serves as a recommender upon request. Hence it is based on distributed trust 

propagation. A node first collects evidence of the service quality trust and social similarity trust of adjacent 

nodes. Then it collects recommendations from qualified adjacent nodes about other nodes in the system. 

In trust aggregation, Bao et al. [4] and Chen et al. [12] used Bayesian inference to aggregate self-observations 

into direct trust. Social similarity-weighted sum is used to aggregate recommendations into indirect trust. A novel 

adaptive filtering technique is proposed to adjust weights associated with direct trust and indirect trust 

dynamically to minimize trust bias and maximize application performance. 

In trust update, both event-driven and time-driven are considered. The direct trust is updated upon each 

service interaction while the indirect trust is updated periodically using peer recommendations collected during 



the period. The work also considers and analyzes the effect of trust decay on trust convergence rate.   

In trust formation, only a single service quality trust is considered, so it falls into the single-trust category. 

However, Bao et al. [4] and Chen et al. [12] used several social similarity metrics, i.e., friendship, social contact, 

and community-of-interest, and apply the weighted sum technique to combine these social similarity metrics into 

one to rate a recommender. The best weighting scheme to combine the three metrics into one is identified for a 

service-oriented IoT application. 

Entry 1 of Table 1 summarizes the defense mechanisms used by Bao et al. [4] and Chen et al. [12] to defend 

against malicious attacks. SPA is detected in the protocol design and the feedback is propagated through trust 

propagation. BMA and BSA are tolerated by using social similarity to rate a recommender. OSA is resolved by 

adaptive filtering which dynamically adjust the weights associated with direct and indirect trust to capture the 

opportunistic service attack behavior. However, OOA is not considered. 

4.2 Class 2: QoS + Social / Distributed + Centralized / Static weighted sum / Event-driven / Multi-trust 

with static weighted sum 

 
Figure 3: The General Approach Taken by Class 2. 

 
Class 2 is characterized by the general approach of taking QoS and social for trust composition, centralized 

for trust propagation, static weighted sum for trust aggregation, event-driven for trust update, and multi-trust with 

static weighted sum for trust aggregation, as illustrated in Figure 3 

The work by Nitti et al. [51] falls into this classification. In trust composition, Nitti et al. [51] considered both 

QoS trust and social trust. QoS trust properties considered include transaction service quality and computational 

capability. Social trust properties considered include centrality, relationship factor (such as ownership, co-



location, co-work, social and co-brand), and credibility. In particular, credibility is used to rate a recommender 

who provides indirect evidence and is computed by a weighted sum of the direct trust toward the recommender 

and the relative centrality of the recommender.  

In trust propagation, the approach taken by Nitti et al. [51] is rather unique in that it considers both distributed 

and centralized models. In the distributed model, each node computes its own subjective trustworthiness toward 

another node. Transaction service quality trust is assessed by individual nodes after a transaction is completed, 

and feedbacks are propagated as indirect evidence from one node to another upon request. In the centralized 

model, transaction service quality feedbacks are propagated to a centralized entity making use of a dynamic hash 

(DHT) table structure on the network to maintain the objective trustworthiness status (global reputation) of a 

node. A node can query the DHT to receive the trust value of other nodes in the network, and the DHT returns the 

objective trustworthiness scores after searching the database. 

In trust aggregation, Nitti et al. [51] applied static weighted sum to compute centrality trust, direct service 

quality trust, and indirect service quality trust separately. In particular, for direct service quality trust assessment, 

transaction relevance (along with relationship factor and computational capability to a lesser extent) is used as 

the weight. For indirect service quality trust assessment, credibility is used as the weight. The difference between 

subjective trustworthiness and objective trustworthiness is how evidence is collected. For subjective 

trustworthiness, a node uses the relative centrality for centrality trust assessment, self-observations for direct 

service quality trust assessment, and feedbacks provided to its peers for indirect service quality trust assessment 

of another node. For objective trustworthiness, the network centrality is used for centrality trust assessment, and 

all feedbacks are used for both direct and indirect service quality trust assessment. 

In trust update, the event-driven scheme is taken. For the distributed model, a service receiver rates the service 

quality of a transaction at the end of the transaction, stores the rating its local storage, and provides a feedback to 

its peers upon request. For the centralized model, the DHT collects the feedback and updates its trust database 

after the end of each transaction.  

