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Abstract—Many systems or applications have been developed
for distributed environments with the goal of attaining multiple
objectives in the face of environmental challenges such as high
dynamics/hostility, or severe resource constraints (e.g., energy or
communications bandwidth). Often the multiple objectives are
conflicting with each other, requiring optimal tradeoff analyses
between the objectives. This work is mainly concerned with how
to model multiple objectives of a system and how to optimize
their performance. We first conduct a comprehensive survey of
the state-of-the-art modeling and solution techniques to solve
multi-objective optimization problems. In addition, we discuss
pros and cons of each modeling and optimization technique for
in-depth understanding. Further, we classify existing approaches
based on the types of objectives and investigate main problem
domains, critical tradeoffs, and key techniques used in each class.
We discuss the overall trends of the existing techniques in terms
of application domains, objectives, and techniques. Further, we
discuss challenging issues based on the inherent nature of MOO
problems. Finally, we suggest future work directions in terms of
what critical design factors should be considered to design and
analyze a system with multiple objectives.

Index Terms—Multi-objective optimization, genetic algorithms,
evolutionary algorithms, game theory, auction theory, trust,
distributed systems.

I. INTRODUCTION

REAL-world situations, such as those arising in economics
or engineering environments, are complex and multi-

dimensional in nature. Oftentimes, the scenarios are charac-
terized by actors within these environments who are operating
with a varied set of motivations and/or objectives [132].
Multiple objectives are often present, typically as a utility (or
payoff) function. In many situations, however, maximizing all
of the payoff functions is an over-constrained problem, as the
objectives may be in conflict with each other. One can con-
sider Pareto optimal situations where tradeoffs between these
conflicting payoff functions are studied on a region, called
the Pareto frontier. Navigation on the Pareto frontier enables
one to optimize the design of such systems, performing multi-
objective optimization (MOO) [46].

In this survey paper, we are particularly interested in how
to model multiple objectives of a system, interwoven with
complex system constraints (e.g., resource constraints, high
adversarial conditions or dynamics, or distributed nature with

J-H. Cho, K.S. Chan and A. Swami are with US Army Research
Laboratory Adelphi, MD email: {jin-hee.cho.civ, kevin.s.chan.civ, anan-
thram.swami.civ}@mail.mil

Y. Wang and I-R. Chen are with the Computer Science Department, Virginia
Tech, Falls Church, VA email: {yatingw, irchen}@vt.edu

no trusted centralized entity). Further, our interest is in how to
optimize the performance of a system with multiple objectives.

Example applications include coalition formation (or team
composition), cluster formation, task assignment, task schedul-
ing, or resource allocation in various network environments
including wireless sensor networks, mobile ad hoc networks,
cloud computing, multi-agent systems, web-based social net-
works, supply chain environments, P2P networks, and so
forth. Many MOO techniques have been explored, such as
evolutionary algorithms, game theoretic approaches, and other
metaheuristic algorithms. We aim to summarize the general
trends on how modeling and solution techniques to solve MOO
problems evolve as the main concerns of system platforms
change.

For those who want to take a first step to initiate their
research in the area of modeling and optimizing systems with
multiple objectives, we are hopeful that this paper can provide
useful background and guidelines.

A. Existing Survey Papers on Multi-Objective Optimization

Researchers have explored MOO problems since the 1970’s
in various domains for system control, decision making, circuit
design, operations research, networking and telecommunica-
tions protocol design, and so forth. Several comprehensive
survey papers on MOO solutions have appeared since the
1990’s.

Shin and Ravindran [185] survey interactive methods to
solve continuous MOO problems and corresponding appli-
cations. The authors discuss characteristics of preference
assessments, assumptions to ensure the functionality of a
method, and relationships between different methods. Ulungu
and Teghem [202] review existing work on multi-objective
combinatorial optimization (MOCO) problems because multi-
objective linear programming (MOLP) methods had failed to
solve MOO problems with discrete variables in many real-
world applications.

With significantly increased attention on MOO problems
and solution methods, many survey papers have been pub-
lished from 2000 until now. In particular, several MOO survey
papers discuss evolutionary algorithms [46, 48, 47, 56, 117,
198, 205] or bio-inspired algorithms [62, 170]. Okahe et al.
[156] conduct a survey on how to measure quality of MOO
algorithms and propose various types of performance indices.
Also very recently Meng et al. [135] published a survey paper
on MOO design methods using game theory. As seen in [135],
a change of MOO modeling technique may be necessitated due
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to diverse needs of distributed systems with distinct multiple
objectives as opposed to centralized systems with only system
level objectives.

Compared to the existing survey papers, our survey paper is
unique in providing a comprehensive survey on both solution
techniques (e.g., scalarization-based, metaheuristics, hybrid
metaheuristics, and trust-based approaches) and modeling
techniques (e.g., cooperative game theory or auction theory).
We use our prior classification method developed in [43]
with an in-depth survey to classify existing MOO modeling
and solution techniques based on the types of objectives.
Then we discuss the overall trends to analyze the tradeoff
between solution optimality and solution search efficiency
(i.e., complexity) of the surveyed MOO solution techniques.
We summarize the overall trends of existing works to solve
MOO problems, provide discussions of key challenging issues
in MOO problems, and point to potential research directions
based on the overall trends observed from the survey results.

B. Key Contributions

A preliminary version of this work was published in [43].
We substantially extend the conference paper [43] with the
following contributions:

1) This work provides a comprehensive survey of not
only key modeling techniques for modeling applica-
tions/systems with MOO requirements, but also solution
techniques. We discuss each technique with its pros and
cons that could lead to an insightful decision on the
choice of techniques based on the distinct needs of each
application;

2) This work uses the classification method, developed in
our prior work [43], to categorize existing studies on
various MOO problems in terms of the characteristics
of objectives. This work substantially extends [43] with
more detailed descriptions of techniques and trends
observed based on the in-depth literature review asso-
ciated with the three classes. Based on the classification
method in [43], we classify existing works into three
classes based on the nature of objectives, either system
objectives or individual objectives in which an individual
has its own goal as a member of a group which has a
different goal to achieve;

3) We discuss the overall trends to analyze the tradeoff
between solution optimality and solution search effi-
ciency (i.e., complexity) observed in the surveyed MOO
solution techniques. We provide the general trends of the
application domains, objectives, and key techniques used
for modeling and solving MOO problems. We provide
insights on how modeling and solution techniques for
MOO problems have evolved as emerging platforms
have new needs to meet; and

4) Our work is the first that surveys trust-based solution
techniques for solving MOO problems. We suggest
future research directions based on trust-based heuristic
approaches that are efficient and effective in achieving
multiple, conflicting goals of a system under dynamic,
hostile, and distributed environments.

C. Structure of this Survey Paper

The rest of this paper is structured as follows.

• Section II: We survey common applications to which
MOO modeling and solution techniques are applicable. In
addition, we discuss conflicting multiple objectives that
are considered in example applications.

• Section III: We provide basic background knowledge
about MOO problem definition and formulation. We also
explain Pareto optimum and frontier for achieving MOO.

• Section VI: We survey solution techniques that solve
various MOO problems, including scalarization-based
methods, metaheuristics, hybrid metaheuristics, and trust-
based solutions. We discuss the pros and cons of each
solution technique.

• Section V: We survey modeling techniques for appli-
cations/systems with MOO goals, including cooperative
game theory and auction theory. We discuss the pros and
cons of each modeling technique.

• Section VI: We classify existing modeling and solution
techniques to solve various MOO problems into three
classes according to the types of objectives.

• Section VII: We discuss the challenging issues derived
from the nature of MOO problems, including uncer-
tainty, Pareto optimality conditions, duality, solvability,
and stability, and the tradeoff between optimality and
complexity.

• Section VIII: We suggest future research directions based
on the overall trends observed from the survey results.

• Section IX: We summarize the key ideas from this survey.

II. SYSTEMS WITH MULTIPLE OBJECTIVES

MOO problems are commonly encountered in many ap-
plications. In this section, we survey the major application
domains that have explored techniques or algorithms to solve
MOO problems.

Business Settings: Multiple criteria decision making sit-
uations are commonly observed where coalitions or alliances
are established between buyers and sellers [99], customers and
vendors [30], multiple business partners [96], and supply chain
alliance in marketplaces [97]. The tradeoff issues investigated
in [30, 96, 97] due to conflicting multiple objectives include:
(1) maximization of sales by vendors vs. minimization of
prices by customers [30]; (2) fair distribution of benefits by
individual firms vs. overall maximum benefit based on the
sum of all firms’ benefit [96]; and (3) maximization of an
individual’s payoff vs. maximum profit of the supply chain
alliance [97]. Overall we observe that conflicting interests exist
between individuals and systems.

Tactical environments: Many military settings have mul-
tiple objectives in contexts such as task team formation [14],
asset-to-task matching in tactical or surveillance systems [36,
49, 65], or team formation in multi-agent systems (e.g., robots,
unmanned aerial or ground vehicles) [167, 174, 177, 180, 184].
The critical tradeoffs investigated in these works include: (1)
agility vs. resource consumption [14]; (2) mission completion
vs. fair resource utilization [36]; and (3) task cost (delay or
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communication overhead) vs. task completion (or coalition
formation) [49, 65, 167, 174, 177, 180].

Web-based virtual environments: Many web-based vir-
tual collaboration environments with service provision require
team formation. The examples may include virtual collabo-
ration networks requiring team formation among film actors
or scientists where certain skill sets are required while some
level of trust relationships are critical for cooperation [5].
Further, crowdsourcing in online environments is another good
example of requiring task assignment with objectives includ-
ing expertise, availability, or collaboration relationships [64].
Anagnostopoulos et al. [5] take a bi-criteria approximation
approach to meet conflicting goals of minimizing commu-
nication cost while maximizing workload balance for task
assignment in an online setting. Dorn et al. [64] solve a
team composition problem based on member qualifications in
terms of required skill sets and trust relationships with other
members by using metaheuristics in an online environment.
In these works [5, 64], the conflicting objectives are between
skill sets and task related cost or fair workload.

Network resource allocation: Resource allocation tech-
niques or algorithms have been developed for applications with
multiple objectives. The examples with multiple but conficting
objectives show the tradeoffs of conflicting objectives as
follows: (1) team formation for service providers with the
objectives of maximizing both load balance and quality-of-
service (QoS) [194]; (2) primary and secondary user networks
formation in cognitive networks with rate-interference trade-
off [15, 17, 18, 175]; (3) job formation to distribute the com-
ponents of a program to suitable processors with conflicting
objectives, maximizing throughput, reliability, or security with
minimum communication cost [108, 122, 147, 193, 224]; and
(4) cloud selection to achieve system functionalities based on
the tradeoff between data management cost and QoS provided
to users [103].

Most MOO problems including coalition formation (or team
composition), task scheduling, task assignment, or resource
allocation are usually combinatorial optimization problems,
which are typically known to be NP-complete [8, 76]. Combi-
natorial optimization problems involve finding a best set from
a finite set of objects. Many such problems cannot be solved
in polynomial time.

III. BASIC CONCEPTS

A. Definition of MOO Problem

Optimization involves identifying the values of decision
(or free) variables that generate the maximum or minimum
of one or more objectives. In most engineering problems,
there may exist multiple, conflicting objectives and solving
the optimization problems is not trivial or may not be even
feasible [168].

Osyczka [157] defines MOO as a problem that solves “a
vector of decision variables” meeting constraints and opti-
mizing a vector function where each element is an objective
function.

Coello [46] provides a clear formulation of multi-objective
optimization problems. Given m inequality constraints and p

equality constraints, identify a vector, x̄∗n = [x∗1, x
∗
2, . . . , x

∗
n]>,

that optimizes

f̄k(x̄n) = [o1(x̄n), o2(x̄n), . . . , ok(x̄n)]> (1)

such that

gi(x̄n) ≥ 0, i = 1, 2, . . . ,m (2)
hi(x̄n) = 0, i = 1, 2, . . . , p

where x̄n = [x1, x2, . . . , xn]> is a vector of n decision
variables. The constraints determine the “feasible region” F
and any point x̄n ∈ F gives a “feasible solution” where
gi(x̄n) and hi(x̄n) are the constraints imposed on decision
variables. The vector function f̄k(x̄n) in (1) is a set of k
objective functions, oi(x̄n) for i = 1, · · · , k, representing k
non-commensurable criteria [46].

B. Pareto Optimum

The concept of “Pareto optimality” is defined in [159]. A
point x̄∗n ∈ F is “Pareto optimal” (for minimization below) if
the following holds for every x̄n ∈ F

f̄k(x̄∗n) ≤ f̄k(x̄n) (3)

where f̄k(x̄n) = [o1(x̄n), o2(x̄n), . . . , ok(x̄n)]>,

f̄k(x̄∗n) = [o1(x̄∗n), o2(x̄∗n) . . . , ok(x̄∗n)]>

Pareto optimality gives a set of nondominated solutions. A
feasible solution x is called “weakly nondominated” if there
is no y ∈ F , such that oi(y) < oi(x) for all i = 1, 2, ..., k.
This means that there is no other feasible solution that can
strictly dominate x. A feasible solution x is called “strongly
nondominated” if there is no y ∈ F , such that oi(y) ≤ oi(x)
for all i = 1, 2, ...k, and oi(y) < oi(x) for at least one i.
This means that there is no other feasible solution that can
improve some objectives without worsening at least one other
objective. If x is “strongly nondominated”, it is also “weakly
nondominated”. However, the reverse does not hold [46].

A related concept is Pareto efficiency [159], which refers
to a state in which resources cannot be reallocated to make
any individual gain more without hurting any others’ gain.
Given an initial allocation, if we can achieve a different
allocation making at least one individual better off without
making any others worse off, then the starting state is called
a Pareto improvement. An allocation is regarded as Pareto
efficient (or Pareto optimal) when we cannot make any further
Pareto improvements [33]. The standard Pareto optimality (or
Pareto efficiency) mentioned above is often referred to as
strong Pareto optimality (SPO). On the other hand, weak
Pareto optimality (WPO, or weak Pareto efficiency) is a
weaker version of SPO, indicating a state in which there is
no other alternative way for resource reallocation to make
any individual better off. If an allocation is SPO, it is a
WPO; but not vice-versa. Therefore, we can identify strongly
nondominated sets for solutions under the SPO allocation
while finding weakly nondominated sets for solutions under
the WPO allocation [33].
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Fig. 1. An example MOO problem with objective minimization functions.

C. Pareto Frontier

A set (of feasible solutions) that is Pareto efficient is
called the Pareto frontier, Pareto set, or Pareto front. The
optimal solutions can be determined based on the tradeoffs
within this set based on a designer’s decisions for acceptable
performance [33, 46].

Figure 1 shows an example of a MOO problem with two
objective functions to be minimized [46]. The two goals are
conflicting with each other as o1(x̄n) is minimized when
o2(x̄n) is not, and vice-versa. The bold line in Figure 1
is the Pareto frontier or set. In general, the normal way to
find optimal solution(s) is to obtain the Pareto set and then
by comparing f̄k(x̄∗n) for each solution x̄∗n in the Pareto
set, a designer can make a final decision for the optimal
solution(s) [46].

If x̄∗n ∈ F does not exist such that f̄k(x̄n) < f̄k(x̄∗n), then
we say x̄∗n ∈ F is a weakly nondominated solution. This means
that some solutions in f̄k(x̄n) can achieve as much as f̄k(x̄∗n)
while other solutions in f̄k(x̄n) can be strictly dominated by
f̄k(x̄∗n). If x̄∗n ∈ F does not exist such that f̄k(x̄n) ≤ f̄k(x̄∗n)
and for at least one value of k, f̄k(x̄n) < f̄k(x̄∗n), then we call
x̄∗n ∈ F is a strongly nondominated solution. This means that
solutions in f̄k(x̄∗n) is strictly better than f̄k(x̄n). Hence, if
x̄∗n is strongly nondominated, it is also weakly nondominated.
However, the vice-versa does not hold [46].

IV. MOO SOLUTION TECHNIQUES

In this section we discuss MOO solution techniques. We
organize this section as follows: Section IV-A for scalarization-
based techniques; Section IV-B for solution metaheuristics;
Section IV-C on hybrid metaheuristics; and Section IV-D on
trust-based approximation solutions.

A. Scalarization-based MOO Function Formulation

In this section, we discuss ‘classical’ MOO methods to
formulate a single objective function that captures multiple
objectives, mainly based on scalarization techniques. Table I
summarizes the scalarization-based MOO formulation tech-
niques along with an analysis of pros and cons.

1) Weighted Sum: A popular technique is the weighted
sum, also called scalarization, that generates a single objective
function by linearly combining multiple objective functions by

Optimize f̄k(x) =
∑k
i=1 rioi(x), (4)

where 0 ≤ ri ≤ 1, i = {1, . . . , k},
∑k
i=1 ri = 1

Here each weight represents the importance of that objective
function [174, 176]. Deciding appropriate weights (i.e., the
ri’s) for each objective is critical to obtaining good solutions.
Since the different objectives, the oi’s, measure different quan-
tities, appropriate normalization of units is also critical [46].

Pros and Cons: This method is computationally efficient
in generating a strong nondominated solution [119] while
not changing the structure of the problem by keeping the
same set of constraints. However, the solution generated by
this method heavily depends on the weight coefficients for
combining the objectives. If the solution functions meeting the
constraints for each objective are not linear, showing a concave
tradeoff surface, a linear weighted sum cannot identify optimal
solutions [73].

2) ε-Constraints: This technique helps generate a single
objective function by picking one of the multiple objective
functions, say the i-th, as the primary objective function and
casting the remaining objective functions as constraints [62].
The objective function can be written as

Optimize oi(x) (5)
subject to oj(x) ≤ εj , j = 1, . . . , k and j 6= i

Matsatsinis and Delias [134] study task allocation problems
in multi-agent decision making systems using ε-constraints.
Bi-criteria approximation is a typical approach to solve a two-
objective optimization problem, in which one of the objectives
is interpreted as a constraint while the other objective is set
as a system goal. Anagnostopoulos et al. [5] utilize bi-criteria
approximation to optimize both communication overhead and
workload balancing in an online task assignment problem.

Pros and Cons: The ε-constraints method leads to a weakly
nondominated solution. However, if only one optimal solution
exists, such a solution becomes strongly nondominated [46]. In
this method, multiple rounds of searching for solutions using a
different set of constraints can identify trade-off points among
multiple objectives [171]. Its drawback is that it is a time-
consuming process, and in the case with too many objectives,
it is hard to formulate the problem itself [46]. The choice of
ε significantly affects problem solutions when dealing with
continuous objective values and also modifying the structure
of the problem by adding extra constraints.

