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ABSTRACT In this paper, we develop a methodology to capture and analyze the interplay of attack-defense 

strategies for intrusion detection in an autonomous distributed Internet of Things (IoT) system. In our 

formulation, every node must participate in lightweight intrusion detection of a neighbor target node. 

Consequently, every good node would play a set of defense strategies to faithfully defend the system while 

every bad node would play a set of attack strategies for achieving their own goals.  We develop an analytical 

model based on Stochastic Petri Net (SPN) modeling techniques. Our methodology allows the optimal 

defense strategies to be played by good nodes to maximize the system lifetime when given a set of parameter 

values characterizing the distributed IoT system operational environment. We conduct a detailed performance 

evaluation based on an experiment dataset deriving from a reference autonomous distributed IoT system 

comprising 128 sensor-carrying mobile nodes and show how IDS defense mechanisms can counter malicious 

attack mechanisms under the ADIoTS system while considering multiple failure conditions. 

INDEX TERMS Intrusion Detection, Internet of Things, mission-oriented IoT systems, Stochastic Petri 

Net, attack/defense behavior models. 

I. INTRODUCTION 

Security of Internet of Things (IoT) is of paramount 

importance given its widespread adoption. This is especially 

critical for security-sensitive IoT systems tasked with disaster 

recovery, evacuation, and military operations. In this paper, 

we develop a methodology to capture and analyze the 

interplay of intrusion detection attack-defense strategies in an 

Autonomous Distributed Internet of Things System 

(ADIoTS). An instance of ADIoTS is a mission-oriented IoT 

system populated with autonomous, smart IoT devices 

including smart sensors, actuators, and control nodes, for 

executing a specific mission. Possible application scenarios 

may involve a team of Unmanned Aerial Vehicles (UAVs), 

soldiers, automobiles, or robots monitoring and patrolling a 

combat area, and relaying critical information to the base for 

combat advantages. Such IoT devices (called nodes in this 

paper for short) can be compromised via capture attacks 

(through physical or cyber space) and turned into insiders 

performing various malicious attacks with the objective to fail 

the mission. Thus, an Intrusion Detection System (IDS) is 

called for to detect and remove inside attackers in the 

ADIoTS to ensure successful mission execution. Given the 

high threat of attacker strategies on the system, defense 

strategies must be put in place to counter such threats. 

We design the ADIoTS such that all nodes in the ADIoTS 

are expected to perform not only tasks assigned to them but 

also IDS duties to defend the system. Malicious nodes, 

however, can choose from a set of attack strategies with the 

objective to retain malicious nodes (thus causing false 

negatives) and evict good nodes (thus causing false positives) 

with the ultimate goal to fail the mission. Good nodes, on the 

other hand, can choose from a set of defense strategies to 

prolong the system lifetime. The attack/defense behaviors 

manifest into the false negative probability (i.e., missing a 

malicious node as a good node) and false positive probability 

(i.e., misidentifying a good node as a malicious node) which 

together affect the system lifetime. Here an attacker refers to 

an inside attacker and a defender refers to a good node.  

Our approach is based on distributed voting-based 

detection. We utilize SPNs as a mathematical tool to model 

smart attack and defense behaviors of nodes in a mission-

oriented ADIoTS operating under our collusion-aware 
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voting-based IDS scheme, with the objective to analyze and 

identify the optimal parameter settings of our collusion-aware 

voting-based IDS design that can optimize the system 

lifetime. More specifically, we develop node SPN models 

each keeping track of the status of one node in an ADIoTS as 

events happen in the system and identify optimal defense 

strength parameters (in terms of the detection interval length 

and the number of voters) in response to attacker 

characteristics and the sensed environment to maximize the 

system lifetime. While the importance of designing effective 

IDS strategies for detecting malicious nodes is well 

recognized, the literature is thin in modeling the interplay of 

attack/defense strategies and their effects on system 

reliability. Our work follows model-based evaluation. The 

novelty lies in setting up IDS duties that every node must 

participate in, thus forcing attack/defense interplay to go in a 

direction toward the designer’s desirable outcome, i.e., 

prolonging the system lifetime.  

Our work has the following unique contributions: 

1) We develop a methodology to capture and analyze the 

interplay of attack-defense strategies while 

attackers/defenders execute their required IDS functions in 

the form of voting-based intrusion detection in an ADIoTS.  