In trust formation, Nitti et al. [51] considered a multi-trust scheme by applying static weighted sum to 

combine centrality trust (which is a social trust property) with service quality trust (which is a QoS trust property 

obtained from direct service quality trust and indirect service quality trust) into an overall trust value. 

For defending against attacks, Nitti et al. [51] used direct service quality trust assessment and feedback 

propagation for SPA, credibility rating for BMA and BSA, and differentiating long-term and short-term direct 

service quality trust assessment to change credibility to defend against OSA. However OOA is not considered. 



4.3 Class 3: QoS / Centralized / dynamic weighted sum / Event-driven / Single-trust 

 
Figure 4: The General Approach Taken by Class 3. 

 
Class 3 is characterized by the general approach of taking QoS for trust composition, centralized for trust 

propagation, dynamic weighted sum for trust aggregation, event-driven for trust update, and single-trust for trust 

aggregation, as illustrated in Figure 4. 

Saied et al. [57] proposed a reputation system for a service-oriented IoT system and falls into this 

classification. In trust composition, it considers service quality as the sole trust metric but uses context 

information [62] including service type and node capability (e.g., energy status) to associate a service quality 

rating. In trust propagation, it uses a centralized manager to store all reputation reports (with context information) 

sent by individual SRs, after service is rendered. Upon receiving a new service request, the centralized manager 

selects SP candidates based on the service context for servicing the request. It then uses only evaluation reports 

with similar service context for reputation assessment of each SP candidate. In trust aggregation, the service 

context similarity between a stored report and the target service is computed by a global contextual distance 

function. A higher weight is used if a higher service context similarity is found. The reputation score is then 

computed by dynamic weighted sum with the weight associated with a report corresponding to the 

recommendation trust of the recommender who supplies the report. The recommendation trust is updated 

dynamically based on if the recommender’s report agrees or deviates from the majority of reports with a similar 

service context. Trust update is performed by the centralized manager via a learning process which presumably 

occurs whenever new reports are received, so it is based on event-driven. In trust formation, only service quality 

is considered.  



Saied et al. [57] dealt with SPA by detection of service quality and feedback propagation. The centralized 

manager rates a recommender dynamically based on the degree to which the recommender’s report deviates from 

the majority reports. This can effectively defend against BMA and BSA, if the majority recommenders are not 

malicious. OSA and OOA are not considered. 

4.4 Class 4: QoS / Distributed / Fuzzy logic + Static-weighted sum / Time-driven / Single-trust with static 

weighted sum 

 
Figure 5: The General Approach Taken by Class 4. 

 
Class 4 is characterized by the general approach of taking QoS for trust composition, distributed for trust 

propagation, fuzzy logic and static-weighted sum for trust aggregation, time-driven for trust update, and single-

trust with static weighted sum for trust aggregation, as illustrated in Figure 5. 

Chen et al. [7] and Mahalle et al. [43] fall into this classification. In trust composition, Chen et al. [7] 

proposed a trust management model based on fuzzy logic and considered only QoS metrics including end-to-end 

packet forwarding ratio (EPFR), energy consumption (AEC), and packet delivery ratio (PDR). Mahalle et al. [43] 

proposed a fuzzy trust-based approach for access control [36] taking into consideration of three QoS factors, i.e., 

experience (EX), knowledge (KN), and recommendation (RC). 

In trust propagation, trust is propagated in a distributed manner. Each node in the network maintains trust data 

of other nodes.  

In trust aggregation, Chen et al. [7] proposed aggregating the overall trust of a node toward another node 

using a static weighted sum of direct trust based on direct interaction experiences, and indirect trust based on 

recommendations. The direct trust is computed by aggregating EPFR, AEC and PDR direct interaction evidence 



using a static-weighted sum. If the aggregated trust value passes a threshold, the experience is a positive 

experience; otherwise, it is a negative experience. A fuzzy membership function taking into consideration of the 

number of positive and negative experiences together with uncertainty is used to compute the direct trust. The 

indirect trust on the other hand is computed by the product of the trustor’s direct trust toward the recommender 

with the recommender’s recommendation trust toward the trustee. The recommender’s recommendation trust is 

computed in the same way as direct trust except that positive and negative recommendation experiences, together 

with uncertainty, are used in the fuzzy membership function definition. Since direct trust and recommendation 

trust are each defined by a fuzzy membership function, the overall trust can be aggregated by applying fuzzy 

logic “add” (for adding direct trust with indirect trust based on static weighted sum) and “multiply” (for 

multiplying direct trust with recommendation trust to obtain indirect trust) operators. In trust aggregation, 

Mahalle et al. [43] proposed that each trust component, EX, KN or RC, can be good, average or bad. EX is a 

normalized sum of all trust experiences of that node. KN is a weighted sum of direct knowledge and indirect 

knowledge. RC is also a weighted sum of recommendations from recommenders. Trust is computed through a 

fuzzy rule base. 