3) Goal Programming: This method is used by decision
makers (DMs) to assign targeted goals that they want to attain
for each objective. The objective function aims to minimize
the absolute difference between the targeted goals and the
achieved performance [54, 196], and is formulated as

min

k∑
i=1

|oi(x)− gi| (6)

where gi refers to the target goal for objective i and X is a
set of feasible solutions [54, 148].
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TABLE I
SCALARIZATION-BASED MOO PROBLEM FORMULATION TECHNIQUES

Technique Pros Cons Ref.
Weighted sum Computationally efficient in generating a

strong nondominated solution
Depending on weight coefficients, concave
tradeoff curve may not be observed

[46, 119, 171, 174, 176]

ε-constraints Can identify tradeoff points among multiple
objectives by searching solutions using dif-
ferent set of constraints

Time-consuming process; difficult to formu-
late a problem with too many objectives;
critical impact of ε on solutions

[5, 46, 62, 134, 171]

Goal programming Computationally efficient if feasible solution
space is found

Computationally inefficient if feasible solu-
tion space is not found

[45, 54, 67, 107, 148, 196]

Min-max Results in the best possible optimal solution,
given an equal priority for each objective

Computationally inefficient if feasible solu-
tion space is not found

[46, 192]

Elastic-constraints Transforms some constraints to soft con-
straints for better solution search efficiency

Results in significant impact by a penalty
factor (i.e., µk in Eq. (9))

[69, 113]

Weighted metric Allows finding a set of Pareto optimal solu-
tions of each objective if reference points as
a vector of utopian objectives are known

Cannot solve non-differentiable MOO func-
tion

[138, 140, 228]

Achievement function Allows finding Pareto optimal solutions by
flexibly selecting reference points

Introduces complexity in selecting right ref-
erence points

[138]

Benson’s method Applicable in non-convex MOO problems
when reference points are properly selected

Introduces extra constraints; not applica-
ble for gradient-based methods for non-
differentiable objective functions

[20, 56]

Utility (or value) function Can be used with game theory to design a
MOO problem related to resource allocation

Hard for an individual agent to have a global
view in fully distributed systems

[56, 85]

Many variants of the goal programming method have been
proposed. Lexicographic goal programming (or preemptive
goal programming) is devised to specify priorities of goals.
Weighted goal programming (or non-preemptive goal pro-
gramming) examines direct tradeoffs between all deviational
variables. Chebyshev goal programming seeks to minimize the
maximal deviation from any goal, not the sum of all deviations.
Fuzzy goal programming employs fuzzy set theory to estimate
a level of deviations. For more details, readers are referred
to [107].

Pros and Cons: This method is computationally efficient if
the targeted goal is selected in the feasible solution space [67].
But a DM should set targeted goals appropriately in order to
remove the characteristics of the problem that are not commen-
surable. This is not a trivial process unless information about
the search space shape is known a priori. If the feasible region
is not identifiable, this method is inefficient [45]. Further,
a well-known weakness of this goal programming method
is not generating solutions that are Pareto efficient [172].
Nevertheless, some techniques have been proposed to restore
Pareto efficiency into goal programming while maintaining
efficiency [197].

4) Min-Max Method: This aims to minimize the maximum
deviations of the objective values from optimal objective
values [192]. For example, we can formulate a min-max
problem via

min
[

maxZi(x)
]

for i = 1, . . . , k (7)

where Zi(x) is obtained from the target value gi by

Zi(x) =
|oi(x)− gi|

gi
for i = 1, . . . , k (8)

Note that Eq. (7) differs from Eq. (6) in that Eq. (7) has a
stricter standard than Eq. (6). Eq. (6) minimizes the sum of
the differences between the optimal objective value and the
goal objective value while Eq. (7) minimizes the difference
per objective. Eq. (6) allows deviations of some objectives

when other objectives are almost strictly met. In Eq. (7), the
attainment of meeting each goal is checked per objective.

Pros and Cons: This technique can yield the best achievable
optimal solution where all objectives have an equal priority
for optimization [192]. If different priority levels are given,
this formulation can be modified by using a “lexicographic
goal programming technique,” introducing a demand-level
vector [192]. Priority levels can be considered by transforming
Eq. (7) above into min[maxwiZi(x)] that can generate either
weak or strong Pareto optimal solutions [232]. However, if
the feasible region is not identifiable, it is not computationally
efficient [46]. Further, the normalization in Eq. (8) takes care
of the unit normalization problem discussed earlier.

5) Elastic-Constraints Method: It was developed in order
to incorporate benefits of the weighted sum and ε-constraints
method while avoiding their weaknesses. This method is
devised to solve a single objective as the benefit of a weighted
sum while considering all efficient solutions like the ε-
constraints method [69]. The underlying idea is that elastic
constraints allow a problem to be solved easily by setting
upper bounds on violated objective values which are used to
penalize the constraint violation [69, 113]. A MOO function
based on this elastic-constraints method is formulated by

minx∈S [cTj x +
∑
k 6=j

µksk] (9)

subject to cTk x + lk − sk = εk, k 6= j

sk, lk ≥ 0, k 6= j,x ∈ S

where εk is a constraint and µk is the penalty coefficient for
a given objective k. This method uses two sets of variables
including slack variables, lk, and surplus variables, sk, in order
to transform the upper bounds on objective values into equality
constraints for any x ∈ S (i.e., a set of feasible solutions)
based an appropriate selection of s and l [69].
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Pros and Cons: Wierzbicki et al. [218] discuss how the
elastic-constraints method can be used in real world MOO
problems. Since some constraints are hard (e.g., physical
constraints) while other constraints can be soft (e.g., bud-
get constraints), some objectives can be transformed as soft
constraints by using the elastic-constraints method which
increases efficiency in solution search [218]. Based on the
experiments conducted by Ehrgott and Ryan [70], solution
search complexity of the elastic-constraints method is signif-
icantly affected by the value of µk in which small µk incurs
more computational complexity. Accordingly, the existence of
Pareto optimality is strikingly affected by the value of µk.

6) Weighted Metric Method: This method uses a global cri-
terion by minimizing the distance between a certain reference
point, z∗i , and a feasible objective region where each metric
can be weighted with a different degree [138]. This weighted
method is also called compromise programming [228]. A
MOO function based on the weighted metric method can be
formulated for 1 ≤ p < ∞ and a set of feasible solutions S
by

min
( k∑
i=1

wi(fi(x)− z∗i )p
)1/p

(10)

subject to x ∈ S

Assuming that the global ideal objective vector is known, a
related reformulation based on a weighted Chebyshev prob-
lem [138] is given by

min maxi=1,··· ,k[wi(fi(x)− z∗i )] (11)
subject to x ∈ S

Eq. (10) is Pareto optimal if either the solution is unique or
wi > 0 while Eq. (11) gives a weakly Pareto optimal solution
for wi > 0 [138, 140].

Pros and Cons: If reference points z∗, a vector of utopian
objective values, are known, Eq. (11) can identify a Pareto
optimal solution of each objective. However, Eq. (10) is not
differentiable which precludes the use of single objective
optimizers using gradient information [138].

7) Achievement Function Method: This method is similar
to the weighted metric method. However, it is different in
that it does not fix a reference point as an ideal or uptopian
objective vector and does not use a distance metric. In this
sense, this method is a type of goal programming method
aiming to minimize the deviation from ideal performance.
These features can provide Pareto optimal solutions regardless
of what reference point is selected [138]. It can formalize a
MOO function as

min maxi=1,··· ,k[wi(fi(x− z∗i )] + ρ

k∑
i=1

(fi(x− z∗i ) (12)

subject to x ∈ S

where wi’s are the normalized weights and ρ > 0.
Pros and Cons: As discussed above, due to the unique

features of flexibly selecting a reference point, this method can
find Pareto optimal solutions. However, this can also introduce
complexity in identifying proper reference points.

8) Benson’s Method: This method is similar to ε-
constraints method in choosing a single objective while other
objectives are considered as constraints. Also similar to the
weighted metric method, it uses a vector of reference points,
z∗, but they are selected randomly from a feasible solution
space. This method aims to maximize the sum of the non-
negative differences between the reference point and the fea-
sible solutions for each objective [20, 56]. It can be formulated
by

max

k∑
i=1

maxx∈S [0, (z∗i − fi(x))] (13)

subject to
[f1(x), · · · , fk(x)] ≤ z∗

[g1(x), · · · , gm(x)] ≥ 0

[h1(x), · · · , hj(x)] = 0,x ∈ S

Pros and Cons: To avoid scaling problems, each individual
difference should be normalized based on the same scale
before the summation. If the random reference points, z∗,
are properly selected, this method can be also applied in
non-convex multi-objective problems. However, this method
introduces extra constraints. In addition, since the objective
function is not differentiable, direct gradient based methods
cannot be used [56].

9) Utility Function Method: This method can be used in
a situation in which multiple users have individual objectives
and associated utility functions, U, where utility function uk
for user k should be valid over the feasible solution space.
Solutions can be compared based on the values of utilities.
For example, for two solutions i and j, solution i is preferred
to solution j when U(f(xi)) > U(f(xj)) [56, 85]. This utility
function method can formulate a MOO function by

max U(f(x)) (14)
subject to

[f1(x), · · · , fk(x)] ≤ z∗

[g1(x), · · · , gm(x)] ≥ 0,x ∈ S

where f(x) = [f1(x), · · · , fk(x)]T .
Pros and Cons: The underlying idea is simple to apply

in contexts where multiple users have their own goals to
maximize particularly using game theoretic approaches. If
appropriate utility functions are given, it can be useful to
solve diverse resource allocation problems. However, it is chal-
lenging to formulate utility functions which can be globally
applicable (e.g., a system goal perspective) because there is
no guarantee for an individual agent to obtain an global view
efficiently in fully distributed environments.

B. Metaheuristics

In this section, we discuss the following well-known meta-
heuristics to solve MOO problems: (1) evolutionary algorithms
and its variants; (2) ant colony optimization method; (3)
particle swarm optimization method; (4) simulated annealing;
(5) Tabu search; and (6) variable neighborhood search. Table
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TABLE II
METAHEURISTICS METHODS

Technique Pros Cons Ref.
Evolutionary Algorithms
(EA)

Provides heuristic but close-to-optimal so-
lutions

Computationally expensive fitness functions
that often generate local optima

[205]

Nondominated Sorting
Genetic Algorithm
(NSGA)

Preserves solution diversity based on the
crowding distance comparison process;
High efficiency by preserving optimal so-
lutions based on elitism

Poor performance under the failure of gen-
erating crowd solutions under multiple ob-
jectives

[47, 120]

Strength Pareto Evolution-
ary Algorithm (SPEA)

High solution quality maintained based on
elitism with high solution diversity

Most computational overhead incurred in
density estimation

[187]

Multi-Objective
Quantum-inspired
Evolutionary Algorithm
(MQEA)

High scalability based on quantum-based
mutation and crossover; high proximity to
Pareto optimality; high solution diversity of
nondominated solutions

Computationally intensive to reach conver-
gence to Pareto front

[126]

Hierarchical Evolutionary
Algorithm (HEA)

High efficiency in eliminating invalid or
dominating solutions

Computationally intensive when the feasible
solution space is large

[61]

Ant Colony Optimization (ACO) Useful for dynamic applications Not predictable for solution convergence
time

[24, 63, 65]

Particle Swarm Optimization (PSO) High quality solution with less time May be difficult to identify the optimal
parameters in some cases

[104, 109, 123]

Simulated Annealing (SA) Good approximation solution for a large
size solution search space

No guarantee for the global optimum;
highly expensive cost functions for prob-
lems with few local optima with smooth
energy landscape

[21, 64, 112, 201,
203, 233]

Tabu Search (TS) Efficient and effective in solution space
searching; capable of incorporating multiple
objectives

Time-consuming process [81, 82, 83, 199,
215]

Variable Neighborhood Search (VNS) Provides efficient and good approximation
solutions although it is simple and does not
require much change for extensions

Long extra computations may occur for
highly constrained problems with many
constraints to check and penalties to com-
pute

[93, 146]

Fig. 2. The structure of general GAs.

II summaries the metaheuristics along with an analysis of their
pros and cons.

1) Evolutionary Algorithms (EAs): EAs are characterized
by metaheuristics, which refer to high-level algorithmic strate-
gies. Metaheuristics guide other heuristic algorithms while
searching through the feasible solution space for identifying an
optimal solution. The underlying idea is to quickly converge
toward an optimal solution [84]. Many NP-complete problems
(e.g., task assignment / scheduling, team formation, traveling
salesman problem) have been solved using this technique. This
technique has the following characteristics:

• Identified feasible solutions tend to converge toward
optimal or near-optimal solution(s);

• If optimal solution(s) are not identified, it may provide
a good approximation with a small constant factor (e.g.,
5%) of optimal solutions in many cases;

• It can perform even better under a special condition that
non-zero probability of occurrence of each solution is
guaranteed. Under this condition, an optimal solution can
be found even if the set of solutions is non-convex;

• It significantly increases chances to identify global optima
by avoiding local optima.

EAs have been used to solve “combinatorial optimization
problems” whose optimal solutions can be obtained only with
a very high computational cost. A common type of EA is the
genetic algorithm (GA). In this context, evolutionary processes
involve three mechanisms: recombination (or crossover), vari-
ation (mutation) and natural selection.

Recombination involves the creation of an offspring from
previous entities (or an entity). During recombination, muta-
tions may occur. As a result of these changes, the fittest entities
survive while the weak ones die and do not produce offspring.
To mimic these mechanisms, GAs use a general form of an
evolutionary structure to solve these problems, as shown in
Figure 2.

We briefly describe how GAs can be used to solve MOO
problems. As shown in Figure 2, we assume that ‘an individual
in a population of size n’ indicates a ‘solution’ to a MOO
problem. One can run the GA on a population to identify an
optimal solution to a particular problem. Given a set of genetic
operations (selection, crossover, and mutation), new offspring
or individuals are created from existing individuals either
through mutation or crossover [64, 84, 168]. By iterating the
genetic operators through the population, an optimal solution
may be identified. The individuals or solutions are evaluated
according to the aptitude function.

The final optimal solution values are derived from the
processes of optimization and decision making. In Figure 3,
we explain the decision process based on the three stages [98,
205].

Pros and Cons: EAs are devised to provide heuristic
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Fig. 3. Three key stages of the decision process in EAs [205].

methods capable of generating useful solutions for solving
optimization problems. However, DMs often face computa-
tionally expensive fitness functions. Besides the solutions may
converge towards local optima [205].

EAs that are designed to solve multi-objective optimization
problems are called multi-objective evolutionary algorithms
(MOEAs). The fundamental principle of MOEAs is approx-
imating the solution to the Pareto-front and preserving the
diversity of populations so as to obtain more nondominated
solutions. Below we discuss several MOEA algorithms used
to solve MOO problems in the literature.

a) Nondominated Sorting Genetic Algorithm (NSGA):
NSGA aims to improve the adaptiveness of a population of
candidate solutions based on a Pareto front constrained by a
set of objective functions. The population is ordered based
on a hierarchy of sub-populations according to the degree of
Pareto dominance. Similarity of members in each sub-group is
used to evaluate the Pareto front solutions to identify a diverse
front of non-dominated solutions [55].

Srinivas and Deb [192] describe a two-step NSGA: fast
nondominated sorting and crowding distance calculation. Fast
nondominated sorting emphasizes elitism to preserve the best
individuals until the current generation while crowding dis-
tance calculation promotes solution diversity.

In each generation, a parent population is sorted according
to non-dominance using tournament selection. Fast nondomi-
nated sorting ranks all population (parents and children) into
different levels of fronts, assigning a corresponding fitness
value. Inside each front, a crowding comparison is conducted,
representing the distance between neighboring solutions. With
these two values (i.e., fitness value and crowding distance), if
there are two solutions with different non-domination ranks,
the lower rank will be preferred. If both solutions belong
to the same front, a point in a less dense region (i.e., high
crowing distance) will be preferred. These are to maintain
solution diversity [55]. NSGA-II is later proposed to im-
prove NSGA to further conserve elites and sort them in
a fast procedure. NSGA-II is nonparametric, dealing with
different noise distributions in objective functions to handle
uncertainty [55]. It does not require particular characteristic
structures, or parameters of data or population, using ranks
rather than actual values [56].

Pros and Cons: NSGA preserves the explicit diversity

of Pareto-optimal solutions by using a crowding distance
comparison process. The elitism with nondominated sorting
conserves already found Pareto optimal solutions [47]. These
two features contribute to computational efficiency. However,
poor performance may happen when a crowding distance
function fails to generate the crowd of solutions under multiple
objectives [120].

b) Strength Pareto Evolutionary Algorithm (SPEA):
SPEA starts with an initial population and an empty archive.
First, all nondominated population members are saved in
the archive. During this update operation, any dominated
individuals / duplicates are dropped from the archive. For
example, if the size of the updated archive is larger than a
predefined limit, archive members selected by a clustering
technique preserving the characteristics of the nondominated
front can be deleted. After the update, both archived and
population members are given fitness values (smaller is better
for minimization). When selecting a mate, binary tournaments
are used to select individuals from the combined pool of
population members and the members in the archive. Each
individual in the archive is more likely to be selected than
any population member. After recombination and mutation
processes, the old population is updated with the new offspring
population. SPEA2 is devised to improve issues of SPEA in
assigning fitness values, estimating density based on a cluster-
ing technique, and truncating individuals from the archive. In
particular, SPEA2 provides better solutions when the number
of objectives increases. Unlike other MOEAs, SPEA2 aims
at distributing solutions uniformly near the Pareto-optimal
front [234].

Pros and Cons: Elitism (the archive) is used to preserve the
previous best solutions and thus it has a better search ability.
However, density estimation dominates the run time of the
fitness assignment procedure [187].

c) Pareto Archived Evolution Strategy (PAES): PAES
uses a simple evolution strategy, selecting a better solution out
of two individuals where an individual solution is generated
as a mutant. Only a solution that is better than the current
solution is selected; otherwise, the solution is not updated.
That is, it uses a local search to find diverse nondominated
solutions [114].

Pros and Cons: PAES is the simplest possible non-trivial
MOEA solver aiming to obtain Pareto optimality and solution
diversity. The comparison between individuals using the sim-
ple evolutionary strategy contributes to reducing computational
complexity. However, it may generate disconnected Pareto
fronts [47].

d) Multi-objective Quantum-inspired Evolutionary Algo-
rithm (MQEA): MQEA is derived from a quantum evolution-
ary algorithm (QEA) to solve multi-objective problems [111].
QEA employs a new probabilistic representation, called “Q-
bit,” by using the concept of “qubits.” A qubit can be in a
binary state such as 0 or 1 or in any superposition1 of the
two. A Q-bit individual refers to “a string of Q-bits”2 and
the length of Q-bit means the population size. Since the Q-bit

1When more than one quantum states are combined, we call it “super-
posed” [111].

2A Q-bits is the smallest unit of information in QEA [111].
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can be probabilistically presented as “a linear superposition
of states,” it is useful for generating solution diversity in the
evolutionary process [111].

In each generation, binary solution sets are formed when Q-
bit individuals are observed multiple times from the previous
(or last) generation, and then the fitness level of every binary
solution is evaluated. A rotation is applied to each individual
to update the state for producing the next generation. The best
individuals are preserved from a set of sorted nondominated
solutions among current solutions and previous best solutions,
i.e., ranking each in terms of nondominated front, and the
global optimal solution pool is updated.

Pros and Cons: MQEA takes advantage of quantum
computing for mutation and crossover procedure, which is
scalable. It can improve proximity to the Pareto optimal front
and diversity of nondominated solutions. However, it may
be computationally intensive to find sufficient convergence
conditions to Pareto optimal front [126].

e) Hierarchical Evolutionary Algorithm (HEA): Instead
of exploring nondominated individuals in parallel, HEA tack-
les each objective in sequence [61]. In each epoch, it starts
with one of the objectives, finding the best individuals by
applying mutation evaluated by the fitness value; afterwards
it feeds those solutions into the next objective as input and
follows the same way as before to explore the best solution out
of the feasible solutions that met the previous objective [61].

Pros and Cons: HEA is computationally efficient by reduc-
ing the complexity in ranking each individual by screening out
some invalid or dominating solutions for each objective. How-
ever, if all the solutions in the search space are feasible (i.e.,
none filtered out), then there is no reduction in computational
complexity [61].

2) Ant Colony Optimization (ACO): It is inspired by ob-
serving the foraging behavior of certain ant species. Ants
cooperate with each other to seek food efficiently via indirect
communication [24, 63]. First, scouting ants begin searching
for sources of food. When the ants return to the colony, they
leave pheromones, as markers on the path leading to the food,
which will give other ants directions to find the food [24, 63].
More pheromones on a path mean a better path with higher
probability of finding food.

