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Abstract—We propose to combine social trust derived from social 
networks with quality-of-service (QoS) trust derived from 
communication networks to obtain a composite trust metric as a 
basis for evaluating trust of mobile nodes in mobile ad hoc 
network (MANET) environments. We develop a novel model-
based approach to identify the best protocol setting under which 
trust bias is minimized, that is, the peer-to-peer subjective trust as 
a result of executing our distributed trust management protocol 
is close to ground truth status over a wide range of operational 
and environment conditions with high resiliency to malicious 
attacks and misbehaving nodes.  

Keywords—trust management; mobile ad hoc networks; QoS 
trust; social trust; trust bias minimization. 

I.  INTRODUCTION 
Trust management for mobile ad hoc networks (MANETs) 

(see [1, 2] for a survey) has emerged as a new active research 
area as evidenced by the proliferation of trust/reputation 
protocols to support mobile group based applications in recent 
years [3-6]. In this paper we address an importance issue of 
trust management protocol design for MANETs: trust bias 
minimization despite misbehaving nodes performing trust-
based attacks.  

Relative to existing works [3-6] for MANET trust 
management cited above, this paper has two specific 
contributions. First, we develop a new trust management 
protocol (SQTrust) based on a composite social and QoS trust 
metric, with the goal to yield peer-to-peer subjective trust 
evaluation. A mobile ad hoc group very frequently comprises 
human operators carrying communication devices. Thus, in 
addition to traditional QoS trust metrics such as control packet 
overhead, throughput, packet dropping rate, delay, availability, 
convergence time to reach a steady state in trustworthiness for 
all participating nodes, percentage of malicious nodes, and 
fault tolerance, one must also consider social trust metrics 
including friendship, honesty, privacy, similarity, betweenness 
centrality and social ties for trust management. We note that 
prior works such as [7, 8] also considered social trust metrics 
in communication networks. Our work distinguishes itself 
from these prior works in that we identify the best trust 
aggregation parameter settings for each individual trust metric 
(either QoS or social) to minimize trust bias. Second, we 
propose a novel model-based evaluation technique for 
validating SQTrust based on the concept of objective trust 
evaluation which utilizes knowledge regarding the operational 
and environment conditions to yield the ground truth against 
which subjective trust values obtained from executing SQTrust 

can be compared for validation. Our analysis methodology 
hinges on the use of Stochastic Petri Net (SPN) mathematical 
modeling techniques [9-12] for describing the “actual” 
dynamic behaviors of nodes in MANETs in the presence of 
well-behaved, uncooperative and malicious nodes. With this 
methodology, we identify the optimal trust parameter settings 
under which trust bias is minimized, i.e., SQTrust is most 
accurate compared with global knowledge and actual node 
status.  

II. SQTRUST FOR MANETS 
A. Trust Composition 

Taking into consideration of the proliferation of mobile 
devices carried by humans in social ad hoc networks, our trust 
metric consists of two trust types: social trust and QoS trust 
[1]. Social trust is evaluated through interaction experiences in 
social networks to account for social relationships. Among the 
many social trust metrics such as friendship, honesty, privacy, 
similarity, betweenness centrality, and social ties, we select 
social ties (measured by intimacy) and honesty (measured by 
healthiness) to measure the social trust level of a node as 
these social properties are considered critical for trustworthy 
mission execution in group settings. QoS trust is evaluated 
through the communication and information networks by the 
capability of a node to complete a mission assigned. Among 
the many QoS metrics such as competence, cooperation, 
reliability, and task performance, we select competence 
(measured by energy) and protocol compliance (measured by 
cooperativeness in protocol execution) to measure the QoS 
trust level of a node since competence and cooperation are 
considered the most critical QoS trust properties for mission 
execution in group settings. Quantitatively, let a node’s trust 
level toward another node be a real number in the range of [0, 
1], with 1 indicating complete trust, 0.5 ignorance, and 0 
complete distrust.  