In trust update, trust is updated periodically, so it is time-driven. In trust formation, only single-trust (service 

quality trust) is considered by either Chen et al. [7] or Mahalle et al. [43]. 

Regarding resiliency against attacks, Chen et al. [7] detected SPA and the feedback is propagated to the central 

manager through trust propagation. BMA, BSA, OSA and OOA were not considered. Mahalle et al. [43] did not 

consider SPA, BMA, BSA, OSA or OOA 



4.5 Class 5: QoS + Social / Distributed / Static weighted sum / Event + Time-driven / Multi-trust 

 
Figure 6: The General Approach Taken by Class 5. 

 
Class 5 is characterized by the general approach of taking QoS and social for trust composition, distributed for 

trust propagation, static weighted sum for trust aggregation, event and time-driven for trust update, and multi-

trust for trust aggregation, as illustrated in Figure 6. 

Bao et al. [3] and Chen et al. [8] fall into this classification. In trust composition, they considered separate 

trust properties, including QoS trust properties such as honesty and cooperativeness, and social trust such as 

community-interest.   

In trust propagation, Bao et al. [3] and Chen et al. [8] followed the distributed scheme where each node 

maintains its own trust assessment towards other nodes and propagates its recommendation trust toward other 

nodes. 

In trust aggregation, a trustor node aggregates its current trust toward the trustee node with new evidence 

based on weighted sum. The new evidence can be either direct evidence if the trustor node directly encounters 

and interacts with the trustee node or indirect evidence if it does not encounter the trustee node but receives a 

recommendation trust toward the trustee node from a recommender it encounters. In the latter case, the 

recommendation trust received is discounted by the trustor’s direct trust toward the recommender.  A novelty is 

that the weights associated with the past experience and the current evidence can be dynamically adjusted to 

tradeoff the trust convergence rate and trust fluctuation rate. Although the effect of weight parameters is 

analyzed, there is no discussion of how the weight parameters can be dynamically adjusted. Therefore they can 

be classified as static weighted sum at most. 



In trust update, the trust management protocol is encounter-based as well as activity based, meaning that the 

trust value is updated upon an encounter event or an interaction activity. Two nodes encountering each other or 

involved in a direct interaction activity can directly observe each other and update their trust assessment. They 

also exchange their trust evaluation results toward other nodes as recommendations.  

In trust formation, they considered multiple trust properties: honesty, cooperativeness and community-interest 

trust. However they did not discuss how to form the overall trust out of these separate trust properties.  

Bao et al. [3] and Chen et al. [8] used honesty trust assessment and feedback propagation for defending 

against SPA, BMA and BSA. However, OSA and OOA are not considered. 

 Chen et al. [17] also falls into this classification. In trust composition, Chen et al. [17] considered both QoS 

trust (i.e., quality reputation and energy status) and social trust (i.e., social relationship using factors considered 

in Chen et al. [12] and Nitti et al. [51]). In trust propagation, Chen et al. [17] adopted a distributed scheme where 

each node maintains its own trust assessment towards other nodes. Evidence for each trust component is 

propagated separately. In trust aggregation, each trust component is assessed separately based on static weighted 

sum. In particular, quality reputation is a static weighted sum of direct trust and indirect trust. The indirect trust is 

also a feedback-trust-weighted sum of feedbacks received from all recommenders with each recommender’s 

feedback trust being updated based on how the recommender’s feedback deviates from the average. The social 

relationship trust and the energy trust are also each assessed by a static weight sum function. In trust update, it is 

event-driven with the trust value being computed based on transaction completion and timer events. In trust 

formation, it falls into the multi-trust category with the overall trust being formed from the three trust 

components, quality reputation, energy, and social relationship, based on static weighted sum. 