2) We develop an analytical model based on Stochastic 

Petri Net (SPN) modeling techniques [1] to describe the 

dynamics of IDS attack/defense strategies and examine their 

effect on system lifetime.  

3) We develop a novel iterative computational 

procedure with computational complexity of O(n) where n is 

the number of nodes in an ADIoTS to make it 

computationally feasible to analyze a large ADIoTS. 

4) We provide a detailed security evaluation in Section 

VI showing how defense strategies in our collusion-aware 

voting-based IDS design can effectively counter malicious 

attack strategies in an ADIoTS while considering multiple 

failure conditions. 

5) We compare our proposed collusion-aware voting-

based IDS (CAVBIDS) scheme  with baseline IDS schemes, 

and show how it outperforms these systems under smart and 

collusion-based attacks.  

Table I below lists acronyms and abbreviations used in the 

paper. Table II lists the parameters used by the analytical 

model. The rest of the paper is organized as follows: 

 Section II surveys related work. Section III discusses the 

system model including intrusion detection attack-defense 

strategies. Section IV develops an analytical model and an 

iterative computational procedure for quantifying the effect 

of attack/defense strategies on system lifetime. Section V 

discusses how optimal defense strategies are applied to 

maximize system lifetime. Section VI conducts security 

evaluation. Finally, Section VII summarizes the paper and 

outlines future work. 
TABLE I 

ACRONYMS AND ABBREVIATIONS 

Acronym Meaning 

CAVBIDS Collusion-Aware Voting-Based IDS  

IoT Internet of things 

IDS Intrusion detection system  

ADIoTS Autonomous distributed internet of things system 

SPN Stochastic petri net  

MTTF Mean time to failure 

TEU Task execution unit  

 
TABLE II 

NOTATIONS 

Symbol Meaning 

𝑃𝑎 Random attack probability 

m Number of voters per IDS voting 

𝑇𝐼𝐷𝑆 IDS interval 

𝑃𝑎𝑙𝑐  Random attack probability for low capability node 

𝑃𝑎ℎ𝑐 Random attack probability for high capability node 

𝑃𝑖
𝑔(𝑡) Probability of node 𝑖 being good at time 𝑡 

𝑃𝑖
𝑏(𝑡) Probability of node 𝑖 being bad at time 𝑡 

𝑃𝑖
𝑒(𝑡) Probability of node 𝑖 being evicted at time 𝑡 

𝑃𝑖,𝑙
𝐿 (𝑡) Probability that node 𝑖 is located in area 𝑙 at time 𝑡 

𝑃𝑓𝑛
𝐼𝐷𝑆 System IDS false negative probability 

𝑃𝑓𝑝
𝐼𝐷𝑆 System IDS false positive probability 

𝐻𝑝𝑓𝑛 Host IDS false negative probability 

𝐻𝑝𝑓𝑝 Host IDS false positive probability 

𝑃𝑒  Percentage of energy spent per 𝑇𝐼𝐷𝑆 

TEU Task execution unit  

𝑅𝑇 Residence time in current location 

LOC Location subnet of node SPN model 

UCN Undetected Compromised Node subnet of node SPN model 

DCN Detected Compromised Node subnet of node SPN node  

TASKS Tasks subnet of node SPN model indicating tasks 

completed 

 
II. RELATED WORK 

Many studies have focused on providing intrusion 

detection capability to protect vulnerable IoT-based networks 

from malicious attacks. Benkhelifa et al. [2] discuss 

advancements in intrusion detection practices in IoT. They 

discuss how preventive security measures for IoT systems are 

difficult to implement and stress the importance of a second 

line of defense such as using an IDS. They further suggest that 

due to the distributed nature of IoT, a distributed or 

hierarchical IDS is most suitable. We adopt the same approach 

in this paper. In [3], a protocol for centralized and active 

malicious node detection is proposed. Malicious nodes are 

detected by identifying changes by a genetic algorithm-based 

data gathering scheme through a matrix comparison method 
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executed by a mobile sink with unlimited energy capability. 