Ants find solutions by traveling on the graph, and accord-
ingly pheromones on each path can be updated. Through the
indirect communications, ants can use the pheromone value
in choosing a path. This ultimately leads to finding a better
(or best) path. To use this method, an optimization problem
should be converted to a problem of finding a best path on a
weighted graph. Dridi et al. [65] apply a bi-colony ACO to
solve resource assignment and task scheduling problems for
surveillance systems.

Pros and Cons: ACO is useful for dynamic applications
such as finding routes under dynamically changing network
topologies. Cooperative behaviors of entities in distributed
systems can lead to rapid discovery of good solutions and also
avoid premature convergence to the final solution. However,
even if convergence is guaranteed, there may be uncertainty
in the time taken to convergence [24, 63].

3) Particle Swarm Optimization (PSO): This technique is
inspired by the social behavior of flocking birds or schooling
fish [109]. Simple entities, also called the particles, are formu-
lated on the parameter space of a function (or problem), and
each calibrates the fitness at its current state (i.e., location).
Then each particle makes a decision for its next movement
through the parameter space by combining its own previous
fitness values and additional members of the swarm. After that,
the particle can be evaluated by the states and fitness values
of other particles [109]. A social neighborhood is formed
based on the members of the swarm with which a particle
can interact. Jin et al. [104] apply hybrid PSO algorithms to
solve task allocation in wireless sensor networks.

Pros and Cons: PSO is a simple process of coding,
independent of a set of initial points, and has fewer parameters
than other heuristic optimization algorithms. Hence, it is
capable of producing high quality solutions in much less
time with more stable convergence behavior, compared to
other stochastic methods. On the other hand, similar to other
heuristic optimization techniques, since it does not have a
mathematical basis for analysis, it is difficult to identify the
optimal parameters in some cases [123].

4) Simulated Annealing (SA): SA is a probabilistic tech-
nique for identifying the global minimum of a cost function
that may have a number of local minima [112, 201]. This
technique emulates the process of cooling a solid slowly,
which makes its structure ultimately ’frozen’ at a configuration
with minimum energy [21].

The underlying idea of SA is to obtain the optimal solution
by decreasing the probability of accepting worse solutions
slowly. This explores the solution space [112, 201]. Zhu et al.
[233] use SA to solve a resource allocation problem in real-
time distributed systems. Dorn et al. [64] employ SA to
propose a team formation algorithm in online social networks.

Pros and Cons: SA is useful when the search space is
large. For some problems requiring an acceptable level of
optimization or restricting search time, SA is often more
efficient than exhaustive search [112, 201]. However, SA is not
always efficient for all combinatorial optimization problems.
For problems with few local optima and a smooth energy
landscape, the computational cost is too expensive. If the cost
function in SA has narrow and steep valleys, it may not work
efficiently. As is the case with other GA approaches and other
bio-inspired approaches (e.g., ACO or PSO), SA also does not
guarantee the global optimum [203].

5) Tabu Search (TS): TS is a metaheuristic search method
using a local search method for mathematical optimization [81,
82, 83]. TS is based on two aspects of intelligence: “adaptive
memory” and “responsive exploration”.

TS searches local neighborhood of elite solutions (i.e., best
or better solutions of the solution pool) hoping to find an im-
proved solution. Local searches tend to get stuck in suboptimal
regions or on plateaus with many equally acceptable solutions.
To avoid this problem, TS uses adaptive memory structure
to improve the performance of these techniques where the
memory structure contains the visited solutions or sets of rules.
By marking solutions previously visited within a certain short-
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term period or violated based on the user’s rule as ‘tabu’
(forbidden), the algorithm does not repeatedly consider them.

TS also conducts responsive exploration by changing the
solution space based on good or bad solution features. The
memory structure in TS uses four dimensions: recency, fre-
quency, quality, and influence [81, 82]. The key benefit of
using the adaptive memory structure in TS is the balance
between search intensification and diversification by delving
into attractive regions more thoroughly while expanding search
spaces which have not been explored previously [81, 82].
For more details on TS, readers are referred to [81, 82, 83].
Weerakoon and Allan [215] apply TS to form coalitions for
optimization of secure routing in wireless sensor networks.

Pros and Cons: Since TS adaptively remembers the ‘tabu’
solutions, it searches the solution space more efficiently and
effectively, compared with memoryless approaches, such as
many GA and SA metaheuristic methods. In addition, TS is
capable of incorporating multiple objectives, overcoming the
inherent limitations of GA and SA methods. However, TS
requires a large number of evaluations for every optimization
step, consuming significant time and effort, although the
computational efficiency increases by finding feasible solu-
tions [199].

6) Variable Neighborhood Search (VNS): It has been pro-
posed to solve combinatorial optimization problems based on
the distance between a current solution and and its neigh-
bors, representing local optima, leading to a new improved
solution [146]. VNS uses the idea that neighborhoods change
both in descent to local optima and in escape from the
valleys containing the local optima [93]. VNS employs the
following facts to find optimal solutions: (1) local optima for
one neighborhood structure are not necessarily local optima
for another neighborhood structure; (2) a global optimum is a
local optimum based on all possible neighborhood structure;
and (3) local optima for one or more neighborhood structures
are relatively close to each other in most problems [93]. The
common variants of VNS include: (1) variable neighborhood
descent (VND) based on a purely deterministic search; (2)
reduced VNS (RVNS) using stochastic search; (3) skewed
VNS (SVNS) providing a way to escape from very large
valleys; and (4) variable neighborhood decomposition search
(VNDS) using two-level VNS. For more details on VNS,
interested readers are referred to [93, 146].

Pros and Cons. Extensions of VCN are relatively simple
and require no changes of parameters and provide quite good
approximation solutions. However, there is additional time
complexity of computing the penalty and checking multiple
constraints at every move and swap.

Overall metaheuristics algorithms provide useful methods
to search a large solution space to solve NP-complete or NP-
hard MOO problems. Obviously, they cannot guarantee global
optimal solutions.

C. Hybrid Metaheuristics
The motivation for combining multiple methods derives

from the intention of uniting benefits of individual ap-
proaches [166]. The hybridization is not limited to just merg-
ing two methods, but can include combining metaheuristics

with exact algorithms [26]. In this section, we discuss the
hybrid approaches that particularly combine metaheuristics
with other approaches, either exact algorithms generating opti-
mal solutions or other metaheuristics producing approximation
solutions. Table III summarizes hybrid metaheuristics methods
with an analysis of pros and cons.

1) Ant Colony Optimization (ACO) + Constraint Program-
ming (CP): We omit the description of ACO as we discussed
the ACO in Section IV-B2. In CP, a filtering algorithm,
associated with constraints, aims to delete values from variable
domains that are not contributing to feasible solutions. CP has
two phases: (1) the propagation phase to remove values not
in feasible solutions by the filtering algorithm; and (2) the
labeling phase to an unassigned variable that is assigned with
a value from its domain where only improving solutions are
considered as feasible solutions. By combining ACO and CP,
the advantages of both methods can be united based on ACO’s
learning capability and CP’s ability to handle constraints
efficiently [26].

Pros and Cons. Compared to a pure ACO, combing with
CP can provide more efficient but good quality solutions [26].
However, whenever a new, improved solution is found, a
global constraint may need to be updated to enforce the
improvement of all constructed solutions, which incurs extra
overhead.

2) Variable Neighborhood Search (VNS) + plus Large
Neighborhood Search (LNS): The critical concern of using
VNS is the choice of a neighborhood structure that generates
neighboring, feasible solutions [26]. The common tradeoff be-
tween the size of neighboring solutions and efficiency is shown
in that a small set of neighboring solutions generates efficient
but low quality solutions while a large set of neighboring
solutions produces slow but high quality solutions. Finding the
optimal solutions with the neighborhood is actually a NP-hard
problem. Nowadays the research is known as Large Neigh-
borhood Search (LNS) which generates efficient and high
quality solutions. LNS can be efficiently explored by complete
methods (i.e., methods guaranteeing optimal solutions) such
as constraint programming, mixed-integer programming, or
dynamic programming [162, 164, 26].

Pros and Cons. LNS can complement VNS by finding good
quality neighborhood solutions efficiently. However, finding
LNS using complete methods is also a NP-hard problem [26].

3) Tabu Search (TS) + Problem Relaxation (PR): Relax-
ation techniques are used to relax constraints for difficult
combinatorial optimization problems by simplifying certain
constraints using branch and bound algorithms, dropping inte-
grality constraints, or moving constraints to enhance a partic-
ular objective [26]. The information gained from relaxations
can allow a greedy manner of generating solutions [26]. The
hybrid approach combining TS with the problem relaxation
technique has two steps: (1) relax constraints by dropping the
integrality constraints; and (2) apply TS to search for optimal
solutions on the relaxed problem. An example of solving
a multidimensional 0-1 knapsack problem using this hybrid
approach is shown in [204].

Pros and Cons. Problem relaxation allows efficiently find-
ing feasible solutions by relaxing constraints in various ways.
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TABLE III
HYBRID METAHEURISTICS METHODS

Technique Pros Cons Ref.
ACO + CP Generates efficient but good quality solu-

tions by leveraging the benefit of using CP
Update of global constraints incurs extra
overhead

[26]

VNS + LNS Provides good quality neighborhood search
region

Finding LNS using exact algorithms is NP-
hard

[26, 162, 164]

TS + Problem Relaxation Finds efficient feasible solutions with prob-
lem relaxation

May not provide optimal solutions [26, 204]

SA + TS Controls worsening solutions using SA’s
temperature parameter

Computationally expensive for problems
with few local optima

[13]

EA + DP Produces efficient feasible solutions May reduce solution diversity [25, 26]

However, due to the relaxation, the hybrid approach tends
to provide approximation solutions rather than optimal solu-
tions [26].

4) Simulated Annealing (SA) + Tabu Search (TS): TS
performs movements to update solutions with improvements.
However, when no better movements are available, TS goes
into a second phase by moving to a worse solution, hoping
that a better solution can be found. In the hybrid approach of
SA and TS, when TS reaches the state that does not find better
solutions, it lets SA control the worsening movements by the
temperature parameter [13].

Pros and Cons. This hybrid approach can take advantage
of the benefits of both metaheuristics in that SA is used in
the second phase of TS to more systematically adjust the
parameter to control worsening solutions which can increase
the odds of finding improved solutions. However, still whether
to accept worsening solutions or not should be analyzed.
Further, for a solution space with a smooth energy landscape
with few local optima, the computational cost of finding the
solution is high.

5) Evolutionary Algorithm (EA) + Dynamic Programming
(DP): DP provides a way to define optimal strategies that
can be used in various metaheuristics [26]. Blum [25] shows
a hybrid approach showing how DP is used in evolutionary
algorithms within the crossover operator that generates candi-
date solutions with improvements based on the extension of
previous solutions.

Pros and Cons. EA can have the benefit of efficiency
introduced by the speed-memory tradeoff in DP in generating
candidate solutions to make improvements in feasible solu-
tions. However, as DP is basically extending a solution based
on partial solutions from previous solutions, it may be stuck
with local optima due to less solution diversity [26].

In addition to the above hybrid metaheuristics approaches,
Mezmaz et al. [137] combine two metaheuristics, GA and
a memetic algorithm, with an exact algorithm, a branch and
bound (BB) algorithm to guarantee optimality. Bedoui et al.
[19] also present the combination of NSGA-II and TS and the
combination of NSGA-II and SA to solve MOO problems.
For most hybrid metaheuristics, exact algorithms or other
metaheuristic approaches are utilized to improve solution
efficiency which is often traded off for solution optimality.
However, the main benefit of using hybrid metaheiristics is
better efficiency for the same or improved solution optimality.

D. Trust-based Algorithms

Trust-based MOO problem solutions have received signif-
icant attention as a promising heuristic to solve MOO effi-
ciently and effectively under resource-constrained, hostile, dis-
tributed network environments [36, 50, 64, 84, 181]. Although
trust-based solutions may not perfectly generate Pareto optimal
solutions, it has been used to generate approximation solutions
that are close-to-optimal with significantly high efficiency
(e.g., exponential to linear) [40, 213].

The definition of trust is “assured reliance on the character,
ability, strength, or truth of someone or something” [136].
In essence, trust is a relationship in which an entity called
the trustor relies on someone or something called the trustee,
based on given criteria. As trust is a multidisciplinary concept,
the term has been used in different disciplines to model
different types of relationships: trust between individuals in
social or e-commerce settings, trust between a person and
an intelligent agent in autonomous systems and trust between
network entities in communication networks [41]. The nature
of trust is subjective and domain specific. Thus, the concept
of trust is often defined by specific criteria and the application
context.

For example, trust-based MOO approaches have used met-
rics such as feedback credibility, service satisfaction, pref-
erence similarity [50], a team member’s qualification [64],
network performance (e.g., security, reliability, load balance,
or throughput) [181], and so forth. The basic idea of trust-
based solutions is to dynamically assess trust status of all
nodes in the system, and then factor this knowledge into the
MOO problem formulation. Very often trust-based heuristics
can be used to reduce the solution complexity at the expense
of solution quality.

Pros and Cons: Trust-based solutions are heuristic in nature
and may produce close-to-optimal solutions with linear com-
plexity as good approximation methods. This efficiency can
increase its applicability in resource-constrained environments
as one of key concerns is to minimize energy consumption in
solution search. However, the heuristic method is implemented
in a greedy manner, which does not guarantee optimal solu-
tions.

V. GAME THEORY-BASED MOO DESIGN TECHNIQUES

Game theory has been used to solve MOO problems as
design tools [35, 169, 189]. Game theory is similar to MOO
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TABLE IV
GAME THEORETIC APPROACHES

Approach Technique Pros Cons Ref.

Cooperative
Game
Theory

Nontransferable Utility
Game (NTU)

Generic; nonparametric No guarantee of a unique solution
unless a certain condition is met

[29, 152, 155, 176,
190]

Hedonic Game Generic; high predictability Requires additional conditions to
ensure stable partitioning for differ-
ent presentations

[10, 12, 23, 28, 176]

Shapley Value Simple to measure utility for a
coalition

High communication overhead; no
guarantee for obtaining informa-
tion under hostile environments

[77, 143, 179]

Core Provides a set of stable coalitions Hard to select a best coalition when
the size of the core is large

[71, 174]

Nash Bargaining Solution
(NBS)

Generic with less complexity Not straightforward for a coopera-
tive concept; non-trivial to evaluate
axioms

[152, 194]

Auction
Theory

Vickrey’s Auction Provides a dominant strategy in de-
cision making

No bidding may occur if prior
knowledge on the real valuation of
an item is not known; vulnerable to
the auctioneer manipulating prices

[9, 27, 183]

Vickrey-Clarke-Groves
(VCG) Auction

Effective if players play with truth-
telling as a dominant strategy

May not achieve budget balance;
cannot track bidder’s real identi-
ties; vulnerable to collusion attacks

[9, 27, 89, 118, 152,
160]

Combinatorial Auction Incurs less amount of communica-
tions; reveals less private informa-
tion

Introduces complexity in selecting
items for each bundle

[27, 42, 68, 152]

Reverse Auction Maximizes the social welfare; en-
courages the competitiveness of
sellers

Vulnerable to seller collusion at-
tacks; relies on whether buyers
play truth-telling

[68, 152]

in that both aim to optimize multiple objectives at the same
time. However, in game theory, each player’s utility function
is controlled by a different agent where it is the part of
decision variables to optimize the performance. In addition,
it is a well-known fact that the goal of MOO is to find
Pareto optimality while non-cooperative game theory aims to
identify Nash Equilibrium (NE) which may not be PO, as
shown in the Prisoner’s Dilemma [169]. We discuss two game
theoretic approaches (i.e., cooperative game theory and auction
theory) in this section as useful design tools for a system
with multiple objectives based on the following reasons: (1)
in cooperative game theory, an identified NE solution may
be Pareto optimal because individual players are cooperative
to achieve a common goal of maximizing the payoff of a
coalition; and (2) in auction theory, incentive-compatibility
design can stimulate individual players to maximize a system
goal, leading to an NE equilibrium (if it exists) which is
Pareto optimal. Table IV summaries the two game theoretical
approaches and the associated solution techniques for MOO
problem solving, along with an analysis of pros and cons.

A. Cooperative Game Theory

Many MOO problems, such as coalition formation (or team
composition), task assignment, task scheduling, or resource
allocation, are formulated as an n-person cooperative (coali-
tional) game.

A cooperative game appears when groups of players, called
coalitions, cooperate to obtain benefits by joining a grand
coalition, the set including all coalitions. The game is played
by coalitions of players, not by players within each coalition. A
cooperative game is also called a “coalitional game” [29, 152].
Often strategic games assume that individual players are selfish
and maximize their utility, assuming no cooperation. The goal

of a cooperative game is to model the situations in which
the players work together or share some cost to benefit each
other. However, players are selfish in that they are cooperative
only if their cooperative behavior maximizes their utility.
Cooperative game theory aims to understand mechanisms for
players to cooperate in order to maximize the payoff of a grand
coalition [29, 152].

A cooperative game has two key attributes: (1) a set of
players N = {1, 2, . . . , n}; and (2) a “characteristic function”
v that computes the value obtained from subsets of N : v(S)
is the value associated with a coalition formed with all the
members in S. A cooperative game can be denoted as a pair
(N, v) [29].

The objective(s) of the system must be reflected in function
v and should be achieved in coalition payoff. An individual
player can calculate its payoff based on its objective while a
coalition leader can compute the coalition payoff given a set
of selected members. Incentive (or reward) or penalty mecha-
nisms can be utilized to enforce desired behaviors of individual
entities that can contribute to increasing coalition payoff. Many
existing works use various types of cooperative games to solve
coalition or team formation problems such as nontransferable
utility cooperative games [190], hedonic games [176], and
repeated cooperative games [97]. Some existing works use
trust in formulating the payoff functions where trust can be
the basis of decisions by players [29, 84, 87, 97, 141, 150].

Pros and Cons: Although cooperative game theory provides
a generic framework for solving coalition problems in many
domains, the assumptions or rationale under this theory may
not always be true. For example, even though the commitment
of a player can be ensured for honest players, when attackers
exist in cyberspace, the rationale of the cooperative game no
longer holds. Hence, some variation of this game is needed



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. X, NO. X, 2016 13

to consider attacker behaviors. In addition, as a common
issue in using game theory, the assumption of a player’s
rationality (i.e., be rational to maximize its utility) may not
always be guaranteed, particularly when human entities are
involved and could be affected by their propensity or emotions
in the decision making process. Also humans may not have the
computational capacity, given deadlines, to compute optimal
strategies. That is why there is a significant amount of research
on approximating optimal strategies. Below we briefly discuss
some examples of cooperative game theories.

Now we discuss two common game theoretic approaches
used to formulate cooperative games, Nontransferable Utility
Game and hedonic game. In addition, we describe solution
concepts of cooperative games including Shapley value, Core,
and Nash Bargaining Solution.

1) Nontransferable Utility Game: Cooperative games are
generally referred to as non-transferable utility (NTU) games.
A NTU game is denoted as a pair (N ,V), where N is a set
of players and V is a coalitional function assigning payoff to
each coalition. S is a subset of N , S ⊂ N and the feasible
payoff vector of S (i.e., payoff coalition S can generate) is
denoted by V(S) ⊂ R|S|. The feasible payoff vector, V(S),
is nonempty for S 6= ∅, “closed, convex, and comprehensive”
(i.e., x′ ≤ x ∈ V(S) ⇒ x′ ∈ V(S) ) [155]. Nontransferable
utility means that agents do not have a common scale to
measure the value of a coalition. Likewise, NTU can be
defined by a tuple (N ,X ,V, (�i)i∈N ) where X is a set of
outcomes/coalitions, V is an outcome function for a coalition,
and �i indicates the relation of agent i’s preference over
the set of coalitions. The relation is assumed to be transitive
and complete. Singh et al. [190] model a resource allocation
problem in commercial wireless networks as a nontransferable
payoff coalitional game.