4.6 Class 6: QoS / Distributed / Static-weighted sum / Event-driven / Single-trust 

 
Figure 7: The General Approach Taken by Class 6. 

 
Class 6 is characterized by the general approach of taking only QoS for trust composition, distributed for trust 

propagation, static weighted sum for trust aggregation, event-driven for trust update, and single-trust for trust 

aggregation, as illustrated in Figure 7. 

Mendoza et al. [47] falls into this classification. In trust composition, it considers direct QoS trust. When a 

node fulfills a service, it will be rewarded; otherwise, it will be punished. In trust propagation, trust is propagated 

in a distributed manner. Each node in the network maintains a data forwarding information table of other nodes. 

In trust aggregation, the overall trust of a node toward another node is just the direct trust derived from direct 

interaction experiences. In trust update, trust is updated after a service request event, so it is event-driven. In trust 

formation, only single-trust (i.e., service quality trust) is considered. No social trust is considered in this work. 

OOA is mitigated by using a reward and punishment scheme. SPA, BMA, BSA and OSA are not considered. 



4.7 Class 7: QoS / Centralized / Static-weighted sum / Time -driven / Single-trust with static weighted sum 

 
Figure 8: The General Approach Taken by Class 7. 

 
Class 7 is characterized by the general approach of taking QoS for trust composition, centralized for trust 

propagation, static weighted sum for trust aggregation, time-driven for trust update, and single-trust with static 

weighted sum for trust aggregation, as illustrated in Figure 8. 

Namal et al. [50] falls into this classification. In trust composition, it considers direct QoS trust metrics such 

as availability, reliability, irregularity, and capacity. In trust propagation, trust is propagated in a centralized 

manner. In trust aggregation, the overall trust of a node toward another node is aggregated using a static weighted 

sum of past experiences and new QoS sensor data on availability, reliability, and irregularity. In trust update, trust 

computation is performed periodically, so it is time-driven. In trust formation, only single-trust (service quality 

trust) is considered. No social trust is considered in this work. 



4.8 Class 8: QoS / Centralized / - / - / Single-trust 
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Figure 9: The General Approach Taken by Class 8. 

 
Class 8 is characterized by the general approach of taking QoS for trust composition, centralized for trust 

propagation, and single-trust for trust formation, as illustrated in Figure 9. Trust aggregation and trust update are 

not considered.  

Gu et al. [28] and Wang et al. [63] fall into this classification. In trust composition, Both considered QoS trust 

in three network layers, i.e., the sensor layer, core layer and application layer. The purpose of trust management 

for the sensor layer is selecting a subset of nodes based on their trust values to provide service. Trust 

management for the core layer considers historical trust, recommended experience, risk, ability of anti-attack and 

the service capability. It aims at acquiring a set of optimal routes in the network. The purpose of trust 

management for the application layer considers control attributes such as service efficiency, service risk, and 

service history. In trust formation, single-trust is considered based on the combination of sensor layer trust, core 

layer trust and application layer trust. Neither Gu et al. [28] nor Wang et al. [63] considered trust propagation or 

trust update. Also neither Gu et al. [28] nor Wang et al. [63] considered attack models. 
 

5 RESEARCH GAPS 

In this section, we identify research gaps in trust computation for IoT systems. We first summarize the most 

visited, least visited, and little visited trust computation methods, as summarized in Table 2. The rationale behind 

this is to identify the most popular trust composition, trust propagation, trust aggregation, trust update, and trust 



formation techniques adopted by existing trust computation models, provide reasons for such popularity, and 

then identify research gaps that deserve more attention for IoT trust computation research. 

Trust Composition: A modern IoT system is inherently socially oriented since IoT devices are owned by 

humans which are connected by social relationships. We see from Table 2 that most works indeed consider both 

QoS trust and social trust for trust composition. We take the view that a valid trust model for IoT must consider 

social trust metrics because social relationships between human operators control the way an IoT device would 

behave toward another IoT device. Among social trust properties, similarity and friendship are the most visited 

among all. The reason is that these two social properties arguably are the most important among all because 

friendship implies good service, and high social similarity implies high creditability of a recommendation. 

However, we argue that for certain IoT applications such as smart city air pollution detection and augmented map 

travel assistance [4], social metrics such as centrality and community of interest especially for rating 

recommenders, should be further explored to improve trust computation performance, including convergence, 

accuracy, and resiliency against malicious attacks. 