The rationale of selecting these social and QoS trust 
metrics is given as follows. The intimacy component (for 
measuring social ties) has a lot to do with if two nodes have a 
lot of direct or indirect interaction experiences with each other, 
for example, for packet routing and forwarding. The 
healthiness component (for measuring honesty) is essentially a 
belief of whether a node is malicious or not. We relate it to the 
probability that a node is not compromised. The energy 
component refers to the residual energy of a node, and for a 
MANET environment, energy is directly related to the 
survivability capability of a node to be able to execute a task 
completely, particularly when the current and future missions 
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may require a long mission execution time. Finally, the 
cooperativeness component of a node is related to whether the 
node is cooperative in routing and forwarding packets. For 
mobile groups, we relate it to the trust to a node being able to 
faithfully follow the prescribed protocol such as relaying and 
responding to group communication packets. 

We assert that a node can have fairly accurate trust 
assessments toward its 1-hop neighbors utilizing monitoring, 
overhearing and snooping techniques. For example, a node can 
monitor interaction experiences with a target node within radio 
range, and can overhear the transmission power and packet 
forwarding activities performed by the target node over a trust 
evaluation window �� to assess the target node’s energy and 
cooperativeness status. For a target node more than 1-hop 
away, a node will refer to a set of recommenders for its trust 
toward the remote target node.  

B. Trust Aggregation  
A unique feature of our trust aggregation protocol design is 

that we identify and apply the optimal trust parameter settings 
to minimize trust bias, i.e., minimizing the difference between 
subjective trust and objective trust. Here we define specific 
trust parameters used in our trust aggregation protocol design. 
Later in Section III we leverage a novel model-based approach 
developed in this paper to discover the best trust aggregation 
protocol settings to minimize trust bias.  

Like most trust aggregation protocols for MANETs [1], we 
consider both direct trust and indirect trust. That is, node i 
evaluates node j at time t by direct observations and indirect 
recommendations. Direct observations are direct evidences 
collected by node i toward node j over the time interval 
[� � ���� �] when node i and node j are 1-hop neighbors at 
time t. Here �� is the trust update interval and d is a design 
parameter specifying the extent to which recent interaction 
experiences would contribute to intimacy. We can go back as 
far as t=0, that is, d=t/��, if all interaction experiences are 
considered equally important. Indirect recommendations are 
indirect evidences given to node i by a subset of 1-hop 
neighbors selected based on two mechanisms against 
slandering attacks: (a) threshold-based filtering by which only 
trustworthy recommenders with trust higher than a minimum 
trust threshold are qualified as recommenders, and (b) 
relevance-based trust by which only recommenders with high 
trust in trust component X are qualified as recommenders to 
provide recommendations about a trustee’s trust component X.  

Summarizing above, node i will compute its trust toward 
node j, ���	
 ���� where X is a trust component by: ���	
 ��� 
 ������	����������
��� � ������	��������������
��� (1) 

In Equation 1, ��  is a parameter to weigh node i’s own 
information toward node j at time t, i.e., “direct observations” 
or “self-information” and �� is a parameter to weigh indirect 
information from recommenders, i.e., “information from 
others,” with ��� ���� 
 �.  

The direct trust part, ���	�����������
����  in Equation 1 is 
evaluated by node i at time t depending on if node i is a 1-hop 
neighbor of node j at time t. If yes, node i uses its direct 
observations toward node j during [ � � ���� � ] to update ���	�����������
��� where �� is the periodic trust evaluation interval. 
Otherwise, it uses its old direct trust assessment at time � � �� 

multiplied by �������(for exponential trust decay over time) to 
update ���	�����������
��� . Specifically, node i will compute ���	����������
��� by: 

���	������� 
��� 
 ����	��� !� 
 ��� ���"#��$�"%�&�'(")*+,- ., / &. ������� 0 ���	�������
�� � ������������,.*(-1"%(  (2)

Here we note that �����	����������
���  replaces ���	�������
�� ����� after the computation. So there won’t be a storage 
overflow problem. To account for trust decay over time, we 
adopt an exponential time decay factor, ��������to satisfy the 
desirable property that trust decay must be invariable to the 
trust update frequency. Depending on the trust evaluation 
interval ��, we can fine tune the value of �d  to test the effect of 
trust decay over time. The notation�����	��� !����
�����here refers 
to the new “direct” trust assessment at time t. We adopt the 
Bayesian trust/reputation model [13] with Beta (�, �) 
distribution such that �/(�+�) is the estimated direct trust 
with � as the number of positive service experiences and � as 
the number of negative service experiences. 