Pros and Cons: NTU is generic as it can be used to
represent many other cooperative games, i.e., hedonic games.
Since it uses preferences instead of utilities (i.e., prices and
quantities), it does not impose any functional form on the
utility function so it is nonparametric [39]. In addition, when
trust between agents is utilized as a factor in their coalition for-
mation, we can derive preferences among the agents directly
from their trust values. However, NTU does not guarantee
a unique solution to the game unless certain conditions are
satisfied.

2) Hedonic Game: A hedonic game is a special NTU and
can be defined by a tuple (N , (�i)i∈N ) where N is a finite
set of players and �i⊆ 2Ni × 2Ni is a “complete, reflexive
and transitive relation” for agent i’s preference, implying that
if S �i T , agent i prefers coalition T with the maximum
of coalition S [12, 28]. No externalities are considered across
groups. That is, players’ preferences can be only expressed
over the set of coalitions to which players belong [23].
Cooperative games can be viewed as hedonic games if the
payoff to a member in a coalition is only affected by the
coalition members and can be predicted, such as voting. Saad
et al. [176] model a task allocation problem as a “hedonic
coalition game” in multi-agent wireless networks.

Pros and Cons: Like NTU, hedonic game theory is also
generic and can be applied to various problems without

much complexity. Compared with other cooperative games,
hedonic games can give high predictability by restricting a
player’s preferences only to the coalitions to which it belongs.
However, in order to ensure stable partitioning for different
representations, hedonic games may require additional condi-
tions. This remains an open research problem [10].

3) Shapley Value: The Shapley value indicates how im-
portant each player is to the overall cooperation and what
payoff each player can expect from the coalition based on
the contribution provided by the player. The Shapley value is
computed as:

ϕi(v) =
∑

S⊆N\i

|S|!(n− |S| − 1)

n!
(v(S ∪ {i})− v(S)) (15)

The Shapley value indicates the amount of profit player i
obtains in a given coalition game. N\i is a set of players
that does not include player i. S is a subset of N and v(S)
is the value of the coalition S, the total expected gain from
coalition S. v(S ∪ i − v(S)) gives the fair amount of player
i’s contribution to the coalition game. This is averaged over
the possible different permutations where the coalition can be
formed.

Garg et al. [77] and Militano et al. [143] use the Shapley
value to identify an optimal coalition that maximizes multiple
objectives associated with players and coalition leaders.

Pros and Cons: The Shapley value gives a simple way to
measure the utility a coalition can obtain through a particular
entity. However, in order for opinions/status of other entities to
be disseminated over the network, it incurs high communica-
tion overhead and there is no guarantee for the information to
be delivered without any change in the presence of malicious
entities. Thus, the Shapley value may not be easily imple-
mentable in dynamic, distributed adversarial environments.

4) Core: It represents a profile of payment divisions, which
guarantees no player has incentive to leave a current coalition
to form another coalition S ⊂ N [174]. “Rational” players
are assumed to agree to the grand coalition because no other
coalition can give better payoff. The main problem is how to
divide the payoff so that all participating coalitions are satisfied
with the assigned payoff [71]. The core in a transferable utility
(TU) game, CTU , is defined as a set of vectors x in which xi’s
refer to distributions to payoff that are efficient and considered
as rational by individuals. CTU is given by

CTU = {x ∈ R|N | :
∑
i∈N

xi = v(N ),∑
i∈S

xi ≥ v(S), ∀ S ⊆ N} (16)

where the first condition indicates efficiency that the sum of
payoffs to members is the payoff to the grand coalition. The
second condition called coalitional rationality is that the grand
coalition’s payoff is no less than any participating coalition’s
payoff.

Pros and Cons: The core addresses the issue of incentives
for abandoning a grand coalition, under which it provides a
set of stable collaboration that no player will leave to form
another coalition. However, the cores (of TU or NTU games)
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are not always guaranteed to exist. In zero-sum games, the
core is empty because no coalition is satisfied with a negative
payoff, thus exhibiting strong instability. On the other hand,
the size of the core can be large where there is high stability
(i.e., highly balanced payoffs to make all coalitions satisfied),
but selecting a suitable coalition is challenging due to its high
complexity [174].

5) Nash Bargaining Solution (NBS): In cooperative games,
NBS can be applied in a situation in which two or more
players are required to select one of possible outcomes derived
from a joint collaboration [152]. Particularly when two parties
negotiate something associated with each party’s interest, a
bargaining game may result in a disagreement outcome, i.e.,
a payoff each player receives when a negotiation is not
successful. Examples are when an employer negotiates with a
potential employee on salary or when two countries negotiate
on trade issues. We refer readers to [152] for details of NBS.

Nash’s bargaining theorem uses the concept of a collective
utility function that can be maximized by the unique solu-
tion identified in the bargaining game [152]. The collective
utility function refers to a function aggregating the utilities
of individuals into a single value indicating the utility of the
collective. Examples include the utilitarian function (adding
all individual utilities up), the egalitarian function (taking the
minimum of individual utilities), and the Nash function (taking
the product of the utilities) [152]. Subrata et al. [194] model
a job allocation problem in grid computing as a cooperative
game and identified the task allocation structure based on
NBS.

Pros and Cons: NBS provides a generic solution strategy
for various cooperative bargaining processes without adding
much complexity. However, it is not straightforward to select
and adjust a cooperative concept to reflect unique characteris-
tics of a given bargaining situation.

Note: Although cooperative game theory (CGT) is com-
monly used to solve diverse MOO problems, non-cooperative
game theory (NCGT) is also used to solve MOO problems.
The distinction between CGT and NCGT is that CGT has a
group as a basic unit while NCGT has an individual as a basic
unit [186]. A cooperative game aims to achieve a value (e.g.,
maximization of a grand coalition’s payoff and each coalition’s
payoff) where there is a force from a third party (e.g., coalition
leaders) to cooperate while non-cooperative game does not
have any such forcing function, but operates based on an
individual rational player’s self-interest. Thus, even if NCGT is
used, cooperation may occur but the motivation of the player’s
action is only to maximize its own utility. That is, in NCGT,
a player takes an action only based on its self-interest [186].

A few existing works use NCGT to mainly solve resource
allocation problems with multiple objectives [34, 90, 207,
226]. However, since in NCGT a player makes a decision
only based on local view, using NCGT for solving MOO
problems often results in sub-optimal solutions while incurring
less overhead than in CGT [191].

B. Auction Theory
An auction can be used to make a deal between willing

sellers (auctioneers) with items to sell and buyers (bidders)

Fig. 4. Key components of auction-based game for coalition formation
problems.

willing to pay a price to purchase them [118]. Auction theory
is particularly suitable for modeling a coalition formation
MOO problem in which coalition leaders can be auctioneers,
while members can take the role of bidders. In the coalition
formation problem, coalition leaders are attempting to max-
imize their payoff by recruiting the best members while the
potential bidders want to maximize their gain by attaching
to coalitions with high payoff. So, the bidders will bid and
commit to buying items (joining coalitions) where the bid
provides the best individual payoff. In this way, the coalition
payoff (i.e., the auctioneer’s criteria to determine winners) will
influence the member selection process and thus the coalition
formation (or team composition). Figure 4 shows the decision
process and objectives of the auctioneers and the bidders.

Given multiple items, a potential bidder can have different
degrees of preference for each item. Thus, the payoff towards
an item may be different depending on the bidder’s value and
needs. The payoff bidder j can obtain from purchasing item i
is the net gain of the valuation vi,j at the expense of the price
pi for item i, vi,j − pi [27].

Even if bidder j bids on item i, bidder j is not a final
winner of item i unless the auctioneer agrees with it. The
auctioneer should select a bidder that can best maximize the
payoff. The payoff that auctioneer k can obtain from accepting
bidder j is the net gain of the valuation vk,j by selecting
bidder j at the price of pj , vk,j − pj [27]. Based on this
process, a set of coalitions is formed. However, when the
contract is terminated, a new coalition reformation process
can be triggered. Often a bidder’s contract termination may
cause loss to the bidder’s payoff as the system penalizes the
bidder’s lack of commitment towards the initially assigned
coalition. Note that a bidder can bid for multiple coalitions
in parallel based on the characteristics of a coalition, e.g., a
coalition executes a short-term or a long-term mission, which
determines whether to free selected members after finishing
the mission.
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Coalition formation problems have been solved using many
different types of auction-based algorithms such as Vickrey’s
second price auction [183], Vickrey-Clarke-Groves (VCG)
mechanism [89], a single-item auction with multiple pref-
erences [36], a combinatorial auction with multiple prefer-
ences [42], a reverse auction [68], Nash bargaining [194], and
an auction based on different bidding strategies [217]. Here
we briefly discuss the pros and cons of each auction-based
algorithm.

1) Vickrey’s Auction: In single-shot auctioning, an auction-
eer chooses a bid with the highest bid price. On the other
hand, a bidder’s best strategy depends on what it knows or
guesses about the strategies of other bidders. Deciding what
value to bid is not a trivial problem. To resolve these bidding
problems, Vickrey’s auction mechanism, called “second price
auction”, is proposed as a “sealed-bid auction” [27]. In this
mechanism, a winning bidder pays the second highest price.
This policy makes truth-telling as the “dominant strategy,”
regardless of the strategies of all other bidders, to maximize a
bidder’s efficiency because the winner pays the second highest
price, not the price the winner has bid. Shi et al. [183] use
Vickrey’s auction to form a coalition of secondary users in
cognitive networks.

Pros and Cons: Vickrey’s auction is efficient in decision
making, and results in a “dominant strategy” if bidders provide
a truthful value [9]. However, if a bidder does not know the
real valuation of an item, it may not bid on it at the market
price without sequential auctions. In addition, if an auctioneer
manipulates pricing via shill bids (i.e., bidding on an item
to artificially increase its price), the price a winner would
pay may increase [27]. In this sense, a bidder’s trust in an
auctioneer will impact the bidder’s decision on whether to bid
on an item offered by a particular auctioneer.

2) Vickrey-Clarke-Groves (VCG) Auction: VCG auction is
a sealed-bid auction for auctioning multiple items. Bidders
have their valuations of the items. In this auction, an indi-
vidual bidder is charged with the loss it introduced to other
bidders [27]. This mechanism also ensures that a truth-telling
bidding is a player’s dominant strategy to maximize the so
called “social welfare”, the sum of all players’ utilities [27].
Guo et al. [89] propose a variant of VCG to model secure key
management in mobile networks.

Pros and Cons: VCG mechanism is effective where players
play with truth-telling as a dominant strategy. However, for
problems aiming to achieve social welfare, even if an indi-
vidual player may reach efficiency, a budget balance may not
be achieved. Thus, when the total social welfare is greater
than the cost to purchase an item (e.g., building a bridge), an
efficient outcome based on selected winning bidders can be
chosen [118]. In addition, if the auctioneer is not sure about
the bidders’ real identities, then a single bidder can use two
different names and can win at a total price of zero [9]. Further,
it is vulnerable to collusion that even losing bidders may
receive “profitable joint deviations” at a very low price [9].
Vickrey auction and VCG auction mechanisms have been used
to obtain good system-wide solutions by applying the concept
of the so called mechanism design [152, 160].

3) Combinatorial Auction: In this auction, multiple items
are auctioned simultaneously; bidders can express their mul-
tiple preferences over available bundles where a bundle refers
to a collection of items. Winners, those who win the bid to
purchase a selected bundle, are selected based on the bid
prices. Cho et al. [42] devise a combinatorial auction algo-
rithm (CAA) aiming to achieve a dynamic multiple mission
assignment in military tactical environments. Li and Sycara
[124] solve a coalition formation problem in online markets
using CAA. Besides CAA was used to solve multiple dynamic
coalition (or task assignment) problems [27].

Pros and Cons: Blumrosen and Nisan [27] discuss two
main advantages of CAA: (1) reducing the amount of
auctioneer-bidders communications; and (2) revealing less pri-
vate information per bundle. However, how to select multiple
items as one bundle significantly affects solution complexity
due to combinatorial problems.

4) Reverse Auction: Reverse auction is a type of procure-
ment auction by which several sellers offer their items for
bidding, and compete for the price which a buyer will accept.
Nisan et al. [152] describe that in a reverse auction, the buyer
wants to procure an item from the bidder with the lowest cost,
which may lead to maximizing social welfare. Based on the
rule of VCG, the winning bidder only pays the second lowest
price to the bidder who bids the item with the lowest cost and
pays nothing to others [152]. Edalat et al. [68] use reverse
auctioning for task allocation in energy-constrained wireless
sensor network environments.

Pros and Cons: Reverse auction is commonly used for
procurement. It may save a buyer money while maximizing the
social welfare based on the sum of utilities of all buyers and
it can encourage competitiveness among sellers (suppliers).
However, if sellers collude in price fixing, it may not bring
much benefit to buyers. Again buyers need trust mechanisms
to assess trustworthiness of auctioneers for their colluding
possibility.

VI. MOO PROBLEM CLASSIFICATION

In this section, we use a novel way to classify existing
MOO modeling and solution techniques based on the types
of multiple objectives. This allows us to analyze the most
common modeling and/or solution techniques used for each
class of MOO problems to best trade solution efficiency vs.
solution quality.

Existing work on MOO can be categorized into three groups
depending on whether the work deals with system objectives
for global welfare and/or individual objectives for individual
welfare. Class 1 represents the case in which there are multiple
system objectives, but no individual objectives. In Class 2,
every individual entity has the same objective function. In
Class 3, each entity has its own individual objective function.

We cover a wide range of applications including coali-
tion formation (or team composition), task assignment, task
scheduling, and resource allocation based on the publications
since 2000. In Sections VI-A, VI-B and VI-C, we survey
modeling and solution techniques for Class 1, Class 2, and
Class 3 MOO problems, respectively. In Section VI-D, we
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TABLE V
EXISTING WORKS IN CLASS 1 WITHOUT USING TRUST

Ref. System Objective Techniques Problem Domain
[1] Maximize both the number of completed tasks and task

efficiency
NSGA; SPEA Coalition formation Multi-robot systems

[11] Minimize workload and cost; Maximize system relia-
bility

Quantum-based evolutionary algorithm Task assignment Distributed Systems

[22] Maximize income while minimizing disturbance to
workload

Goal programming Resource allocation Health systems

[19] Maximize QoS to users; minimize hardware investment Hybrid metheuristics combining NSGA-
II with either TS or SA

Resource allocation Broadcasting system

[38] Maximize coalition utility while minimizing the num-
ber of robots involved in a task

Heuristic leader-follower based coalition
algorithm

Task allocation Multi-robot systems

[60] Identify a path minimizing cost, time, and distance in
directed and undirected networks

Hybrid metaheuristics with GA and
VNS

Optimal path identification Road networks

[61] Minimize data volume and energy consumption; max-
imize quality-of-service

Evolutionary algorithm Task allocation Visual sensor networks

[65] Minimize the time spent for project completion and
associated cost

Bi-colony ant based approach Task allocation Mobile / stationary surveil-
lance systems

[88] Minimize task execution time while minimizing data
transfer time

Particle swarm optimization Task assignment Cloud computing

[101] Maximize throughput while minimizing resource con-
sumption

ε-constraints Resource allocation Multi-hop wireless networks

[104] Maximize task completion ratio while minimizing en-
ergy consumption

Genetic algorithm Task allocation Wireless sensor networks

[91] Minimize task execution time and resource consump-
tion

Fuzzy logic, genetic algorithm Task assignment Manufacturing systems

[134] Maximize speediness of task execution and assignments
functionality; minimize risk due to allocation decision

ε-constraints Task allocation Multi-agent systems

[137] Find a schedule of a set of jobs on a set of machines
that minimizes the total completion time and the total
tardiness

Hybrid metaheuristics combining GA
and memetic algorithm with a branch
and bound algorithm

Flowshop scheduling problem Manufacturing production
systems

[142] Maximize social benefit; minimize loading conditions
to maintain voltage stability

Market-based pricing mechanism Resource management Decentralized electricity mar-
kets

[154] Maximize task execution quality; minimize energy and
bandwidth consumption

Genetic algorithm Task assignment Grid computing

[158] Maximize throughput; minimize energy consumption Linear programming Resource allocation Wireless mesh networks
[165] Maximize security and QoS; minimize energy con-

sumption
NSGA-II Resource allocation Wireless sensor networks

[182] Maximize profit margins and the total importance of
selected business partners

Fuzzy logic; entropy Resource allocation Manufacturing systems

[188] Maximize the parallel optimization of task assignment
and resource allocation

Generalized particle model Task allocation P2P and grid computing

[206] Maximize system reliability; minimize the number of
blocked hosts

NSGA Resource allocation Mobile ad hoc networks

[219] Maximize energy savings; minimize the length of the
schedule of task allocation

Energy-delay tradeoff algorithm Task allocation Network embedded systems

[224] Maximize system reliability; Minimize resource con-
sumption

Hybrid particle swarm optimization Task allocation Distributed systems

[231] Maximize load balance among servers; minimize aver-
age response time for requests and delay

Service arrival based task allocation pol-
icy

Task allocation Distributed systems

[233] Minimize maximum latency in resource allocation
(task-to-message; priority-to-task/message; signal-to-
task)

Mixed integer linear programming; sim-
ulated annealing

Task allocation Real-time distributed systems

specifically survey trust-based solutions which can be applied
to all three classes. Further, we discuss the trends of hybrid
approaches as MOO solution techniques in Section VI-E.

A. Class 1: Global Welfare Only

Class 1 covers MOO problems in which the system seeks
to optimize multiple objectives. Table V summarizes the
surveyed existing works belonging to Class 1. Below we first
discuss key features in each work and then we summarize
commonality and variability of formulation and solution tech-
niques for Class 1 MOO problems.

Amin et al. [4] study the power loading problem for orthog-
onal frequency division multiplexing (OFDM) with imperfect
channel estimation based on the tradeoff between energy effi-
ciency and spectral efficiency. This work formulates the given
problem as a multiobjective optimization problem to discuss
the choices of the trade-off parameters under perturbations
derived from system parameters.

Agarwal et al. [1] investigate a team formation optimization
problem in an autonomous multi-robot system. This work aims
to meet the dual conflicting objectives of maximizing both
the task completion ratio and system efficiency in resource
utilization using evolutionary genetic algorithms (i.e., NSGA,
SPEA). Blake and Carter [22] propose a methodology to solve
resource allocation of physicians to cases in hospitals using
a goal programming method, where the two goals are to
maintain physicians’ income while minimizing disturbance to
practice.

Balicki [11] studies a task assignment problem in a dis-
tributed environment based on a multi-objective quantum-
based algorithm (MQEA). The objectives of this work are
to maximize system reliability while minimizing workload
and communication cost. Chen and Sun [38] study a task
assignment problem in a multi-robot environment consisting
of heterogeneous mobile robots, given resource constraints
associated with tasks. They propose a coalition formation
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technique based on heuristic leader-follower structure that
identifies optimal solutions of the task allocation problem
based on the degree of energy required for task execution.

Bedoui et al. [19] solve resource allocation problem in
broadcasting systems with the goals of minimizing hard-
ware investment while maximizing QoS provided to users
by proposing hybrid metaheuristics that combine NSGA-II
with either SA or TS. Dib et al. [60] aim to identify a path
minimizing time, cost, and distance in directed or undirected
road networks. They use a hybrid metaheuristic based on
genetic algorithm and variable neighborhood search, combing
two metaheuristics. They conduct performance analysis by
comparing the hybrid metaheuristics and exact algorithms such
as Dijkstra’s and integer programming.