 
Table 2: Most, Least and Little Visited IoT Trust Computation Models in the Literature. 

Most visited Trust composition QoS trust [3][4][7][8][12][17][28][43][47][50][51][57][63] 
 

Social trust [3] [4] [8] [12] [17] [51] [57] 
 

Trust propagation Distributed [3][4][7][8][12][17][43][47][51]  
Centralized [28][50][51][57][63] 

Trust aggregation Static weighted sum [3] [7] [8] [17] [43] [47] [50] [51]  
 

Dynamic weighted sum [4][12][57] 
 

Trust update Event-driven [3][4] [8][12][17][47][51][57] 
Time-driven [3][4][7][8][12][17][43][50] 

Trust formation Single-trust [4] [7] [12] [28] [43] [47] [50] [57] [63] 
Multi-trust with 

static weighted sum [3] [8] [17] [51] 
Least visited Trust aggregation 

 
Fuzzy logic [7][43] 

Bayesian inference[4][12] 

Little visited Trust aggregation Belief theory 

Regression analysis 

Trust formation Multi-trust with 
dynamic weighted sum 

Multi-trust each with its own minimum threshold 
Multi-trust with trust scaled by confidence 

 

Trust Propagation: Table 2 shows that existing work mostly considered distributed trust propagation for 

“subjective” trust computation without relying on a centralized entity. That is, each node propagates trust 

information to other nodes upon request, and each node also aggregates trust information (including self-

observations) for trust assessment toward other nodes in the system. This is feasible for IoT systems where IoT 



devices (e.g., smart phones, vehicles, etc.) are mobile with no access to a centralized entity such as a cloud. With 

the emergence of cloud services, however, centralize trust propagation for “objective” reputation computation 

(common belief of the public) makes more sense. The literature is limited in investigating cloud-based trust 

propagation methods. Only Gu et al. [28], Namal et al. [50], Nitti et al. [51], Saied et al. [57], and Wang et al. 

[63] discussed centralized trust propagation. Centralized trust propagation is implemented in Nitti et al. [51] by 

means of a distributed hash table structure, while Gu et al. [28], Namal et al. [50], Saied et al. [57], and Wang et 

al. [63] simply assumed the existence of a trusted central entity. No work thus far discusses the potential of 

integrating cloud computing with centralized trust propagation. The challenge lies in the cloud-based 

infrastructure design that facilitates trust information propagation from IoT devices to the cloud which aggregates 

trust feedbacks and answers user queries regarding the service trustworthiness of any particular IoT device in the 

system. This is a research gap that demands attention. 

Trust Aggregation: Static weighted sum and Bayesian inference are the two most visited methods, dynamic 

weighted sum and fuzzy logic are least visited, while belief theory and regression analysis have not been 

investigated in the literature. There is no clear reason why fuzzy logic, belief theory, or regression analysis based 

trust aggregation cannot perform comparably or even better than weighted sum or Bayesian inference based trust 

aggregation. A comparative analysis is called for to compare these competitive trust aggregation methods for IoT 

systems. The comparative analysis should consider specific IoT applications and/or specific trust propagation 

models (distributed vs. centralized). For example, complex statistical analysis is required for regression analysis 

and hence it is particularly appealing when a centralized cloud is available for cloud-based IoT applications. This 

is a research gap that deserves attention.  

Trust Update: Event-driven trust update is frequently performed when a service or transaction is completed, 

or a node encountering another node, while time-driven trust update occurs periodically to preserve energy. The 

hypothesis is that event-driven is more suitable under centralized trust propagation since the centralized entity 

(i.e., a cloud) is powerful, while time-driven is more suitable under distributed trust propagation since most, if 

not all, IoT devices are power limited. For the latter case, there is a tradeoff between trust accuracy and energy 

conservation. Hence, there exists an optimal trust update interval under which an IoT application performance is 

maximized depending on the trust accuracy and energy consumption requirements which collectively determine 

the success or failure of the IoT application.  These hypotheses remain to be verified or refuted. 