The indirect trust part, ���	�������������
���  in Equation 1 is 
evaluated by node i at time t by taking in recommendations 
from a subset of 1-hop neighbors selected following the 
threshold-based filtering and relevance-based trust selection 
criteria. Specifically, node i will compute ���	������������
��� by: 

���	������������
��� 

234
356 7���8
 ��� 0��8�	
 ���98:; <� ������"#�<� = >
������ 0 ���	���������
�� � �����"#�<� 
 >  (3)  

In Equation 3, m is a recommender and V is a set of <� 
recommenders chosen by node i from its 1-hop neighbors 
which satisfy the threshold-based filtering and relevance-
based trust selection criteria. That is, these are the 
recommenders for which node i’s ���8
 ��� in trust component X 
is higher than a minimum threshold denoted by ��
? Here we 
note that when a recommender node, say, node m, provides its 
recommendation to node i for evaluating node j in trust 
component X, node i's trust in node m is also taken into 
consideration as reflected in the product term on the right hand 
side of Equation 3. This accounts for trust decay over space. If <� =0 then ���	������������
��� 
 �����@� 0 �����	������������
�� � ���  to 
account for trust decay over time. 

C. Trust Formation 

While many trust formation models exist [1], we adopt the 
importance-weighted-sum model with which trust is an 
importance-weighted sum of social trust and QoS trust. It 
encompasses more-social-trust, more-QoS-trust, social-trust-
only, and QoS-trust-only in trust formation. It is particularly 
applicable to missions where context information is available 
about the importance of social or QoS trust properties for 
successful mission execution. For example, for a mission 
consisting of unmanned mobile nodes, the more-QoS-trust or 
QoS-trust-only trust formation model will be appropriate. The 
issue of determining optimal trust formation parameters for 
maximizing application performance is outside the scope of 
the paper and the reader is referred to [14] for more detail. The 
subjective trust value of node j as evaluated by node i at time t, 



denoted as ���	���, thus is computed by node i as a weighted 
average of intimacy, healthiness, energy, and cooperativeness 
trust components. The assessment is done periodically in every �� interval. Specifically node i will compute ���	��� by: 

���	��� 
AB
 0 ���	��
���
  (4)  

where ���	
 ��� is the trust belief of node i toward node j in trust 
component X=intimacy, healthiness, energy or cooperativeness 
and B
�is the weight associated with X.  

An interesting metric is the overall average “subjective” 
trust level of node j, denoted by �	CDE���, as evaluated by all 
active nodes. Once we obtain ���	���  from Equation 4, �	CDE����can be computed by: 

�	CDE��� 
 6 ���	���FGG��H	6 �FGG��H	  (5)  

In this paper, we compare �	CDE���  with the “objective” 
trust of node j, denoted by �	 E	���, calculated based on actual, 
global information to see how much deviation subjective trust 
evaluation is from objective trust evaluation. Specifically, let �	 E	�
���  denote the “objective” trust of node j in trust 
component X at time t, which we can obtain by a mathematical 
model (see Section III below). Then, following Equation 4, �	 E	��� is calculated by: 

�	 E	��� 
AB
 0 �	� E	�
���
  (6)  

III. ANALYTICAL MODEL 

A. Node SPN for Modeling Node Behavior 

Figure 1 shows the “node” SPN model developed for 
describing the lifetime behavior of a mobile node in the 
presence of other uncooperative and malicious nodes in a 
mobile group following the input operational profile. The 
system SPN model consists of N node SPN models where N is 
the number of nodes in the system. We utilize the node SPN 
model to obtain a single node’s information (e.g., intimacy, 
healthiness, energy, and cooperativeness) and to derive its trust 
relationships with other nodes in the system. It also captures 
location information of a node as a function of time. We 
consider a square-shaped operational area consisting of M×M 
regions each with the width and height equal to radio radius R. 
The node mobility model is specified as part of the operational 
profile.  