Dieber et al. [61] solve the problem of identifying optimal
configuration settings for a large-scale sensor network com-
prising camera nodes using an evolutionary algorithm. This
work aimed to maximize quality-of-service (QoS) in the cam-
era frame rate and resolution while using minimum energy and
data volume. Dridi et al. [65] solve a resource allocation and
scheduling problem for marine surveillance applications using
a bi-colony ant-based approach. This work has two conflicting
objectives: minimize job completion time while minimizing
total cost. Guo et al. [88] examine a task assignment problem
using a particle swarm optimization technique to meet multiple
objectives that minimize task execution time and cost for data
transfer between processors in cloud computing environments.

Jiang et al. [101] study the tradeoff between energy con-
sumption and throughput as the conflicting system goals in
a multihop wireless network. Jin et al. [104] use a genetic
algorithm to obtain a task allocation that balances energy
consumption by nodes for task execution and processing power
provision in order to maximize network lifetime. Hajri-Gabouj
[91] employs fuzzy logic and genetic algorithm to solve
a task assignment problem, minimizing task execution time
and maximizing load balance. Matsatsinis and Delias [134]
consider a task to agent allocation problem, maximizing speed
of task execution, minimizing resulting risk and achieving de-
sired functionality. The authors used the ε-constraints solution
technique for solving MOO.

Mezmaz et al. [137] present hybrid metaheuristics by com-
bining GA and a memetic algorithm with a branch and bound
algorithm to solve a flowshop scheduling problem for all
jobs to be scheduled on multiple machines sequentially while
minimizing the total completion time and the total tardiness.
Milano et al. [142] propose a technique to represent system
security in decentralized electricity markets in terms of voltage
stability. The system has a multiobjective function that maxi-
mizes both social benefit and the distance to maximum loading
conditions based on market-based pricing mechanisms.

Notario et al. [154] minimize consumption of bandwidth
and energy and maximize quality of task execution based on
a genetic algorithm. Shi and Bian [182] propose a solution
for a business logistic alliance problem: maximizing profit
margins and an importance degree of selected partners, using
fuzzy logic and the concept of entropy. Shuai et al. [188]
propose a generalized particle model in order to maximize
the parallel optimization of resource allocation and task as-

signment/coordination in P2P and grid computing. Vidyarthi
and Khanbary [206] study a channel allocation problem which
aims to maximize reliability in data transmission and to
minimize the number of blocked hosts using a NSGA.

Ouni et al. [158] propose a linear programming based
optimization method to study the tradeoff between energy con-
sumption and throughput in multi-hop wireless mesh networks
using a MAC layer based on Spatial Time Division Multiple
Access. Xie and Qin [219] propose an energy-efficient task
assignment protocol based on the tradeoff between energy and
delay to execute a task to minimize the length of schedules
of task allocation and energy consumption. Yin et al. [224]
study program modules to a processor allocation problem
in a distributed environment which aims to maximize sys-
tem reliability given resource constraints. This work uses
hybrid particle swarm optimization to find close-to-optimal
solution(s) but with a reduced complexity and solution search
time.

Rachedi and Benslimane [165] study a multi-objective
optimization problem with conflicting goals of security ser-
vices (authentication, confidentiality, and integrity) and QoS
(throughput, delay, and reliability) in wireless sensor networks.
This work uses a multi-objective evolutionary algorithm,
NSGA-II, and identifies different optimal security settings
adapting to QoS and energy requirements.

Zhang et al. [230] take a Nash bargain-based game theoretic
approach to identify solutions for the joint subchannel and
power allocation for the uplink problem in cognitive small
cell networks. They consider fairness among users and QoS
(outage constraint, imperfect channel state information, and
maximum power constraints) as system objectives. Zhang
et al. [231] analyze the correlations between job arrivals in
order to solve a task allocation problem for clustered systems.
Their goals are to minimize the average response time (or
delay) for received requests while maximizing load balance
among servers. Zhu et al. [233] formulate a task allocation
problem for distributed systems in order to minimize delay
while meeting deadline constraints using mixed integer linear
programming technique.

Commonality and Variability of Class 1 Works: For the
works belonging to Class 1 in Table V, most of the works
aim to solve MOO problems associated with resource or task
allocation or coalition formation. The environments are mostly
distributed systems including multi-robot systems, wireless
sensor networks, P2P, or mobile ad hoc networks. Fig. 5 shows
the summary of the MOO techniques used for 25 works listed
in Table V where the works by [19, 60, 91, 137, 182, 233]
use more than one techniques, respectively. In Fig. 5, a large
volume of works use evolutionary algorithms (i.e., 34%) or
bio-inspired algorithms (i.e., 12%) because most works aim
to identify optimal solutions with a large size problem space.
This requires searching for a large solution space, which
is well considered in traditional metaheuristic optimization
techniques.
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Fig. 5. MOO techniques used for Class 1

B. Class 2: Global Welfare and Individual Welfare with Iden-
tical Individual Payoff Functions

Class 2 covers MOO problems where all agents aim
to achieve the same individual objective function. There is
substantial literature on Class 2 MOO problems. Table VI
summarizes the surveyed existing works belonging to Class
2. Below we first discuss key features in each work and then
we summarize commonality and variability of formulation and
solution techniques for Class 2 MOO problems.

Anagnostopoulos et al. [5] explore a solution for an online
task assignment problem by matching a set of skilled people to
each task. Their solution aims to minimize the communication
overhead while balancing workloads. Analoui and Rezvani [6]
use a microeconomic approach to solve a resource allocation
problem in multicasting, treating a service as a good and an
entity as a firm to provide goods. Their goal is to balance the
service demand and resource supply and maximize the benefit
of users.

Asl et al. [7] combine web services within communities
based on a cooperative game to efficiently form coalitions of
web services. Communities and web service providers aim to
maximize their gains while the system aims to maximize fair-
distribution of the gains among web service providers using
the Shapley value. Brown et al. [31] solve a security problem
using a game that deals with multiple security goals. They set a
single goal based on the main objective while other objectives
are treated as constraints. This work studies the impact of
varying the constraints on the identified Pareto frontiers. Here
the system objectives are based on the observed attacker type
and each attacker, as a player, aims to maximize its payoff.

Cho et al. [42] solve a task assignment problem in tactical
MANET environments that aims to meet multiple objectives
such as minimizing communication cost incurred by task

assignment while maximizing the ratio of task completion and
nodes’ utilization. Cai et al. [32] use a non-transferrable coali-
tion formation game to solve a green uplink resource sharing
problem between device-to-device (D2D) and cellular users.
Their goal is to maximize resource utilization by optimizing
mode selection and resource scheduling.

Das et al. [51] solve a service-based message sharing prob-
lem in vehicle ad hoc networks (VANETs) using a cooperative
game with transferable utility and the concept of core for
coalition formation. Each node aims to maximize the payoff
by processing service-messages in a coalition that provides the
highest incentives while each coalition maximizes its coalition
payoff.

Dasgupta et al. [52] study a sailor-to-task assignment prob-
lem using NSGA in navy bases for minimizing the number
of required sailors, while maximizing the total training and
preference score with minimum cost. Deshpande et al. [59] use
fuzzy set theory to solve a task assignment problem in multi-
agent systems with two conflicting objectives: minimizing de-
lay in task completion while maximizing the task completion
ratio. Duan et al. [66] employ a cooperative game to design
a rapidly converging sequential algorithm as a solution of
large-scale application scheduling problem in hybrid cloud
platforms. The system aims to maintain fairness of execution
time to users while the users aim to minimize the execution
time and cost by using ε-constraints.

Edalat et al. [68] propose an auction-based task assignment
solution in wireless sensor networks with two global objec-
tives: maximizing the overall network lifetime while satisfying
application deadlines. An individual entity seeks to maximize
its payoff by bidding on a task with low workload so as to
consume less energy but have a high chance of being assigned
to the task. Gao et al. [75] propose a cross-layer optimization
method to solve a coalition formation problem in wireless
sensor networks for minimizing energy consumption among
sensors.

Garg et al. [77] use the Shapley value and coalition game
theory to solve a clustering problem in data mining. This
work has two goals: minimizing the mean distance from each
point to the closest center and the mean distance of intra-
cluster from point-to-point. Genin and Aknine [78] devise
a coalition formation algorithm for multi-agent systems in
which each agent selects a bundle of tasks (i.e., coalition)
to join based on the similarity with previous bundles or
occurrences of tasks in previous bundles. Each agent wants
to maximize its utility by joining more bundles but with
less resource consumption. A coalition, or a bundle, wants
to maximize its payoff by completing all tasks in the bundle
with current agents. Gharehshiran et al. [79] formulate a
sub-channel allocation as a coalition formation problem in
universal mobile telecommunication systems (UMTS) by con-
sidering it as a cooperative game in which an individual user
wants to maximize its monetary payoff based on the network
throughput while the system aims to maximize the overall
network throughput. Guo et al. [89] use the VCG auction
mechanism to propose a secure and efficient key management
service for MANETs. They seek to maximize the ratio that
the key management service is successfully provided and to
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TABLE VI
EXISTING WORKS IN CLASS 2 WITHOUT USING TRUST

Ref. Individual Objective System Objective Techniques Problem Domain
[5] Users: Maximize utilization of skill

sets; Minimizing workload and
communication cost

Meet required skill sets; Minimize com-
munication overhead; maximize load
balance

Bi-criteria approximation Team formation Web-based so-
cial network

[6] User: Maximize QoS utility Network: Maximize QoS Micro-economic theory Resource allocation Multi-service
overlay
networks

[31] Attackers: maximize payoff Defender: maximize resilience Iterative ε-constraints; Integer linear
program; Stackelberg game

Security strategy selec-
tion

Multi-agent
systems

[42] Minimize energy consumption;
maximize task participation

Maximize mission completion ; Mini-
mize communication overhead

Combinatorial auction theory Task assignment Mobile ad hoc
networks

[52] Cluster head: Meet three goals (en-
ergy consumption, load balance,
and task deadline)

System: same goals as cluster heads NSGA Task assignment Wireless sen-
sor networks

[59] User: Maximize QoS; minimize
delay / communication cost

Maximize task completion; minimize
delay

Fuzzy set approach; auction theory Task assignment Multi-agent
systems

[68] Minimize bidding delay Minimize energy consumption / delay Reverse auction Task assignment Wireless sen-
sor networks

[75] Minimize energy consumption Maximize fair energy consumption Cross-layer optimization Coalition formation Wireless sen-
sor networks

[77] Maximize payoff Maximize coalition payoff Cooperative game theory; Shapley value Cluster formation Clustering in
data mining

[78] Maximize node utilization Maximize coalition payoff Similarity and frequency based selection
algorithms; Hedonic coalition game

Coalition formation Multi-agent
systems

[79] User: Maximize network through-
put

Maximize network throughput Cooperative game theory Coalition formation Mobile
telecom-
munication
systems

[89] Minimize cost in energy and secu-
rity maintenance

Maximize successful key management
service

VCG Coalition formation for
key management

Mobile ad hoc
networks

[94] Maximize the good with minimum
resource consumption

Same objective as an individual agent
but in a group level

Probabilistic model based on prior
knowledge; dynamic programming

Resource allocation Multi-agent
system

[102] Maximize task completion Maximize task completion and load bal-
ance; minimizecommunication cost

Context-based heuristics Task allocation Complex soft-
ware systems

[110] Maximize payoff Minimize false alarms; maximize
throughput per cognitive radio

Coalition formation game; Markovian
model

Coalition formation Distributed
cognitive radio
networks

[116] Minimize cost for queries recall
and membership maintenance

Minimize convergence time to optimal-
ity, load balance, membership and com-
munication cost

Cluster formation game Formation of clustered
overlays

Clustered
overlay
networks

[125] Minimize resource consumption Minimize resource consumption Heuristic three phase algorithm Task scheduling Wireless sen-
sor networks

[124] Buyer: minimize price Seller: maximize revenue Combinatorial auction theory Coalition formation Online
markets

[143] Maximize payoff in file sharing Maximize fairness and stability in cost
sharing

Cooperative game theory; Shapley value Coalition formation P2P networks

[175] Each division: maximize effective
security resource usage; minimize
security threats

Organization: same as division but in an
organizational level

Coalition game theory Resource allocation IT resource
management

[176] Maximize payoff Maximize throughput and valuation;
minimize delay

Hedonic coalition game Task allocation Multi-agent
wireless
networks

[177] Individual robot: maximize its task
completion

Minimize maximum task completion
cost; Minimize communication over-
head

Heuristic multi-robot-cooperation
framework

Task scheduling Multi-robot
systems

[184] Robot: Minimize resource con-
sumption

Maximize the total benefit of completed
tasks; minimize delay

Genetic algorithm Task assignment Multi-robot
systems

[183] Maximize access time by sec-
ondary users

Minimize delay for coalition formation
procedure

Vickery auction Coalition formation Cognitive ratio

[190] Customer: maximize service satis-
faction

Provider: maximize revenue Nontransferable payoff Resource allocation Commercial
wireless
networks

[195] User: Minimize cost and delay Minimize workflows, task completion
time, and communication overhead

Genetic algorithm Task assignment Cloud comput-
ing

[200] Minimize energy consumption and
task completion time; maximize
task relevancy and priority

Maximize task completion; minimize
delay

Auction theory Multi-robots task alloca-
tion

Multi-robot
systems

[215] Minimize delay / communication
cost

Maximize data transmission; minimize
coalition cost

Tabu search Coalition formation for
routing

Wireless sen-
sor networks

[217] An agent: maximize utilization Task planner: maximize task assignment Consensus-based bundle algorithm Task assignment Multi-agent
systems

[222] Individual colony: minimize tra-
versed distance

Minimize energy consumption and track
errors

ACO Task assignment Multi-agent
systems

[221] User: Minimize cost Minimize resource consumption; Maxi-
mize server utilization

NSGA Resource allocation Cloud comput-
ing

[225] User: Meet deadline and budget
requirements

Minimize execution time and cost Genetic algorithms Task assignment Grid comput-
ing

minimize the nodes’ energy consumption and cost to maintain security.
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Guazzone et al. [86] take a hedonic game theoretic approach
to form a cloud federation consisting of cloud providers (CPs)
where each CP aims to reduce energy cost by joining a fed-
eration. The authors propose an algorithm to determine a fed-
eration set that maximizes the joint profit of the autonomous
and selfish CPs while the federation maintains stability by
meeting each CP’s need to maximize its payoff. Hazon et al.
[94] propose a resource coordination method based on a prior
knowledge-based probability model for multi-agent systems
executing exploration and patrol missions in order to maximize
the average probability of acquiring the goods (e.g., battery
charge) while minimizing the average resource consumption.
Jiang and Jiang [102] consider a complex software system
where agents are executing tasks with limited resources. They
solve a task allocation problem using contextual information
with the two goals of maximizing the task completion ratio
and load balance with minimum communication overhead.

Khan et al. [110] model a cognitive radio network as
a cooperative game and solve it as a coalition formation
problem in order to pick cognitive radios that maximizes the
overall throughput and minimizes the false alarm probability
in detecting a primary user. Koloniari and Pitoura [116]
use a game theory to solve a problem of cluster formation
in clustered overlay network which is effectively used to
exchange data appropriate received queries. A node decides to
join a cluster based on its interest or the content of a cluster.
In this problem, an individual node had two goals: minimizing
the recall cost of the queries by having enough members in
the same cluster (fetching data within a same cluster incurs
less cost) and minimizing maintenance cost of having more
memberships. The system goals were convergence speed to
Pareto optimality, cost optimality in recall and membership
maintenance, load balance, and cost minimization in dealing
with nodes’ movement and social cost.

Li et al. [125] propose a heuristic three-phase algorithm
that minimizes energy consumption while maximizing task
completion within a given deadline and energy consumption
balance among individual sensor nodes. Li and Sycara [124]
study coalition formation in an electronic marketplace where
buyers bid on multiple items based on combinatorial auction
offering reservation costs while sellers can offer discount
prices depending on the volume ordered by the buyers. They
developed a polynomial time algorithm to identify an optimal
coalition of buyers per item that maximizes the revenue on
the item. Militano et al. [143] deal with a file sharing problem
aiming to maximize fairness and stability among users in
P2P networks. The problem was modeled as a “cooperative
game” where an individual user wants to minimize expense
but maximize the file sharing time based on the Shapley value.

Mashayekhy and Grosu [133] propose a solution to form a
virtual organization (VO) in grid computing platforms using
a coalitional game. The proposed mechanism allows the grid
service providers (SPs) to maximize their payoff by joining
an organization with the highest benefit (i.e., efficient resource
utilization and minimum delay) while VO also maximizes its
payoff by maintaining group stability which prevents the SPs
from leaving VO. Pillai and Rao [163] take a game theoretic
approach to solve a resource allocation problem among virtual

machines on a cloud where forming a coalition of virtual
machines is needed for efficient resource utilization. The
system aims to minimize job completion time and wastage of
resource while each coalition maximizes request satisfaction.

Sariel-Talay et al. [177] propose a distributed, energy-
efficient heuristic cooperative task scheduling framework for
multi-robot systems. Each robot seeks to maximize its payoff
as a share of the coalition payoff while the system seeks to
minimize maximum task completion time and communication
overhead. Saad et al. [175] introduce coalition game for “se-
curity risk management.” They investigated how autonomous
divisions can cooperate with interdependent security vulner-
abilities and assets. An organization consisting of multiple
divisions wants to maximize effective security resource while
minimizing security threat. Saad et al. [176] study task al-
location problem in wireless networks using hedonic game
theory with the system objectives: maximizing throughput and
minimizing the average delay in task execution. Each agent
wants to join a coalition to maximize its payoff as a share
of the coalition payoff. An agent can freely select any task
whenever tasks are available. However, communication cost
was not considered when an agent switches from one task to
the other.

Shi et al. [184] solve a task allocation problem for multi-
robot systems using decision preference information as a factor
of the fitness function in a genetic algorithm. This deals
with multiple objectives where a robot aims to save energy
while the system seeks to maximize task completion with
minimum delay. Shi et al. [183] propose a cooperative sensing
protocol for secondary users using Vickery auction in cognitive
networks. The cooperative auction is advanced by prioritizing
access rights while decreasing response time for coalition
formation process.

Singh et al. [190] investigate a resource allocation prob-
lem in a commercial wireless network where the providers’
objective is to maximize their revenue by providing wireless
network services while the customers’ objective is to maximize
their satisfaction from the service received. This work uses
a nontransferable payoff, showing that cooperation among
providers is the best strategy to maximize payoffs of both
providers and customers. Song et al. [191] solve a resource
allocation problem in cellular networks where device-to-device
(D2D) communication must meet multiple objectives in radio
resource allocation. In the proposed scheme, the system aims
to minimize transmission power of D2D users while each user
has the goal of maximizing the utility of the radio resource.

Szabo et al. [195] examine a task allocation problem in
cloud computing using evolutionary genetic algorithms. Here
the system goals are to minimize workflows, delay introduced
by the task completion, and communication cost while each
individual user wants to minimize cost and service delay.
Tolmidis and Petrou [200] propose an auction theoretic ap-
proach to solve a task allocation problem in multi-robot sys-
tems where each robot is able to perform several functions. An
individual robot has the goals to minimize energy consumption
and delay in task completion while maximizing the degree of
relevancy and priority level to an assigned task. Similarly, the
system aims to maximize completed tasks and minimize delay
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introduced due to task assignment and completion.
Wang et al. [210] consider overlapping coalition formation

for resource allocation in a distributed cooperative sensing
system. The proposed scheme allows secondary users to join
multiple overlapping coalitions to maximize the use of radio
resource while each coalition maximizes its payoff represent-
ing the maximization of its member sensing performance.
Weerakoon and Allan [215] propose an energy-efficient au-
tonomous data routing scheme for wireless sensor networks,
treating selection of transmitters as a coalition formation
problem. They use a heuristic decentralized mechanism based
on Tabu search in order to identify a coalition maximizing
data transmission with minimum cost for coalition forma-
tion. Whitten et al. [217] propose a decentralized algorithm
to solve task assignment problem in that each entity can
autonomously make decisions, given constraints. They used
a bundle algorithm based on consensus in order to model
different behavioral strategies. This work considers the same
goals to maximize task assignment performance in formulating
the objectives of a task planner and each agent.