Trust Formation: there is a big gap from most visited methods in single-trust and multi-trust with static 

weighted sum, to little visited methods in multi-trust with dynamic weighted sum, multi-trust each with its own 

minimum threshold, or multi-trust with trust scaled by confidence. Multi-trust refers to the trust protocol that 

considers more than one trust properties, each being assessed separately and a trust formation method is applied 

to form the overall trust out of these multiple trust properties. IoT systems inherently are multi-trust based 

because both QoS trust (for service quality) and social trust (for social relationship) must be considered, taking 



into considerations that device-to-device interaction behaviors derive from owner-to-owner relationships. We see 

from Table 2 that only Bao et al. [3], Chen et al. [8], Chen et al.[17], and Nitti et al. [51] considered multi-trust 

with static weighted sum. There is a pressing need to investigate more effective multi-trust formation methods 

and a comprehensive comparative analysis to identify the best trust formation technique to maximize IoT 

application performance.  

6 CONCLUSION AND RESEARCH DIRECTIONS 

In this paper we developed a classification tree based on five design dimensions considered essential for trust 

computation, namely, trust composition, trust propagation, trust aggregation, trust update, and trust formation, to 

classify existing IoT trust computation models. We discussed the pros and cons of existing IoT trust computation 

models in terms of the class they fall within. In particular for each class of IoT trust computation models, we 

discussed the defense mechanisms used and their effectiveness against malicious attacks aiming to disrupt the 

trust system.   

Through the pros and cons analysis of IoT trust computation model classes, we identified the most effective 

trust computation techniques (and thus trust computation classes) as applying to IoT systems. We further 

identified research gaps in IoT trust computation research for supporting future IoT applications.  

We offer eight directions for trust computation research in IoT systems as follows: 

1. The first and foremost is to explore untouched trust aggregation techniques based on belief theory or 

regression analysis. Regression analysis especially is applicable when IoT nodes can access a centralized trust 

manager, say, located on a cloud because of the limited computing power of IoT devices for executing 

computationally expensive statistical analysis. Feedback data including service context information such as 

capability and energy of the SP, the traffic congestion condition of the network, and the service quality 

feedback itself can be propagated to the cloud for complex statistical analysis to better connect context 

information with service quality, and thus provide a more accuracy estimate of service quality trust of a SP in 

question. 

2. The second research direction is to further explore innovative social trust metrics and the best way to combine 

them for IoT trust computation. The reason is that IoT systems are inherently social oriented. In the literature, 

using social similarity to rate a trustee or a recommender is emerging [12]. However, how to combine several 

social metrics such as friendship, social contact, and community-of-interest, into social similarity is still an 

open problem. Further, other than similarity, there are also many IoT social properties such as centrality, 

selfishness, cooperativeness and honesty that need to be further explored. Properly exploring social 

relationship between IoT devices can effectively defend bad-mouthing and ballot-stuffing attacks which 

happen commonly in social IoT systems. 

3. The third research direction is to devise and validate a trust computation model that can defend against all 



attacks. Existing works have considered ways to defend against self-promotion attacks (SPA), bad-mouthing 

attacks (BMA) and ballot-stuffing attacks (BSA) effectively but not opportunistic service attacks (OSA) and 

on-off attacks (OOA). Properly leveraging social trust may be an effective way to defend against bad-

mouthing attacks and ballot-stuffing attacks, but this needs to be verified with real service-oriented social IoT 

systems. Also, there is a need to further model malicious behaviors (e.g., [18] [19] [48] [49]) which can 

happen in service-oriented social IoT systems, and devise as well as validate effective defense mechanisms 

against such malicious behaviors.  

4. There is a big gap in the area of trust formation when there are several distinct trust metrics and one wants to 

combine several trust metrics into one overall trust metric. The literature is thin in this area [3] [8] [17] [51] 

considering only the use of static weighted sum for trust formation. The fourth research direction is to 

investigate the use of more effective trust formation methods. Potential methods to investigate further include 

(a) dynamic weighted sum, (b) setting a minimum threshold for each trust property without combining 

multiple properties into one, and (c) using one trust property as the main one which is scaled by other trust 

properties serving as confidence. In particular, dynamic weighted sum potentially can improve application 

performance when the weights associated multiple trust properties can be dynamically adjusted based on 

environment context information available at runtime. A potential technique to use for dynamic weighted sum 

is regression analysis [64] to link context information with trust accuracy and/or application performance so 

as to determine the best weight assignment. Another potential technique is adaptive filtering [12] to follow the 

principle that a node should have high trust toward IoT devices to which it has more positive user satisfaction 

experiences and, conversely, low trust toward those with more negative user satisfaction experiences. 