 
Figure 1: Node SPN Model. 

 
The reason of using node SPN models is to yield a 

probability model (a semi-Markov chain) to model the 
stochastic behavior of nodes in the system, given the system’s 

anticipated operational profile as input. The theoretical analysis 
yields objective trust based on ground truth of node status, 
against which subjective trust as a result of executing our 
proposed trust protocol is compared. This provides the 
theoretical foundation that subjective trust (from protocol 
execution) is accurate compared with ground truth. The 
underlying semi-Markov chain has a state representation 
comprising “places” in the SPN model. A node’s status is 
indicated by a 5-component state representation (Location, 
Member, Energy, CN, UNCOOP) with “Location” (an integer) 
indicating the current region the node resides, “Member” (a 
boolean variable) indicating if the node is a member, “Energy” 
(an integer) indicating the current energy level, “CN” (a 
boolean variable) indicating if the node is compromised, and 
“UNCOOP” (a boolean variable) indicating if the node is 
cooperative. For example, place Location is a state component 
whose value is indicated by the number of “tokens” in place 
Location. A state transition happens in the semi-Markov chain 
when a move event occurs with the event occurrence time 
interval following a probabilistic time distribution such as 
exponential, Weibull, Pareto, and hyper-exponential 
distributions. This is modeled by a “transition” with the 
corresponding firing time in the SPN model. Below we explain 
how we construct the node SPN model.  

Location: Transition T_LOCATION is triggered when the 
node moves to another region from its current location with the 
rate calculated as I���� JK  (i.e., the node’s mobility rate) based 
on an initial speed (Sinit) and wireless radio range (R). 
Depending on the location a node moves into, the number of 
tokens in place Location is adjusted. Suppose that nodes move 
randomly. Then a node randomly moves to one of four 
locations in four directions (i.e., north, west, south, and east) in 
accordance with its mobility rate. The underlying semi-Markov 
model of the node SPN model when solved gives the 
probability that a node is at a particular location at time t, e.g., 
the probability that node i is located in region j at time t. This 
information along with the location information of other nodes 
at time t provides global information if two nodes are 1-hop 
neighbors at time t. 

Intimacy: Intimacy trust is an aggregation of direct 
interaction experience (Ti,j

direct,intimacy(t)) and indirect interaction 
experience (Ti,j

indirect,intimacy(t)). Out of these two, only new 
direct interaction experience (Ti,j

direct,intimacy(t) via Ti,j
1-hop, 

intimacy(t)) is calculated based on if two nodes are 1-hop 
neighbors  interacting with each other via packet forwarding 
and routing. Since the node SPN model gives us the probability 
that a node is in a particular location at time t, we can 
objectively compute direct interaction experience ���	��� !��������8F�L��� (see Equation 2) based on the probability 
of nodes i and j are in the same location at time t from the 
output of the two SPN models associated with nodes i and j. 

Energy: Place Energy represents the current energy level of 
a node. An initial energy level of each node is assigned 
differently to reflect node heterogeneity. We randomly generate 
a number between 12 to 24 hours based on uniform 
distribution, representing a node’s initial energy level Einit. 
Then we put a number of tokens in place Energy corresponding 
to this initial energy level. A token is taken out when transition 
T_ENERGY fires. The transition rate of T_ENERGY is 
adjusted on the fly based on a node’s state: it is lower when a 

Energy 
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T_COMPRO 
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node becomes uncooperative to save energy and is higher when 
the node becomes compromised so that it performs attacks 
more and consumes energy more. Therefore, depending on the 
node’s status, its energy consumption is dynamically changed. 