They consider the energy exhaustion of IoT nodes and lifetime 

duration. Furthermore, they focus on collecting digital 

forensic evidence to be used against malicious nodes. Their 

protocol however only focuses on detecting energy exhaustion 

and fake information reporting attacks and does not consider 

more sophisticated attacks against IoT deployments. In [4], the 

authors propose and analyze an intrusion detection 

architecture for resource constrained IoT networks. They use 

Raspberry Pi as a commodity single board computer with the 

snort open-source Intrusion Detection System and evaluate the 

resulting performance of the actual deployment. They prove 

that their proposed architecture can effectively run the IDS on 

Raspberry Pi in a distributed IoT system with limited 

resources and explain how the Raspberry Pi hardware 

mitigated problems with deploying snort on wireless mesh 

networks. Similarly, [5] proposes an intrusion detection model 

based on machine learning where feature selection is linked to 

specific types of expected attacks on the IoT system. They also 

run their IDS on a Raspberry Pi system claiming their 

lightweight protocol does not sacrifice on detection 

performance. In [6], a host-based intrusion detection and 

mitigation framework for smart devices deployed in home 

environments is proposed. Their framework detects intruders 

and blocks them from reaching their target. The system is 

designed with the flexibility to dynamically include patterns 

of known attacks, thus specifying related features to employ 

with customized machine learning techniques. It provides a 

comprehensive architecture for intrusion detection in smart 

homes, with a clear implementation following the OpenFlow 

protocol [7]. They, however, take a centralized approach to 

intrusion detection as they rely on a centralized intrusion 

detection manager, and their work concentrates on protecting 

limited devices in a home IoT setting. You et al. [8] present a 

monitoring solution to identify misbehaving embedded IoT 

devices. Their solution is based on a lightweight behavior rule 

specification system. In their study they have concluded that 

the misbehavior detection techniques that are based on rule 

specifications outperform the contemporary ones that are 

anomaly-based, for a UAV cyber physical system.  Compared 

to the above cited work, our work does not focus on host-level 

(i.e., one-to-one) detection methods for identifying host-level 

IDS security measures such as the host-level false positive 

probability and the host-level false negative probability. 

Rather, our work focuses on a system-level detection method 

in the form of majority voting by requesting each node that is 

assigned to monitor a target node to report its host-level 

intrusion detection results obtained through host-level 

detection methods. The system-level voting outcome 

subsequently determines if the target node is behaving or not. 

Furthermore, we develop a methodology to capture and 

analyze the interplay of attack-defense strategies while 

attackers/defenders execute their required IDS functions 

during majority voting.  

Machine learning techniques have been used in IDS design 

[9-12] . In [9] the authors propose a misuse intrusion detection 

framework for a wireless local area network based on majority 

voting that differentiates between attacker and legitimate node 

patterns by examining mac-layer frames. Their system uses 

several machine learning techniques where the best 

performing classifiers are chosen to get strong generalization. 

Then, majority voting is performed to get better accuracy. In 

[10], the authors develop a novel machine learning based IDS 

for IoT. The authors stress the importance of securing IoT 

devices which are considered as the weakest link and 

vulnerable to a variety of attacks. Their proposed protocol 

aims to detect malicious IoT nodes by first learning the 

behavior of the IoT based network, then applying a rule-based 

approach configured by the administrator. Their work 

however is only focused on detecting network scanning and 

simple forms of denial of service attacks. Similarly, the 

authors in [11] use a machine learning IDS approach by 

collecting data through dedicated sniffers, followed by stages 

of generating correctly classified instances, an iterative linear 

regression stage, and then finally a detection threshold is being 

applied to separate normal from malicious nodes. Their work 

does not consider lifetime and only considers blackhole and 

flooding attacks without considering colluding and smart 

attackers. In [12], a smart approach for intrusion detection and 

prevention system in mobile ad hoc networks is proposed. 

Their proposed system relies on machine learning approaches 

methods where intrusion detection depends on the four entities 

of packet analyzer, preprocessing unit, feature extraction unit 

and classification unit. They perform security analysis by 

considering false positive rate and detection rate. These works 

cited above [9-12] all utilize machine learning techniques for 

providing host-level intrusion detection. Our work is different 

in that we aim to provide system-level intrusion detection in 

the form of IDS voting by which each voting node selected 

(which can be good or bad) reports its host-level intrusion 

detection outcome as input. We aim to obtain the best system-

level intrusion detection outcome by analyzing the interplay of 

attack-defense strategies employed by IoT devices (good or 

bad) and identifying the best defense strategies to be employed 

in an ADIoTS. 