Xu et al. [222] take a bio-inspired multiple ant colony
approach to solve a task assignment problem in multiple
unmanned underwater vehicles in order to minimize both the
total distance multiple vehicles traveled and the total turning
angles to minimize energy consumption and track errors. Xu
et al. [221] solve a multi-objective task assignment problem
using NSGA in cloud computing environments. They seek to
minimize the total power consumption in virtual machines
and maximize useful utilization of each server. Yu et al.
[225] solve a multi-objective workflow execution problem in
utility Grids modeled as a Directed Acyclic Graph. This work
considered the two objectives of minimizing execution time
and cost (i.e., price), using three genetic algorithms including
NSGA, SPEA, and PAES. Xu et al. [220] propose a network
selection algorithm for vehicular networks by using a cloud’s
rich computing and data storage resources. The authors model
a network selection process as a coalition formation problem
based on hedonic game theory so that a vehicle can choose a
network that best provides high quality, uninterrupted service
while the system aims to maximize throughput and fairness in
vehicles’ utilities.

Commonality and Variability of Class 2 Works: The
commonality of MOO research in Class 2 is that payoffs
earned by individual entities often directly or indirectly con-
tribute to global welfare. Therefore, in Class 2 MOO research,
an individual entity’s goal is aligned with that of a coali-
tion in that they aim to be mutually beneficial to maximize
their payoffs. Based on the summary shown in Table VI,
the main application domains for Class 2 are distributed
environments including multi-agent systems, mobile ad hoc
or sensor networks, or cloud computing which are not much
different from those for Class 1. In addition, the main MOO
problems are task allocation or scheduling, coalition / cluster
formation, or resource allocation, which are not much different
from those observed in Class 1 as well. Comparing Table
VI with Table V, we observe that a large amount of works
use game theoretic approaches. Fig. 6 gives the overall key
trends of the main techniques used in Class 2 based on 32

Fig. 6. MOO techniques used for Class 2

Fig. 7. MOO techniques used for Class 3

existing works in Table VI. Some works use more than one
techniques (i.e., three techniques in [31] and two techniques in
[61, 79, 95, 111, 144]). The reason for the popularity of game
theoretic approaches derives from the problem nature in that
multiple parties aim to optimize their objectives where game
theoretic approaches can provide useful modeling tools.

C. Class 3: Global Welfare and Individual Welfare with Dif-
ferent Individual Payoff Functions

Class 3 covers MOO problems that deal with different
individual payoff functions for situations in which individuals
may want to maximize different payoff functions because
different customers may have different user satisfaction criteria
towards a service provided. This scenario is rare because
most existing studies dealt with objectives from an individual
entity vs. a system (or coalition). Nevertheless it is a new
trend worthy of attention. Table VII summarizes the surveyed
existing works belonging to Class 3. Below we first discuss key
features in each work and then we summarize commonality
and variability of formulation and solution techniques for
Class 3 MOO problems.
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TABLE VII
EXISTING WORKS IN CLASS 3 WITHOUT USING TRUST

Ref. Individual Objective System Objective Techniques Problem Domain
[15,
16]

Users: maximize respective utility Maximize the overall throughput and
transmit power

MOO programming based
on pre-defined interference
thresholds of primary users

Resource allocation Cognitive radio sys-
tems

[17] Users: maximize respective utility Maximize the overall throughput and
transmit power

Linear weighted coefficient Resource allocation Cognitive radio sys-
tems

[18] Users: maximize respective utility Maximize the overall throughput and
transmit power

Evolutionary algorithms Resource allocation Cognitive radio sys-
tems

[96] Maximize the objective function of
an individual firm

Maximize the overall objective function MOO programming model Optimal selection of
alliance partners

Business supply
chain alliance

[130] Maximize an individual payoff Maximize the overall group payoff Coalitional game theory;
Markov process

Clustering Clustering in data
mining

[135] Maximize an individual player’s
objective where each individual has
a different objective

Minimize computational cost; Maximize
optimality accuracy

Cooperative game theory;
evolutionary game

Generic MOO solu-
tion

Computational
modeling technique

[153] Maximize an individual user’s QoS
satisfaction level

Maximize the satisfaction of QoS con-
straints while minimizing the impact of
global QoS caused by new arrivals of
services

Heuristic cooperative coali-
tion formation model

Coalition formation Distributed systems

[194] Users: maximize the satisfaction of
QoS

Maximize QoS based on load balance
among service providers

Cooperative game theory;
Nash bargaining solution

Task allocation Grid computing

Bedeer et al. [15] solve the problem of both maximizing
the throughput and minimizing its transmit power based on
the constraints of both secondary and primary users in the
optimal link adaptation problem of orthogonal frequency di-
vision multiplexing-based cognitive radio systems. In their
MOO problem, two users, primary and secondary users, aim
to maximize their respective objectives for optimal power
and bit allocation in cognitive radio systems [16, 17]. The
same authors [18] extend their work by using evolutionary
algorithms to deal with non-convex constraints.

Huang et al. [96] provide a strategic coalition formation
solution in supply chain alliance where independent firms
choose their partners to exchange or share resources. An indi-
vidual firm aims to maximize the sum of its own satisfaction
in profit, service quality and customer satisfaction by using
an interdependent multi-objective programming technique. Liu
et al. [130] take a game theoretic approach using the Shapley
value to solve a clustering problem in data mining. The authors
consider a multi-objective categorization problem modeled
as a coalition game and analyze it based on a Markov
process model for maximizing the payoffs of each coalition
and individual family. Meng et al. [135] transform a multi-
objective problem into a game with multiple players based on
the proposed generic mathematical method.

Nogueira and Pinho [153] study a team coordination prob-
lem in resource constrained distributed systems based on
coalition game theory. The selected team provides services
based on collaboration with qualified neighbors to maximize
the satisfaction of QoS and to minimize the impact of new
service request arrivals on the global QoS. Subrata et al. [194]
consider a service allocation problem in grid computing. When
a user sends a task to a server, a set of service providers
cooperate to service the received request with an acceptable
QoS. The authors model this as a cooperative game using the
concept of Nash Bargaining in order to best balance the profits
of all users while meeting multiple QoS objectives.

Commonality and Variability of Class 3 Works: Com-
pared to the works in Class 1 and Class 2, there are fewer
works dealing with the characteristics of objectives in Class
3; so we summarize only 8 works in Table VII. For the main

MOO techniques in Class 3, as shown in Fig. 7, we see the
dominant usage of game theoretic approaches as Class 3 has
multiple objectives associated with both system and individual
user perspectives. Note that [130] uses two techniques while
all other works use a single technique.
D. Trust-Based Approach Across Three Classes

As discussed in Section IV-D, trust-based approaches have
been used to find close-to-optimal solutions as the approxima-
tion of optimal solutions with low complexity. In this section,
we discuss trust-based heuristic MOO approximation solutions
based on the publications since 2000 across the three classes.

a) Trust-based MOO approach in Class 1: Das and
Islam [50] propose a computation model dealing with dynamic
trust that detects malicious nodes but maintains high load
balance among nodes. Trust is measured based on multiple
dimensions such as feedback credibility, service satisfaction,
and preference similarity. Trust is used as a proxy to estimate
the degree of QoS that can be provided by an agent to other
agents in a multi-agent system. Dorn et al. [64] propose a team
formation algorithm using genetic algorithm and simulated
annealing to compose a team with qualified members who
have a required skill level and maintain trust relationships
with others. Shen et al. [181] develop a trust-based solution
for job scheduling in grid management with multiple system
objectives including security, reliability, load balance and
throughput. Ye et al. [223] solve a trustworthy worker selection
problem in a crowdsourcing environment as a multi-objective
combinatorial problem. This work enhances NSGA-II by using
trust estimates based on context-based trust, considering task
type and reward amount.

b) Trust-based MOO approach in Class 2: Chang et al.
[36] propose a task assignment algorithm based on composite
trust in order to choose members that maximize their utiliza-
tion and mission completion ratio but maintain an acceptable
risk level based on the auction theory. Cho et al. [40] extend
[36] by considering additional system goals such as mini-
mizing task delay and resource consumption. They validate
the optimality of trust-based solutions via comparisons with
the solution provided by integer linear programming. Goel
and Stander [84] present a clan formation algorithm based
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TABLE VIII
EXISTING WORKS USING TRUST ACROSS CLASSES

Ref. Individual Objective System Objective Techniques Problem Domain
Class 1

[50] N/A Maximize accuracy of trust assessment
to provide high QoS and load balance

Trust computation model
called SecureTrust

Resource allocation Multi-agent systems

[64] N/A Maximize skill coverage and team con-
nectivity

Genetic algorithms; simulated
annealing

Team formulation Web-based social
networks

[181] N/A Maximize security, reliability, load bal-
ance and throughput

Trust-driven grid job schedul-
ing

Resource allocation Grid computing

[223] N/A Maximize accuracy of selecting trust-
worthy workers

NSGA-II; context-based trust
based worker selection

Combinatorial
worker selection

Crowdsourcing

Class 2
[36] Maximize its own payoff by min-

imizing energy consumption but
maximizing task participation

Maximize task completion ratio Auction theory Task assignment Mobile ad hoc net-
works

[40] Maximize trust-based payoff Maximize mission completion; mini-
mize resource consumption and task de-
lay

Integer linear programming;
trust-based auction

Task assignment Coalition networks

[84] Maximize payoff as a share of the
coalition payoff

Maximize coalition payoff by minimiz-
ing missed cooperation opportunities;
Minimize communication overhead for
clan formation

Cooperation-based clan for-
mation

Clan formation Multi-agent systems

[87] Migrating worker: Maximize mem-
bership period by selecting the best
workplace

Workplace: Maximize efficiency and se-
curity in business process in terms of
time and resource

Trust and self-confidence
based coalition formation

Coalition formation Business workflow
management

[97] Partner: Maximize payoff as a
share of the alliance payoff

Alliance: Maximize the profit of the
supply chain alliance

Cooperative game Alliance formation Business supply
chain alliance

[129] Customers: Minimize prices for re-
sources under constraints

Providers: Maximize resource sharing
and security

Economic-driven allocation;
Q-learning

Resource manage-
ment

Grid computing

[141] Maximize a payoff as a share of the
coalition payoff

Maximize trust synergy; minimize trust
liability

Cooperative game Coalition formation Multi-agent systems

[150] Maximize a payoff as a share of the
coalition payoff

Maximize coalition payoff Spatial prisoner’s dilemma
game

Coalition formation Multi-agent systems

[208] Minimize energy consumption;
maximize load balance

Maximize mission completion based on
security and reliability criteria; mini-
mize mission completion time

Heuristic trust-based min-min
algorithm

Task scheduling Mobile ad-hoc grid
computing

[229] Join a group with high trust Maximize trust in a task-oriented social
network while minimizing communica-
tion cost

Heuristic trust-based
algorithm

Team formation Web-based social
network

[213] Maximize payoff Maximize mission reliability; minimize
task delay and utilization variance

Weighted sum; auction the-
ory; trust-based member se-
lection

Task assignment Service-oriented
mobile ad-hoc
networks

Class 3
[30] Vendor: Maximize sales; Cus-

tomer: Minimize prices
System: Maximize stability of an opti-
mal formation of coalitions

Trust-based coalition forma-
tion

Coalition formation Multi-agent systems

[209] Maximize preference-based QoS Maximize QoS based on user preference
and trust

Weighted sum based on pref-
erence and trust

Web service selec-
tion

Web services

on trust and motivation in which an agent is self-interested
to maximize its payoff in a clan. The goal of a coalition is
to maximize payoff by losing cooperative opportunities with
minimum communication cost in forming a clan.

Guo et al. [87] propose a trust and self-confidence based
coalition formation scheme to migrate workflow to ensure
security (e.g., a worker’s integrity) and efficiency (e.g., a
worker’s experience) in executing business processes where
the degree of cooperation, as a dimension of trust, is estimated
based on an entity’s capability and security. Huo et al. [97]
study how to select alliance partners to maximize the profit
of the supply chain alliance. This work models the alliance
partner selection process based on game theory where an agent
and an alliance party use trust to form a supply chain alliance
with the goal of maximizing the profit of the alliance. Each
agent aims to maximize its payoff as a share of the alliance’s
profit.

Lin and Huai [129] incorporate trust into resource man-
agement decision in grid environments to meet efficiency
of resource sharing and to maintain security by correctly
detecting malicious entities. In this market-driven resource
sharing environment, consumers aim to minimize the price for

using resource in completing tasks under budget and deadline
restriction. A provider should form a club for customers
that maximizes the total revenue and resource utilization by
allowing only trustworthy entities to maximize effectiveness
of resource usage.

Mikulski et al. [141] propose a theoretical coalition for-
mation framework that uses trust relationships in multi-robot
systems. This work uses cooperative game theory with a
coalition aiming to maximize its payoff which can be esti-
mated by the trust levels of members. Each agent also wants
to maximize its payoff by joining a coalition with highly
trustworthy members. As system objectives, this work aims
to maximize trust synergy while minimizing trust liability as
a proxy to measure the capability of a mission team, in which
each member has an objective to maximize its payoff as a
share of the coalition. However, no specific trust metric is
discussed.

Nardin and Sichman [150] present a coalition formation
solution using the spatial prisoner’s dilemma game and an-
alyzed the effect of trust on coalition dynamics. Like other
existing work on coalition formation, this work models both a
coalition’s goal and an agent’s goal as maximizing its payoff
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TABLE IX
HYBRID MOO APPROACHES ACROSS CLASSES

Ref. Individual Objective System Objective Techniques Problem Domain
Class 1

[1] N/A Maximize both the number of com-
pleted tasks and task efficiency

NSGA; SPEA Coalition formation
under a single task

Multi-robot systems

[91] N/A Minimize task execution time and re-
source consumption

Fuzzy logic, genetic algorithm Task assignment Manufacturing sys-
tems

[224] N/A Maximize system reliability; Minimize
resource consumption

Hybrid particle swarm opti-
mization

Task allocation Distributed systems

[233] N/A Minimize maximum latency in resource
allocation (task-to-message; priority-to-
task/message; signal-to-task)

Mixed integer linear program-
ming; simulated annealing

Resource
Allocation

Real-time
distributed systems

[64] N/A Maximize skill coverage and team con-
nectivity

Genetic algorithms; simulated
annealing

Team formulation Web-based social
networks

[223] N/A Maximize accuracy of selecting trust-
worthy workers

NSGA-II; context-based trust
based worker selection

Combinatorial
worker selection

Crowdsourcing

[137] N/A Find a schedule of a set of jobs on a
set of machines that minimizes the total
completion time and the total tardiness

Hybrid metaheuristics com-
bining GA and memetic al-
gorithm with a branch and
bound algorithm

Flowshop schedul-
ing problem

Manufacturing pro-
duction systems

[60] N/A Identify a path minimizing cost, time,
and distance in directed or undirected
networks

Hybrid metaheuristics with
GA and VNS

Optimal path identi-
fication

Road networks

[19] N/A Maximize QoS to users; minimize hard-
ware investment

Hybrid metheuristics combin-
ing NSGA-II with either TS
or SA

Resource allocation Broadcasting
system

Class 2
[59] User: Maximize QoS; minimize

delay and migration overhead
Maximize task completion with mini-
mum delay

Fuzzy set approach; auction
theory

Task assignment Multi-agent systems

[77] Maximize the share of coalition
payoff

Maximize the coalition payoff Cooperative game theory;
Shapley value

Cluster formation Clustering in data
mining

[94] Agent: Maximize the good with
minimum resource consumption

Group: same objective as an agent but
in a group level

Probabilistic model based on
prior knowledge; dynamic
programming

Resource allocation Multi-agent systesm

[110] Maximize payoff Minimize false alarms; maximize
throughput per cognitive radio

Coalition formation game;
Markovian model

Coalition formation
for cognitive radio

Distributed
cognitive radio
networks

[124] Buyer: minimize price Seller: maximize revenue Combinatorial auction theory Coalition formation Online markets
[143] Maximize payoff in file sharing Maximize fairness and stability in cost

sharing
Cooperative game theory;
Shapley value

Coalition formation P2P networks

[40] Maximize trust-based payoff Maximize mission completion; mini-
mize resource consumption and task de-
lay

Integer linear programming;
trust-based auction

Task assignment Coalition networks

[87] Migrating worker: Maximize mem-
bership period by selecting the best
workplace

Workplace: Maximize efficiency and se-
curity in business process in terms of
time and resource

Trust and self-confidence
based coalition formation

Coalition formation Business workflow
management

[129] Customers: Minimize prices for re-
sources under constraints

Providers: Maximize resource sharing
and security

Economic-driven allocation;
Q-learning

Resource manage-
ment

Grid computing

[213] Maximize payoff Maximize mission reliability; minimize
task delay and utilization variance

Weighted sum; auction the-
ory; trust-based member se-
lection

Task assignment Service-oriented
mobile ad-hoc
networks

Class 3
[130] Maximize an individual payoff Maximize the overall group payoff Coalitional game theory;

Markov process
Clustering Clustering in data

mining
[135] Maximize an individual player’s

objective where each individual has
a different objective

Minimize computational cost; Maximize
optimality accuracy

NE, cooperative, and evolu-
tionary game

Generic MOO solu-
tion

Computational
modeling technique

[194] Users: maximize the satisfaction of
QoS

Maximize QoS based on load balance
among service providers

Cooperative game theory;
Nash bargaining solution

Task allocation Grid computing

[209] Maximize preference-based QoS Maximize QoS based on user preference
and trust

Weighted sum based on pref-
erence and trust

Web service selec-
tion

Web services

where an individual agent’s payoff is a share of the coalition
payoff.

Wang et al. [208] propose a trust-based heuristic task
scheduling technique for mobile ad hoc grid computing en-
vironments for maximizing mission completion ratio based on
required levels of security and reliability in task assignment
and minimizing delay to mission completion. Zhan et al.
[229] study team formation in online task-oriented social
network applications that maximize trust values of entities with
minimum communication cost where an individual member
wants to join a group with maximum trust while the team
aims to maximize the overall trust of all members.

Recently Wang et al. [213] propose a trust-based task
assignment protocol to maximize reliability while minimizing
task delay and utilization variance in the member selection
process for task assignment in a service-oriented ad hoc net-
works. This work uses a weighted sum to consider a system’s
multiple objectives where each node aims to maximize its
utility to task completion based on auction process.

c) Trust-based MOO approach in Class 3: Breban and
Vassileva [30] investigate a coalition formation problem where
vendors and customers are in long-term relationships where
a vendor or a customer can join a coalition to maximize
respective payoff based on assessed trust and the system wants
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Fig. 8. The trends of the three classes of MOO Problems

to quickly reach an equilibrium state in coalition formation. In
this work, trust is evaluated based on positive transaction ex-
perience and preference similarity. Wang et al. [209] formulate
a service selection problem as a MOO problem to maximize
QoS of users based on their preferences while multiple service
providers aim to maximize QoS provided to users by selecting
relevant services based on a user’s preferences and trust.