Healthiness: A node is compromised when transition 
T_COMPRO fires. The rate to transition T_COMPRO is M� 8 
as the node compromising rate (or the capture rate) reflecting 
the hostility of the application. If the node is compromised, a 
token goes to CN, meaning that the node is already 
compromised and may perform good-mouthing and bad-
mouthing attacks as a recommender by good-mouthing a bad 
node with a high trust recommendation and bad-mouthing a 
good node with a low trust recommendation.  

Cooperativeness: Place UNCOOP represents whether a 
node is cooperative or not. If a node becomes uncooperative, a 
token goes to UNCOOP by triggering T_UNCOOP. The rate to 
transition T_UNCOOP is modeled as a function of its 
remaining energy, the mission difficulty, and the neighborhood 
uncooperativeness degree as follows:  

NO����PQRSTTU� 
 V��W��8F���V8XY��ZZ��DG�L[VCXI��\���[�\�  (7)

where��W��8F���represents the node’s current energy level as 
given in place Energy, Y��ZZ��DG�L�is the difficulty level of the 
given mission, I��\���  is the degree of uncooperativeness 
computed based on the ratio of uncooperative nodes to 
cooperative nodes among 1-hop neighbors and �\� is the group 
communication interval over which a node may decide to 
become uncooperative in protocol execution and drop packets. 
The form V�]� 
 ^]�_� follows the demand-pricing 
relationship in Economics [15-17] to model the effect of its 
argument x on the uncooperative behavior, including: 
• V��W��8F���: If a node has a lower level of energy, it is less 

likely to be cooperative. This is to consider a node’s 
individual utility in resource-constrained environments. 

• V8XY��ZZ��DG�L[: If a node is assigned to a more difficult 
mission, it is more likely to be cooperative to ensure 
successful mission execution.  

• VCXI��\���[ : If a node’s 1-hop neighbors are not very 
cooperative, the node is more likely to be cooperative to 
complete a given mission successfully. 
A compromised node is necessarily uncooperative as it 

won’t follow the protocol execution rules. So if place CN 
contains a token, place UNCOOP will also contain a token. 

B. Obtaining Objective Trust for Validating SQTrust 
Protocol Design  

With the node behaviors modeled by a probability model (a 
semi-Markov chain) described above, the objective trust 
evaluation of node j in trust component X, i.e., �	 E	�
���� can be 
obtained based on exact global knowledge about node j as 
modeled by its node SPN model. To calculate each of these 
objective trust probabilities of node j, one would assign a 
reward of NC�with state s of the underlying semi-Markov chain 
of the SPN model to obtain the probability weighed average 
reward as: 

�	 E	�
��� 
 A�NC ` UC����Cab  (8) 

for X = healthiness, energy or cooperativeness, and as: 

�	 E	�
��� 
 c������ 6 �NC ` UC��d����dCab���  (9) 

for X = intimacy. Here S indicates the set of states in the 
underlying semi-Markov chain of our SPN model, NC is the 
reward to be assigned to state s, and UC��� is the probability 
that the system is in state s at time t, which can be obtained 
by solving the underlying semi-Markov model of our SPN 
model utilizing known solution techniques such as SOR, 
Gauss Seidel, or Uniformization [12]. Table 1 summarizes 
specific reward assignments used to calculate �	 E	�
��� for 
X=intimacy, healthiness, energy, or cooperativeness. In 
Table 1, We�is the energy threshold below which the energy 
trust toward a node goes to 0. Once �	 E	�
��� is obtained, we 
compute the average objective trust value of node j, �	 E	���, 
based on Equation 6. It is compared with average subjective 
trust of node j,���	CDE���� defined in Equation 5 to compute 
trust bias obtained to validate our trust protocol design. 

 
Table 1: Reward Assignments for Objective Trust Evaluation. 
Component trust 

probability toward node j NC: reward  assignment to state s 

�	 E	�����8F�L��� � $V�fONg�/hi��jklO�$k<� is within a 5-
region neighbor area at time t; 0 otherwise �	 E	���FG�����CC��� ��$V��fONg�/hi�SR� 
 >); 0 otherwise 

�	 E	�����\L��� ��$V��fONg�/hi�W<�Nmn� = We�; 0 
otherwise �	 E	��  !��F��o���CC��� ��$V��fONg�/hi�QRSTTU� 
 >�; 0 
otherwise 

 
 
Table 2: Operational Profile for a Mobile Group Application. 