In [13], the authors discuss the limitations in the state-of-

the-art counter-measures against the security threats in health 

IoT. They identify internal attacks, where cryptographic 

keying material can be compromised, as serious threats to the 

IoT system especially due to the difficulty in detecting such 

compromised nodes. The authors identify key aspects to 

counter security threats in health IoT including using a 

distributed system instead of centralized, considering energy 

efficiency, and countering colluding nodes orchestrating 

attacks that are difficult to be detected by traditional 

methods. In our work, we also consider these aspects in our 

model and identify optimal intrusion detection parameters to 

maximize the IoT system lifetime under colluding attackers. 

In [14], a distributed anomaly detection system for IoT is 
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proposed. The authors discuss how internal attackers can 

establish themselves as legitimate nodes within the network, 

and how an internal anomaly detection system is required to 

prevent such internal attackers. They devise a control 

message scheme integrated with a routing protocol for low-

power and lossy networks, to report the anomaly to an edge-

router node. The system has a configurable profile in which 

detection and grading parameters are defined. They further 

specify the system architecture operating at the network and 

link layers. While their work exhibits distributed attributes 

and considers inside attackers, the final decision regarding 

the anomaly in their protocol is done at the edge router, thus 

creating the possibility of single point of failure 

vulnerabilities. Unlike [14] our work does not have a single 

point of failure. Rather, the system-level intrusion detection 

method designed in the form of IDS voting is totally 

distributed and resilient to failures or compromises of one 

third of IoT nodes in an ADIoTS.  

Another line of related work for IoT systems in the 

literature focuses on lifetime maximization in the presence 

of inside attackers. The authors in [15] propose and analyze 

a technique that is based on a behavior-rule specification for 

medical devices intrusion detection. The medical devices 

studied here are those embedded in Medical Cyber Physical 

Systems (MCPSs) where the patient’s safety is of the highest 

priority. The authors propose a methodology of transforming 

behavior rules into a state machine enabling the 

identification of monitored devices that are changing their 

behavior from the behavior specifications. The analysis of 

system lifetime is studied after defining system failure 

conditions. In [16], the authors propose an adaptive network 

defense management system for defending against smart 

attacks and selective capture that disrupt the basic 

functionality of data delivery in a wireless sensor network. 

The authors develop an analysis methodology for identifying 

the best settings of the defense protocol by which the lifetime 

of the sensor network against smart attacks and selective 

captures is maximized. Also, a simulation study has been 

conducted to validate this methodology. The protocol 

settings include the redundancy level for multi-path routing, 

the radio adjustment, the intrusion invocation interval and 

the number of voters. In [17], the authors present an intrusion 

detection and prevention mechanism suitable for low-power 

IoT deployments, where an intelligent security architecture 

is implementing using random neural networks by learning 

the normal behavior of the system and then embedding the 

base station with the trained random neural networks. Their 

method additionally relies on creating tags linked to memory 

accesses in order to detect out of bounds memory accesses 

indicating malicious activity. Their work follows anomaly-

based mechanisms for intrusion detection in IoT where 

computation is offloaded to a base station. In [18], the 

authors design and evaluate a trust-based distributed 

intrusion detection mechanism for IoT where nodes use trust-

based  mechanisms to manage neighbor reputation scores. A 

border router or cluster head is used to calculate trust values 

based on collected direct trust and reputation trust values of 

neighbors. They claim the proposed mechanism is suited to 

small IoT devices and can be applied to the health domain. 

Their work however only considers attacks of selective 

forwarding and sink hole on RPL (Routing Protocol for Low-

Power and Lossy Networks) performed by inside attackers, 

and does not consider smart attacks, collusion of nodes, or 

finding optimal IDS parameters to maximize system 

lifetime. Compared to the works cited above [15-18], our 

work also adopts model-based analysis, i.e., we develop an 

analytical model based on Stochastic Petri Nets (SPNs) [19] 

to analyze the interplay of attack-defense strategies 

employed by voting members during IDS voting and 

identifying the best defense strategies to be employed to 

maximize the IoT system lifetime, given system failure 

conditions as input. Unlike [15-18] , we do not consider the 

use of a centralized entity for conducting intrusion detection. 