E. Hybrid Approach Across Three Classes

Figure 8 summarizes the major trends observed in the
three classes of MOO problems and solution techniques.
The main problems are common among the three classes.
The critical tradeoffs show the difference among the three
classes of how the parties want to maximize their utilities.
Among key solution techniques, the major trend is that Class
1 uses more traditional approaches including EA, bio-inspired
algorithms (i.e., ACO, PSO) or scalarization-based techniques
while Classes 2 and 3 use more game theoretic approaches.
The reason is that MOO problems in Classes 2 and 3 aim to
meet objectives of multiple parties while Class 1 only aims to
maximize system objectives.

Based on our survey, we found many works use various
types of hybrid approaches to solve MOO problems in di-
verse domain contexts. As shown in Table IX, heuristic-based
approaches (e.g., trust-based, preference-based, confidence-
based) are used in developing fitness functions in evolution-
ary algorithms [223] or simply combined with scalarization-
based MOO techniques (e.g., weighted sum, linear program-
ming) [40, 209, 213]. Further, cooperative game theory is
commonly used with other game theoretic algorithms (e.g.,
Shapley value or Nash bargaining) [77, 143, 194]. Other works
take hybrid approaches by combining game theory and evolu-
tionary algorithms [135] or probabilitic theory and game the-
ory [110, 130]. Note that hybrid metaheuristics include hybrid
approaches combining metaheuristics with another method,
either metaheuristics or other non-metaheuristics algorithms.
On the other hand, the “hybrid approach” discussed here refers
to any combination of more than one algorithms to solve MOO
problems regardless of whether it uses hybrid metaheuristics
or not.
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VII. DISCUSSIONS OF ISSUES AND CHALLENGES

In this section, we discuss the key issues and challenges
when solving MOO problems. In particular, we discuss the
issues and challenges associated with dealing with MOO under
uncertainty, the natures and properties in solving MOO related
to Pareto optimality, duality, and solvability. In addition, we
discuss the stability of optimal solutions and tradeoffs between
optimality and complexity (i.e., scalability) in solving MOO
problems.

A. MOO under Uncertainty

MOO problems have been solved by various types of
multi-objective evolutionary algorithms (MOEAs) which are
known to be powerful tools to solve global optimization
problems with deterministic problem functions. However, in
reality, uncertainty derived from incorrect system models
and/or dynamic environmental factors hurts the accuracy of
identified MOO solutions [128]. In solving most engineering
problems under uncertainty, two types of uncertainty are often
discussed: aleatory uncertainty and epistemic uncertainty.
Aleatory uncertainty is derived from the randomness of under-
lying phenomenon representing variability of observations. On
the other hand, epistemic uncertainty refers to the uncertainty
associated with incorrect system models caused by insufficient
or incomplete knowledge towards a real-world [128]. Since
aleatory uncertainty is data-based and may not be reduced
or modified, there has been some effort to reduce epistemic
uncertainty [128].

Jin and Branke [105] categorize four causes of uncertainties
in evolutionary computation as follows:

1) Noise in fitness functions. The noise may come from
measurement errors or randomness. A typical noise
model is given by:

F (X) =

∫ −∞
∞

[f(X) + z]p(z)dz (17)

= f(X), z ∼ N
(

0, σ2
)

where X is a vector of design variables, f(X) is
a time-invariant fitness function, p(z) is a probability
distribution of disturbance z, and z is additive noise.
z is often assumed to follow a Gaussian distribution
with zero mean and variance σ2. Uncertainty is often
introduced by the following two aspects: (1) in reality,
the dynamics of environmental factors may affect the
fitness function which should vary over time and noise
z may not follow a Gaussian distribution; and (2) for
efficiency, expected fitness functions often are used to
approximate random samples.

2) Robustness. After optimal solutions are identified,
changes in design variables or environmental factors
may impact the accuracy of the identified optimal
solutions. If the found solutions do not work under
the changed environments, then the solutions are not
robust to system and environmental dynamics. A robust
solution implies robustness under high system and en-
vironmental dynamics by generating high performance

based on the solutions from the robust fitness function.
However, a robust solution may not be optimal. When
noise is not avoidable, an individual solution cannot
be accurately evaluated. Therefore, there often exists a
tradeoff between accuracy and robustness of solutions.

3) Fitness approximation. If the fitness function cannot
be expressed analytically, or if it is too expensive to
compute, then approximated fitness functions often are
used, accordingly leading to inaccuracy. Therefore, there
exists a tradeoff between cheap but inaccurate solutions
and expensive but accurate solutions when using an orig-
inal fitness function or an approximated fitness function.

4) Time-varying fitness functions. Uncertainties may be
introduced while time-varying fitness functions need to
keep track of previous optimal solutions for computing
a current optimal solution under changed environments
over time.

In solving MOO problems with multiple and expensive fit-
ness functions, a solution with high fitness variance may
be treated as robust. To reduce uncertainties from this high
variance, it is a better choice to consider a fitness function
and a variance for each objective which allows searching
for improved solutions with different tradeoff points between
accuracy and robustness [105]. Recently Iancu and Trichakis
[100] propose a methodology to maintain both robustness
and Pareto optimality generating the so called Pareto robustly
optimal solutions.

Some efforts at reducing uncertainties have been made in
terms of theoretical analysis and network applications. Field-
send and Everson [72] propose a method called probabilistic
domination contours (PDC) to consider the confidence placed
on objectives to be optimized under uncertainty. The authors
conduct experiments to investigate the effect of the PDC; but
the assumption of Gaussianity and independent noise may be
too restrictive for many problems.

To solve MOO problems under dynamic system and envi-
ronmental conditions, robust optimization functions are pro-
posed in the literature [106, 127]. Johnston [106] proposes an
evolutionary algorithm to solve a multi-objective scheduling in
a deep space network, NASA’s collection of assets communi-
cating with spacecraft beyond near-earth orbit. Liao et al. [127]
propose a method to solve a mobility robustness optimization
problem in LTE self-organizaing networks in which a set
of non-convex functions have conflicting goals. However, as
discussed earlier, there exists an inherent tradeoff between
optimality and robustness of fitness functions which are not
addressed in these works.

B. Nature and Properties of Objectives and Solutions

In this section, we discuss the key factors in MOO and dis-
cuss the interplay between them in terms of Pareto optimality
and solution efficiency in the following aspects: (1) Pareto
optimality conditions based on Karush-Kuhn-Tucker theorem;
(2) duality; (3) solvability; and (4) stability. There is a rich
volume of literature [20, 56, 74, 80, 85, 139, 149, 178, 216]
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that discusses the relationships between the properties. Focus-
ing on the scope of this work, we briefly discuss some key
points.

1) Pareto Optimality Conditions: Karush-Kuhn-Tucker
(KKT) theorem provides conditions to find Pareto optimal
solutions in terms of necessary conditions and sufficient condi-
tions [56]. Since the in-depth discussion of this theorem is very
broad and has been published in a large volume of literature,
we capture only the core aspects of this theorem. The KKT
conditions are

M∑
m=1

λm∇fm(x∗)−
J∑
j=1

uj∇gj(x∗) = 0, and (18)

ujgj(x
∗) = 0 for any j

where M is the set of objectives, J is the set of constraints,
and x∗ is the set of solutions. λ and u are the vectors of
constants. fi(·) is the i-th objective function and gj(·) is the
j-th constraint function. Based on the conditions in Eq. (18),
we discuss necessary and sufficient conditions for a solution
to be weak Pareto optimal as below:
• Necessity: A necessary condition for a solution x∗ to be

weak Pareto optimal is that vectors λ > 0 and u ≥ 0
exist in which λ ∈ RM , u ∈ RJ and λ, u 6= 0 such
that the conditions in Eq. 18 are true. Meeting these
conditions does not necessarily guarantee the existence
of weak Pareto optimal solutions [56].

• Sufficiency: Given that objective functions are convex and
constraint functions are non-convex where both functions
are differentiable at solution x∗, a sufficient condition for
x∗ to be weak Pareto optimal is that λ > 0 and u ≥ 0
exist in which λ ∈ RM , u ∈ RJ such that the conditions
in Eq. (18) are true.

Pareto optimality is not always found when objective functions
are not convex or objective / constraint functions are not
differentiable at x∗. Naturally, more and/or diverse types of
objective / constraint functions may lead to no feasible solution
region. Many approximation methods relax conditions for
objective or constraint functions aiming to identify feasible
solutions with the sacrifice of optimality. Due to the space
constraint, we refer interested readers to [56, 178] for the
proofs.

2) Duality: Duality provides two perspectives to solve a
given optimization problem. An original problem, called a
primal problem, often is converted to another problem, called
a dual problem, to find lower bounds to the optimal solutions
of the primal problem [149]. The reason for solving the dual
problem is because of the significant computational advan-
tages [149]. However, the dual problem does not necessarily
generate the same optimal solution as the primal problem
in which the difference is called duality gap. If the duality
gap is zero, it is called strong duality. If the duality gap is
nonnegative, it is called weak duality [149]. Two well-known
dualities are Lagrange duality and conjugate duality [178]. As
the broad discussion of these two dualities is out of scope of
this work, interested readers are referred to [178].

For multiobjective linear problems, the relationship between
duality and the existence of Pareto optimality has been stud-

ied [20, 139, 216]. Their studies prove that if a duality gap
exists, the optimal solutions x∗ from the auxiliary problem in
a given linear problem are Pareto optimal [20, 216]. However,
this effort has been made only in solving linear problems
where objective functions are convex. Many other studies also
examine the existence of weak Pareto optimality in convex,
differentiable MOO problems [57, 58, 95].

3) Solvability: Although the assumption of the convexity of
objective functions in MOO can significantly help complexity
of optimal solution search, it is not a realistic assumption
in practice [74]. The gap between theoretical MOO analysis
assuming convex objective functions and real-world problems
showing non-convex objective functions has been realized by
many researchers [74]. Many MOO problems are known to
be NP-Hard [74]. Recently the optimization research commu-
nity discussed that the complexity of a MOO version of a
combinatorial single objetive problems is NP-hard [85]. To
relax NP-Hardness of MOO problems, many approximation
techniques have been proposed and analyzed in terms of
optimality accuracy (e.g., distance from optimal solutions
to approximated solutions) and complexity (e.g., efficiency
introduced by approximation techniques) [80]. As discussed
in Section IV, many heuristic approaches have been proposed
to mitigate the computational complexity of optimal solution
search. However, due to the challenges in finding the ground
truth optimal solutions, even validating the effectiveness of
heuristic-based approximation mechanisms remains limited to
some extent in practice.

C. Stability of Optimal Solutions
Stability analysis examines if identified optimal solutions

are stable within a small change under perturbation [227].
Stability analysis is a useful tool for the post-analysis of iden-
tified optimal solutions. More specifically, it finds the lower
and upper semicontinuity functions of optimal values and
optimal solution sets [178]. For the stability analysis of MOO
problems, Sawaragi et al. [178] define the MOO problems
based on the following two parameters: (1) parameter u varies
over a set of U specifying the set of feasible solutions; and (2)
parameter v varies over a set of V describing the domination
structure of the decision maker in the objective space. Let
X(u) be the set of all feasible solutions and f(x, u) be the
vector-valued function. The set of feasible solutions in the
objective space, Y (u), is

Y (u) = {y ∈ Rp : y = f(x, u), x ∈ X(u)} (19)

The solution set M(u, v) over the objective space Y (u) and
the decision space D(v) is defined by

M(u, v) := {x ∈ X(u) : f(x, u) ∈ N(u, v)} (20)

Sawaragi et al. [178] examine the stability of efficient solution
sets when u varies and v is fixed. Kolbin and Perestoronin
[115] study the stability of solutions to MOO problems based
on normalization and the principle of solution selections. They
consider the region of admissibility and scope of optimality
using ε-stability.
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D. Optimality vs. Complexity
One of the key issues in solving MOO problems is how

to fine-tune the tradeoff between optimality (i.e., quality of
optimal solutions) and complexity (i.e., efficiency in running
time or space). We provide a summary of optimality and com-
plexity in Table X for scalarization-based and metaheuristics
MOO solution techniques discussed in Section IV.

Hybrid metaheuristics and trust-based MOO solutions also
are heuristics as the variants of metaheuristics or combination
with scalarization-based MOO methods to reduce solution
search complexity. Thus, when considering hybrid approaches
using either metaheuristics or trust, Table X provides a
guideline towards what MOO methods to combine for both
improved solution quality (i.e., optimality) and efficiency (i.e.,
complexity).

Quality of solutions in terms of Pareto optimality or near-
optimal solutions is affected by the characteristics of the given
problem. However, as far as a solution technique provides the
same or close to optimal solutions, efficiency is the priority
in selecting a solution technique. In particular, to solve large
size problems, many variants of known MOO techniques have
been introduced in order to reduce the complexity of a given
algorithm. As discussed in Section IV-C, there have been
efforts to combine more than one techniques for efficiency.
Further, many metaheuristics approaches are proposed to
generate higher solution diversity which may provide better
solution quality with less overhead, such as reaching a global
optimal solution with less convergence time.

Many MOO solution methods use constraints or a set of
ideal solutions as reference or target points. Increasing the
number of objectives makes a given MOO problem harder to
solve as does increasing the number of constraints. In addition,
it is highly challenging to identify the right set of weights,
utility functions, or ideal objective values which critically
impact the feasible solution space and complexity.

As shown in Table X, although there is a tradeoff between
complexity and optimality (i.e., a highly expensive, slow
process gives a better chance to find more optimal solutions
while an efficient, fast process may not provide high quality
solutions), the optimality achieved by a solution technique
with computationally high complexity may not have good
performance depending on context. Therefore, which MOO
methods to choose still depends on the performance level
required by a system or a decision maker.

VIII. FUTURE RESEARCH DIRECTIONS

An insight from the survey is that specific solution tech-
niques for MOO problems (as discussed in Sections IV and
VI) are often domain-specific and context-dependent (e.g.,
different context under 3 classes proposed in Section VI). We
found that for Class 1 problems with a large search space,
evolutionary algorithms are the most popular solution tech-
niques. For Class 2 problems where two-party objectives exist
with identical payoff functions, economic theories including
game and auction theories are the dominant techniques. For
Class 3 problems where two-party objectives exist with distinct
individual payoff functions, cooperative game theory domi-
nates. Trust-based methods follow the same trend and enhance

these solution techniques as trust can be used as an integrated
component in MOO problem formulation and system behavior
modeling. In addition, trust-based heuristics can introduce high
efficiency in solution search while achieving close-to-optimal
solutions for a large size problem.

In many application domains of computing and networking,
building trustworthy systems often can be a main concern
where trust can be considered as an objective along with
other objectives such as reliability, availability, security, or de-
pendability. A promising potential research area is to develop
MOO techniques to build trustworthy systems with multiple
objectives where trust-based decisions can efficiently reduce
solution search space. We suggest the following research
directions:

• Formulation of payoffs (or utilities): As seen in MOO
problems in Class 2 and Class 3, game theoretic ap-
proaches use the concept of payoffs and how to formulate
each party’s payoff significantly affects whether each
party (or system) achieves its respective objective by
obtaining expected payoff. Devising effective reward or
penalty mechanisms to entice cooperative behaviors of
individual entities to increase coalition and individual
payoffs [44, 214] is a promising research direction.

• Tradeoff analysis of objectives: When multiple objec-
tives exist in a system, what objective to prioritize, how
to weigh each objective, or how to adjust constraints
associated with achieving an objective function is closely
related to the tradeoffs between multiple objectives. A
future research direction is to devise a toolset allowing the
end user to specify the MOO problem requirements, ob-
jectives and their relative priority, classify the MOO prob-
lem (see Section VI), select the best solution technique
as suggested by the toolset (see Section IV), and more
importantly, parameterize model parameters (give values
to model parameters), and perform necessary tradeoff
analyses to maximize the performance of applications or
systems with multiple objectives.

• Entity modeling: An entity can be a machine, person,
group, or organization. How to characterize each entity
is closely related to how to measure performance of
achieving system goals because an entity’s performance
or behavior affects system behavior. A promising research
direction is to characterize an entity’s features and behav-
iors through multiple QoS and social trust dimensions,
including honesty, cooperativeness, social similarity, cen-
trality, service quality, capability, etc. [41]. Based on
game theoretic approaches, an individual’s utility can be
defined based on accrued trust so trust can play a role
as a basis of decision making. Equally important is team
modeling, i.e., how to measure the potential performance
(synergy) of mixed teams, such as a team of machines
and humans.

• Attack modeling: In various computing or networking
environments, security goals are critical parts of system
goals. How to model and characterize attack behaviors
is closely related to how a system reaches a security
standard. If attack behaviors are described unrealistically



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. X, NO. X, 2016 29

TABLE X
OPTIMALITY AND COMPLEXITY OF MOO TECHNIQUES

(m = #FEASIBLE SOLUTIONS, n = #OBJECTIVES, k = #PARETO OPTIMAL SOLUTIONS, r = #CONSTRAINTS w =CARDINALITY OF A WEIGHT SET)

Technique Optimality Complexity Note Ref.
Scalarization-based Methods

Weighted sum Weak/strong PO for convex
objective functions

O(mn) Difficult to choose weights based on preferences [132,
131]

ε-constraints Weak Pareto optimality (PO) O(nmn−1) Challenging to search for a set of constraints to identify
tradeoff points among objectives; an adaptive algorithm
exists with O(kn−1)

[132,
121]

Goal programming & Min-max No guarantee for PO O(mn) Challenging to set a goal vector for identifying Pareto
optimality

[54, 148]

Elastic constraints No guarantee for PO; but O(nm(n− 1)) Difficult to set a penalty coefficient that significantly
impacts solution search space; higher efficiency in
solution search than ε-constraints

[69, 113]

Weighted metric Weak PO O(wnm)) Identifiable PO when a set of utopian objective values
are known

[138,
140]

Achievement function No guarantee for PO O((w+ ρ)(n+m)) where
ρ > 0 which is an adjustable
reference point

Incurs extra overhead to identify adaptive reference
points; identifies better solution space

[138]

Benson’s method No guarantee for PO O(mnr) Increases feasible solution region; high impact of a
random reference point on the existence of PO

[20, 56]

Utility (or value function) No guarantee for PO O(mnr) Critical impact of utility functions on the existence of
PO; Nash equilibrium solutions may not provide PO

[56, 85]

Metaheuristics

Nondominated Sorting Genetic Algo-
rithm (NSGA) & Strength Pareto Evo-
lutionary Algorithm (SPEA)

No guarantee for PO; near-
optimal solutions

O(nm3) NSGA II provides better complexity of O(nm2);
useful for scalability and increasing the proximity to
PO

[55]

Pareto Archived Evolutionary Strategy
(PAES)

No guarantee for PO; near-
optimal solutions

O(amn) where a is the
length of the archive

a is typically proportional to n, leading to complexity
O(mn2); useful for a large size problem

[55]

Multiobjective Quantum-inspired Evo-
lutionary Algorithm (MQEA)

No guarantee for PO; near-
optimal solutions

O(nqc) where q is the num-
ber of qbits and c > 0

Significant improvement of the proximity to Pareto
optimality but incurs high computational cost

[111,
173]

Hierarchical EA (HEA) No guarantee for PO; near-
optimal solutions

O(ncm) where c > 0 computationally efficient by removing valid or domi-
nating solutions; increase of feasible solution space

[53, 61]

Ant Colony Optimization (ACO) No guarantee for PO; near-
optimal solutions

O(nm logm) Good for avoiding local optimal solutions; time-
consuming process for convergence to the optimal so-
lutions; O(nm logm) is for a fairly large evaporation
factor

[24, 63,
151]

Particle Swarm Optimization (PSO) No guarantee for PO; near-
optimal solutions

O(nm2) No mathematical basis to identify optimal solutions;
producing high quality solutions

[3, 109]

Simulated Annealing (SA) No guarantee for PO; near-
optimal solution

O(n(m2 +m) logm) Increasing feasible solution space [92]

Tabu Search (TS) No guarantee for PO; near-
optimal solutions

O(nm2) per iteration O(nm logm) per iteration with the robust TS;
O(nm) per iteration for a sized problem

[83, 161]

Variable Neighborhood Search (VNS) No guarantee for PO; near-
optimal solutions

nmr Similar to Benson’s method; but the size of m can be
reduced by local search

[93, 146]

or the degree of attack intensity is considered incorrectly,
optimizing system performance and/or security is not
measured accurately. Modeling accurate, realistic attack
behaviors is vital to measuring accurate optimization
solutions. A promising future research direction is to
model the dynamics between attackers and defenders by
leveraging game theoretic approaches [2, 37, 144, 145]
and reason how the system can dynamically adjust the
parameters associated with a solution technique to best
achieve multi-objective optimization.