5. The fifth research direction which is an open problem is to design a trust computation method that can scale. A 

modern IoT system comprises not just thousands but millions or even billions of heterogeneous IoT devices. 

Performance analysis of scalable trust propagation and trust storage methods is of paramount importance. For 

distributed trust computation, a push-based periodic trust propagation method will not scale. A more scalable 

pull-based trust propagation method is called for. A possible technique is encounter-based trust propagation 

[14] such that trust information is exchanged only when IoT devices encounter with each other, so there is no 

extra traffic created or energy spent for forwarding recommendation packets. Also many IoT devices will be 

tiny so it is impractical for each IoT device to store the trust values of all other IoT devices in the system just 

for trust-based decision making. Therefore a scalable storage scheme based on heuristic design principles is 

called for.  One possibility is to store trust information for nodes with the highest trust values and nodes 

recently interacted or encountered, as these nodes are most likely to share common interests [4]. For 

centralized trust computation, a single cloud server will not scale. One research direction is to leverage tiered 

cloud architectures for scalable hierarchical trust management [5] [9] [11] [13]. A two-tier cloud architecture 

proposed by Rahimil et al. [52] consists of local and public clouds, with public clouds sitting at the high level 



of the hierarchy and local clouds sitting at the low level. Utilizing this 2-tier cloud architecture, an IoT device 

roams from one local cloud server area into another local cloud server area, thus triggering a “service 

handoff” similar to a “mobility handoff” in hierarchical mobility management [15] [16] [27] [38]. A service 

handoff causes trust information to be transferred from one cloud server to another. The two-tier cloud 

architecture can be expanded into n-tier as necessary to scale to millions or even billions of IoT devices.  

6. The sixth research direction is to integrate cloud service with trust management service, aka, trust as a service, 

for centralized trust management of an IoT community. The IoT community for example can be an e-health 

group paying particular attention to air pollution for the welfare of a group of users who may suffer from 

polluted air quality, an intelligent your-ride-on-demand IoT group (like Uber), or a smart city group consisting 

of visitors, merchants, restaurants, and entertainment business entities, etc. Trust as a service would be a 

perfect service provided by the cloud to members in each of these groups. Service reputation feedbacks along 

with service context information can be fed into the cloud for a complex yet complete statistical analysis. 

Users requesting a service or a composite service (i.e., several services bundled together via service 

composition and binding) can be assured of high-quality service as a result of “trust as a service” being 

applied to such a service-oriented IoT group. 

7. The 7th research area is to expand and apply IoT trust management techniques to real-world IoT applications. 

See Atzori et al. [2] and Borgia et al. [6] for a list of emerging IoT applications. To date, only Chen et al. [8] 

tested the applicability on real-world IoT applications which require dynamic service composition and binding 

[21] [39]. It is of paramount importance to identify IoT application to which a trust computation technique can 

be feasibly applied for security enhancement, especially for those IoT applications that rely on cloud 

computing technology. 

8. Lastly, there is a lack of a holistic design for scalable, adaptive and survivable trust computation for social IoT 

systems. Among the trust computational techniques to-date, only Bao et al. [4] and Chen et al. [12] partially 

addressed this issue in the context of distributed trust computation. Hence, the 8th research direction is to 

consider a more holistic design to manage “integrated” mobility, service and trust information of a large 

number of IoT devices in a scalable, secure, reliable, and efficient manner, possibly by integrating the design 

concepts currently existing in hierarchical trust management [5] [9] [11] [13], hierarchical mobility 

management [15] [16] [27] [38], and tiered cloud architectures [52]. While a node in a hierarchical mobility 

management architecture is a router responsible for keeping track of location information only (where and 

how to route), a node in a hierarchical cloud management architecture can be a cloud server responsible for 

keeping track of “integrated” information including location, trust, and service information. A lower-level 

cloud server (e.g., a cloudlet or a private cloud) keeps track of IoT devices in its directly covered service area. 

A higher level cloud server (e.g., a public cloud) in the architecture keeps track of status of all IoT devices 

covered by all local cloud servers below it. Should an IoT device roam from one cloud service area to another, 



a “service handoff” ensues causing this IoT device’s location, trust and service information to be transferred 

between the two involving cloud servers. Such an IoT framework can track IoT devices not only in trust 

status, but also in service and mobility status dynamically to achieve the potential of anytime anywhere 

service-oriented IoT applications in the 21th century.   
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