Parameter Value Parameter Value 
# of regions 6x6 R 250m 

area 1250mx1250m Einit [12, 24] hrs 
Sinit (0, 2] m/sec. ε 1.2 

1/�com 18 hrs α 0.8 
Tgc 120 sec. ��
 0.6 

IV. RESULTS  

Table 2 lists the parameter set and their default values 
specifying the operational profile given as input for testing 
SQTrust for a mobile group of size of 150 nodes in MANET 
environments. Initially all nodes are not compromised. When a 
node is compromised and turns malicious, it performs good-
mouthing and bad-mouthing attacks, i.e., it will provide the 
most positive recommendation (that is, 1) toward a bad node 
to facilitate collusion, and conversely the most negative 
recommendation (that is, 0) toward a good node to ruin the 
reputation of the good node. The initial trust level is set to 1 
for healthiness, energy and cooperativeness because all nodes 
are considered trustworthy initially. The initial trust level of 
intimacy is set to the probability that a node is found to be in a 
5-region neighbor area relative to 6x6 regions in accordance 
with the intimacy definition. Given this operational profile as 
input to the mobile group application, we aim to identify the 
best setting of �1: �2 (with higher �1 meaning more direct 
observations or self-information being used for subjective trust 
evaluation) under which trust bias is minimized, i.e., 



subjective trust is closest to objective trust. For trust protocol 
execution, we set the decay coefficient �M� 
 >?>>��� and the 
trust evaluation interval �� 
�20 min, resulting in ������ 
>?pq�to model small trust decay over time. Also the minimum 
recommender threshold ��
�is set to 0.6, the trust evaluation 
window size d is set to 2, and the minimum energy trust 
threshold ET is set to 0.  

Figure 2 shows the node’s overall trust values obtained 
from subjective trust evaluation vs. objective trust evaluation, 
i.e., �	CDE��� vs. ��	� E	���, for the equal-weight ratio case as a 
function of time, with �1: �2 varying from 0.6: 0.4 (60% direct 
evaluation: 40% indirect evaluation) to 0.9: 0.1 (90% direct 
evaluation: 10% indirect evaluation). The 10% increment in �1 
allows us to identify the best �1: �2 ratio under which subjective 
trust is closest to objective trust. We see that subjective trust 
evaluation results are closer and closer to objective trust 
evaluation results (and thus smaller trust bias) as we use more 
conservative direct observations or self-information for 
subjective trust evaluation. However, there is a cutoff point (at 
about 85%) after which subjective trust evaluation overshoots. 
This implies that using too much direct observations for 
subjective trust evaluation could overestimate trust because 
there is little chance for a node to use indirect observations 
from trustworthy recommenders. Our analysis allows such a 
cutoff point to be determined to minimize trust bias, given 
design considerations regarding trust decay over time 
(������ 
 >?pq� for direct trust decay in our case study). The 
result is validated by ns3 simulation (not shown due to limited 
space). 

V. CONCLUSION AND APPLICABILITY 
The identification of optimal protocol settings to minimize 

trust bias and maximize application performance is performed 
at static time. One way to apply the results for dynamic trust 
management is to build a lookup table at static time listing the 
optimal protocol settings discovered over a perceivable range 
of parameter values. Then, at runtime, upon sensing the 
environment conditions matching with a set of parameter 
values, a node can perform a simple table lookup operation 
augmented with extrapolation/interpolation techniques to 
determine and apply the optimal protocol setting to minimize 
trust bias in response to environment changes. In the future we 
plan to consider more sophisticated attacker behaviors 

including opportunistic, random and insidious attacks [18] to 
further test the resiliency of our trust protocol design. 
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Figure 2: Overall Trust Evaluation: Subjective Trust is Most Accurate 

When using 85% Direct Trust Evaluation (�1:�2=0.85:0.15). 
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