• Integration of trust into MOO problem formulation:
In using optimization techniques, a system or entity can
use trust for decision making, which can be critical to
identifying correct optimal solutions. For example, when
using traditional evolutionary optimization techniques,
the formulation of the fitness function is important to
identifying optimal solution(s). If we use trust as a factor
to calculate the value of fitness, the trust estimator and the
accuracy of the estimated trust will affect the value of fit-
ness and accordingly generate different optimal solutions.
In addition, if we use a game theoretic approach to model
a system where multiple parties want to share a total

payoff, how each entity estimates trust towards another
entity will affect how the payoff is shared. A promis-
ing future research area is to consider multidimensional
trust comprising QoS and social trust components such
as service quality, capability, honesty, cooperativeness,
centrality, social contact, etc. [211, 212] and integrate
trust into the optimization techniques for best achieving
multi-objective optimization.

IX. SUMMARY

This paper provides a comprehensive survey of solution
and modeling methods to solve multi-objective optimiza-
tion (MOO) problems covering a wide range of applica-
tions/systems, including coalition formation (or team compo-
sition), task assignment, task scheduling, and resource alloca-
tion. By providing key advantages and disadvantages of each
method, this work provides guidelines on how each method
can be utilized in an application. We classified the papers
published between 2000 and 2016 on MOO problems into
three classes based on the design concept of global welfare
vs. individual welfare.

As a future research direction, we suggest entity modeling,
attack and defense behavior modeling, integration of multi-
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dimensional trust into multi-objective optimization problem
formulation, payoff function modeling and formulation, and
tradeoff analysis of multiple objectives, as future research
directions with trust-based heuristics that can introduce high
efficiency and effectiveness in solving MOO problems.
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Search. Boston, MA: Springer US, 2014, pp. 313–337.

[94] N. Hazon, Y. Aumann, and S. Kraus, “Collaborative
multi agent physical search with probabilistic knowl-
edge,” in Proceedings of 21st International Joint Con-
ference on Artificial Intelligence, Pasadena, CA, July
2009.

[95] S. Helbig, “Approximation of the efficient point set by
perturbation of the ordering cone,” ZOR - Methods and
Models of Operations Research, vol. 35, no. 3, pp. 197–
220, 1991.

[96] J.-J. Huang, C.-Y. Chen, H.-H. Liu, and G.-H. Tzeng,
“A multiobjective programming model for partner
selection-perspectives of objective synergies and re-
source allocation,” Expert Systems with Applications,
vol. 37, no. 5, pp. 3530–3536, May 2010.

[97] H. Huo, L. Yue, and X. Shen, “Trust game analysis
between partners in the supply chain alliance,” in In-
ternational Conference on Management Science and
Industrial Engineering, 2011, pp. 947–950.

[98] C.-L. Hwang and A. S. M. Masud, MultipleObjective
Decision Making - Methods and Applications. Berlin,
Germany: Springer, 1979.

[99] M. Hyodo, T. Matsuo, and T. Ito, “An optimal coalition

formation among buyer agents based on a genetic
algorithm,” in Developments in Applied Artificial Intel-
ligence. Springer, 2003, pp. 759–767.

[100] D. A. Iancu and N. Trichakis, “Pareto efficiency in
robust optimization,” Management Science, vol. 60,
no. 1, pp. 130–147, 2014.

[101] C. Jiang, Y. Shi, S. Kompella, Y. T. Hou, and S. F. Mid-
kiff, “Bicriteria optimization in multihop wireless net-
works: Characterizing the throughput-energy envelope,”
IEEE Transactions on Mobile Computing, vol. 12, no. 9,
pp. 1866–1878, Sept 2013.

[102] Y. Jiang and J. Jiang, “Contextual resource negotiation-
based task allocation and load balancing in complex
software systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 20, no. 5, pp. 641–653, May
2009.

[103] L. Jiao, J. Lit, W. Du, and X. Fu, “Multi-objective data
placement for multi-cloud socially aware services,” in
Proceedings of INFOCOM. IEEE, 2014, pp. 28–36.

[104] Y. Jin, J. Jin, A. Gluhak, K. Moessaner, and
M. Palaniswami, “An intelligent task allocation scheme
for multihop wireless networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 3, pp.
444–451, March 2012.

[105] Y. Jin and J. Branke, “Evolutionary optimization in
uncertain environments - a survey,” IEEE Transactions
on Evolutionary Computation, vol. 9, no. 3, pp. 303–
317, 2005.

[106] M. D. Johnston, “Deep space network scheduling us-
ing multi-objective optimization with uncertainty,” in
SpaceOps 2008 Conference, Heidelberg, Germany, May
2008.

[107] D. Jones and M. Tamiz, International Series in Oper-
ations Research and Management Science, 2010, vol.
141, ch. Practical Goal Programming.

[108] S. Kartik and C. Murthy, “Task allocation algorithms
for maximizing reliability of distributed computing sys-
tems,” IEEE Transactions on Computers, vol. 46, no. 6,
pp. 719–724, 1997.

[109] J. Kennedy, “Particle swarm optimization,” in Pro-
ceedings of IEEE International Conference on Neural
Networks, vol. 4, 1995, pp. 1942–1948.

[110] Z. Khan, J. Lehtomaki, M. C. amd M. Latva-aho, and
L. A. DaSilva, “Throughput-efficient dynamic coali-
tion formation in distributed cognitive radio networks,”
EURASIP Journal on Wireless Communications and
Networking, vol. 2010, no. 87, April 2010.

[111] Y. Kim, J.-H. Kim, and K.-H. Han, “Quantum-inspired
multiobjective evolutionary algorithm for multiobjective
0/1 knapsack problems,” in IEEE Congress on Evolu-
tionary Computation, Vancouver, Canada, 16-21 July
2006.

[112] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Op-
timization by simulated annealing,” Science, vol. 220,
no. 4598, pp. 671–680, May 1983.

[113] K. Klamroth and T. Jørgen, “Constrained optimiza-
tion using multiple objective programming,” Journal of
Global Optimization, vol. 37, no. 3, pp. 325–355, March



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. X, NO. X, 2016 34

2007.
[114] J. D. Knowles and D. W. Corne, “The pareto archive

evolution strategy: A new baseline algorithm for
multi-objective optimization,” in Proceedings of 1999
Congress on Evolutionary Computation, 1999, pp. 98–
105.

[115] V. V. Kolbin and D. S. Perestoronin, “Several problems
of the stability of multi-objective optimization,” in Inter-
national Conference “Stability and Control Processes”
in Memory of V.I. Zubov (SCP), Oct 2015, pp. 16–19.

[116] G. Koloniari and E. Pitoura, “A game-theoretic ap-
proach to the formation of clustered overlay networks,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 23, no. 4, pp. 589–59, April 2012.

[117] A. Konaka, D. W. Coit, and A. E. Smith, “Multi-
objective optimization using genetic algorithms: A tuto-
rial,” Reliability Engineering & System Safety, vol. 91,
no. 9, pp. 992–1007, 2006.

[118] V. Krishna, Auction Theory, 2nd ed. Elsevier, 2010.
[119] H. W. Kuhn and A. W. Tucker, “Nonlinear program-

ming,” in Proceedings of 2nd Berkeley Symposium on
Mathematical Statistics and Probability, University of
California at Berkeley, Berkeley, CA, 1951, pp. 481–
492.

[120] S. Kukkonen and K. Deb, A Fast and Effective Method
for Pruning of Non-dominated Solutions in Many-
Objective Problems. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 553–562.

[121] M. Laumanns, L. Thiele, and E. Zitzler, “An adap-
tive scheme to generate the pareto front based on the
epsilon-constraint method,” in Practical Approaches to
Multi-Objective Optimization, ser. Dagstuhl Seminar
Proceedings, J. Branke, K. Deb, K. Miettinen, and R. E.
Steuer, Eds., no. 04461. Dagstuhl, Germany: In-
ternationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), 2005.

[122] C.-H. Lee and K. Shin, “Optimal task assignment in
homogeneous networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 8, no. 2, pp. 119–129,
1997.

[123] K. Y. Lee and J. B. Park, “Application of particle swarm
optimization to economic dispatch problem: advantages
and disadvantages,” in IEEE Power Systems Conference
and Exposition, 2006, pp. 188–192.

[124] C. Li and K. Sycara, “Algorithm for combinatorial
coalition formation and payoff division in an electronic
marketplace,” in Proceedings of 1st International Joint
Conference on Autonomous Agents and Multiagent Sys-
tems, 2001, pp. 120–127.

[125] W. Li, F. C. Delicato, and A. Y. Zomaya, “Adap-
tive energy-efficient scheduling for hierarchical wireless
sensor networks,” ACM Transaction of Sensor Net-
works, vol. 9, no. 3, pp. 33:1–33:34, May 2013.

[126] Z. Li, Z. Li, and G. Rudolph, Advanced Intelligent Com-
puting Theories and Applications: With Aspects of Con-
temporary Intelligent Computing Techniques Commu-
nications in Computer and Information Science, 2007,
vol. 2, ch. On the convergence properties of quantum-

inspired multi-objective evolutionary algorithms, pp.
245–255.

[127] Q. Liao, S. Staczak, and F. Penna, “A statistical algo-
rithm for multi-objective handover optimization under
uncertainties,” in 2013 IEEE Wireless Communications
and Networking Conference (WCNC), April 2013, pp.
1552–1557.

[128] P. Limbourg, Evolutionary Multi-Criterion Optimiza-
tion, Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2005, vol. 3410, ch. Multi-objective
Optimization of Problems with Epistemic Uncertainty.

[129] L. Lin and J. Huai, “QGrid: an adaptive trust aware re-
source management framework,” IEEE Systems Journal,
vol. 3, no. 1, pp. 78–90, March 2009.

[130] W.-Y. Liu, K. Yue, T.-Y. Wu, and M.-J. Wei, “An
approach for multi-objective categorization based on
the game theory and markov process,” Applied Soft
Computing, vol. 11, no. 6, pp. 4087–4096, Set. 2011.

[131] Z. Q. Luo and S. Zhang, “Dynamic spectrum man-
agement: Complexity and duality,” IEEE Journal of
Selected Topics in Signal Processing, vol. 2, no. 1, pp.
57–73, Feb 2008.

[132] R. T. Marler and J. S. Arora, “Survey of multi-objective
optimization methods for engineering,” Structure Mul-
tidisciplinary Optimization, vol. 26, no. 6, pp. 369–395,
April 2004.

[133] L. Mashayekhy and D. Grosu, “A merge-and-split
mechanism for dynamic virtual organization formation
in grids,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 25, no. 3, pp. 540–549, Mar. 2014.

[134] N. F. Matsatsinis and P. Delias, “AgentAllocator: An
agent-based multi-criteria decision support system for
task allocation,” in 1st International Conference on Ap-
plications of Holonic and Multi-Agent Systems, Prague,
Czech Republic, Lecture Notes in Computer Science,
vol. 2744, Sept. 2003, pp. 1082–1083.

[135] R. Meng, Y. Ye, and N. G. Xie, “Multi-objective opti-
mization design methods based on game theory,” in 8th
World Congress on Intelligent Control and Automation,
2010, pp. 2220–2227.

[136] Merriam and Webster Dictionary, 2015.
[137] M. Mezmaz, N. Melab, and E. G. Talbi, “A paral-

lel exact hybrid approach for solving multi-objective
problems on the computational grid,” in Proceedings
20th IEEE International Parallel Distributed Processing
Symposium, April 2006.

[138] K. Miettinen, Multiobjective Optimization, ser. LNCS
5252. Springer-Verlag Berlin Heidelberg, 2008, ch.
Introduction to Multiobjective Optimization: Noninter-
active Approaches, pp. 1–26.

[139] ——, Nonlinear Multiobjective Optimization, ser. Inter-
national Series in Operations Research & Management
Science. Springer Science + Business Media, LLC,
1998, vol. 12.

[140] ——, Nonlinear Multiobjective Optimization. Kluwer
Academic Publishers, 1999, vol. 12, international Series
in Operations Research & Management Science.

[141] D. G. Mikulski, F. L. Lewis, E. Y. Gu, and G. R. Hudas,



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. X, NO. X, 2016 35

“Trust dynamics in multi-agent coalition formation,” in
Proceedings of SPIE, Unmanned Systems Technology
XIII, vol. 8045, April 2011.

[142] F. Milano, C. A. Canizares, and M. Invernizzi, “Mul-
tiobjective optimization for pricing system security in
electricity markets,” IEEE Transactions on Power Sys-
tems, vol. 18, no. 2, pp. 596–604, May 2003.

[143] L. Militano, A. Lera, and F. Scarcello, “A fair coop-
erative content-sharing service,” Computer Networks,
vol. 57, no. 9, pp. 1955–1973, June 2013.

[144] R. Mitchell and I. Chen, “Effect of intrusion detection
and response on reliability of cyber physical systems,”
IEEE Transactions on Reliability, vol. 62, no. 1, pp.
199–210, March 2013.

[145] ——, “Modeling and analysis of attacks and counter
defense mechanisms for cyber physical systems,” IEEE
Transactions on Reliability, 2015, in pess.

[146] N. Mladenovi/’c and P. Hansen, “Variable neighborhood
search,” Computers and Operations Research, vol. 24,
no. 11, pp. 1097–1100, 1997.

[147] C. Murthy, “Optimal task allocation in distributed sys-
tems by graph matching and state space search,” Journal
of Systems and Software, vol. 46, no. 1, pp. 59–75, 1999.

[148] H. Nakayama and Y. Yun, “Combining aspiration level
methods in multi-objective programming and sequential
approximate optimization using computational intelli-
gence,” in IEEE Symposium on Computational Intelli-
gence in Multicriteria Decision Making, 2007, pp. 319–
324.

[149] H. Nakayama, Duality in Multi-Objective Optimization.
Boston, MA: Springer US, 1999, pp. 69–97.

[150] L. Nardin and J. Sichman, “Simulating the impact of
trust in coalition formation: a preliminary analysis,” in
2nd Brazilian Workshop on Social Simulation, 2010, pp.
33–40.

[151] F. Neumann, D. Sudholt, and C. Witt, Computational
Complexity of Ant Colony Optimization and Its Hy-
bridization with Local Search. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 91–120.

[152] N. Nisan, T. Roughgarden, E. Targos, and V. V. Vazi-
rani, Algorithmic Game Theory. Cambridge University
Press, Sept. 2007.

[153] L. Nogueira and L. M. Pinho, “Time-bounded dis-
tributed QoS-aware service configuration in heteroge-
neous cooperative environments,” Journal of Parallel
and Distributed Computing, vol. 69, no. 4, pp. 491–
507, June 2009.

[154] C. Notario, R. Baert, and M. DHondt, “Multi-objective
genetic algorithm for task assignment on heterogeneous
nodes,” International Journal of Digital Multimedia
Broadcasting, pp. 1–12, 2012, article ID 716780.

[155] J. Oh, Cooperative game theory with nontransferable
utility. Wiley Encyclopedia of Operations Research
and Management Science, 2011.

[156] T. Okahe, Y. Jin, and B. Sendhoff, “A critical survey of
performance indices for multi-objective optimisation,”
in The 2003 Congress on Evolutionary Computation
(CEC’2003), vol. 2, 2003.

[157] A. Osyczka, “An approach to multicriterion optimiza-
tion problems for engineering design,” Computer Meth-
ods in Applied Mechanics and Engineering, vol. 15,
no. 3, pp. 309–333, Sept. 1978.

[158] A. Ouni, H. Rivano, F. Valois, and C. Rosenberg,
“Energy and throughput optimization of wireless mesh
networks with continuous power control,” IEEE Trans-
actions on Wireless Communications, vol. 14, no. 2, pp.
1131–1142, Feb. 2015.

[159] V. Pareto, The rise and fall of the elites. Bedminister
Press, 1968.

[160] D. C. Parkes, “Iterative combinatorial auctions: achiev-
ing economic and computational efficiency,” Ph.D. dis-
sertation, Computer and Information Science, Univer-
sity of Pennsylvania, 2001.

[161] G. Paul, “An efficient implementation of the robust
tabu search heuristic for sparse quadratic assignment
problems.”

[162] G. Pesant and M. Gendreau, “A constraint program-
ming framework for local search methods,” Journal of
Heuristics, vol. 5, pp. 155–179, 1999.

[163] P. S. Pillai and S. Rao, “Resource allocation in cloud
computing using the uncertainty principle of game
theory,” IEEE Systems Journal, vol. 10, no. 2, pp. 637–
648, June 2016.

[164] D. Pisinger and S. Ropke, Handbook of Metaheuristics,
ser. International Series in Operations Research & Man-
agement Science. Berlin: Springer, 2010, vol. 146, ch.
Large neighborhood search, pp. 399–419.

[165] A. Rachedi and A. Benslimane, “Multi-objective opti-
mization for security and QoS adaptation in wireless
sensor networks,” in 2016 IEEE International Confer-
ence on Communications (ICC), May 2016, pp. 1–7.

[166] G. R. Raidl, A Unified View on Hybrid Metaheuristics.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 1–12.

[167] S. Ramchurn, M. Polukarov, A. Farinelli, C. Truong,
and N. Jennings, “Coalition formation with spatial
and temporal constraints,” in Proceedings of the 9th
International Conference on Autonomous Agents and
Multiagent Systems, vol. 3. International Foundation
for Autonomous Agents and Multiagent Systems, 2010,
pp. 1181–1188.

[168] G. P. Rangaiah, Multi-Objective Optimization: Tech-
niques and Applications in Chemical Engineering.
World Scientific Publishing, 2009.

[169] S. S. Rao, “Game theory approach for multi-objective
structural optimization,” Computers and Structures,
vol. 25, no. 1, pp. 119–127, 1987.

[170] M. Reyes-Sierra and C. A. C. Coello, “Multi-objective
particle swarm optimizers: A survey of the state-of-
the-art,” International Journal of Computational Intel-
ligence Research, vol. 2, no. 3, pp. 287–308, 2006.

[171] B. J. Ritzel, J. W. Eheart, and S. Ranjithan, “Using
genetic algorithms to solve a multiple objective ground-
water pollution containment problem,” Water Resources
Research, vol. 30, no. 5, pp. 1589–1603, 1994.

[172] C. Romero, Handbook of critical issues in goal pro-



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. X, NO. X, 2016 36

gramming. Pergamon Press, Oxford, 1991.
[173] S.-J. Ryu, K.-B. Lee, B.-S. Yoo, T.-J. Kim, S.-J. Lee,

and J.-H. Kim, Multiobjective Quantum-Inspired Evo-
lutionary Algorithm with Preference-Based Selection 2:
Comparison Study. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 291–299.

[174] W. Saad, Z. Han, M. Debbah, A. Hjørungnes, and
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