Specifically, the proposed system-level intrusion detection is 

conducted in the form of IDS voting which is totally 

distributed. The only requirement is that each node when 

acting as a host IDS uses lightweight host-level detection 

techniques in order to cast a vote regarding the behavior of a 

target node in its vicinity.  

An SPN model is an analytical model allowing a system’s 

behaviors and states to be clearly defined since it will be 

transformed (by SPNP [1]) into a Markov model, thus 

providing a state-based strong modeling foundation. Unlike 

simulation which is laborious and lacking accuracy unless it 

is run sufficiently long to satisfy statistical significance, SPN 

models facilitate answering why if types of design questions 

accurately and rapidly because it merely involves 

computation. We use Stochastic Petri Nets (SPNs) [19] to 

model the interplay of attack-defense strategies employed by 

voting members during IDS voting with the goal to identify 

the best defense strategies to be employed to maximize the 

IoT system lifetime. In the literature, SPN models have also 

been used by many scholars [20-29] to analyze reliability and 

performance characteristics of cyber physical systems. In 

particular, the authors in [25] propose an analytical model 

based on SPNs for cyber-physical systems to capture the 

dynamics between defense and adversary behavior. In their 

work, they consider different types of failures that can occur 

in cyber-physical systems such as pervasion failure, 

exfiltration failure, and attrition failure. They further 

illustrate the parameterization process by using a modernized 

electrical grid and discuss the optimal design conditions by 

which the mean time to failure of the modernized electrical 

grid is maximized. In [26] Mitchell and Chen study the 

reliability of a cyber-physical system utilizing an IDS. A 

probability model that is based on SPNs is developed to 

analyze the CPS’s behavior with the existence of malicious 

nodes over a wide range of attackers’ behaviors. In addition, 

an Intrusion Detection and Response System (IDRS) is also 

presented in this study. In [27], the authors propose a SPN-

based approach for modeling and analysis of disaster 

recovery solutions for IoT infrastructures where mission-

critical IoT systems need real-time decision-making. A 

disaster recovery cloud is used in the case of a disaster 
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affecting the primary site’s components including medical 

servers and physician and emergency workstations. IoT 

network components are incorporated into the model to 

represent the connectivity between IoT medical devices and 

the primary site. Using the Petri net-based modeling 

approach, the system availability, cost, and recovery time of 

the disaster are analyzed. The authors show the applicability 

of their work through modeling a real-world healthcare IoT 

system. In [28], the authors propose a SPN model of a 

defensive maneuver cyber platform utilizing moving target 

defense and deceptive defense tactics. Their aim is to utilize 

defense cyber maneuver techniques to provide survivability 

and operational continuity. In their model, each system node 

can be in one of the operational, idle, or deceptive states as a 

defense response based on the attack, such that all states 

satisfy the specified constraints ensuring the stability of the 

maneuver system. By changing node states, and the rates in 

which nodes transition between states, a more defendable 

platform can be provided. Finally, they show trade-offs 

between security and operations. In [29], a SPN model is 

used to model and analyze threats in smart factories. They 

consider various threat scenarios including attacks and errors 

the cause availability risks, and their impact on the 

components of information networks in the area of 

connected production environments.  

Our work is different from the above cited works [20-29] 

in four aspects. First, to the best of our knowledge we are the 

first to explore SPNs for modeling a mission-oriented 

ADIoTS, whereas the above cited works [20-29] utilize SPN 

techniques mainly for reliability and performance analysis of 

wireless networks or cyber physical systems. In our work, we 

adopt SPN modeling techniques to specifically model and 

analyze the security property of a mission-oriented ADIoTS 

operating under our proposed collusion-aware voting-based 

IDS (CAVBIDS) scheme. Second, we develop an SPN model 

that allows us to analyze defense strategies to counteract attack 

strategies performed by inside attackers that would cause 

system (i.e., mission) failures. Our SPN model considers smart 

attacks such that attackers may attack strategically in order to 

maximize system failure probability. Our SPN model also 

considers colluding malicious nodes with the ability to work 

together to evade intrusion detection and evict good nodes. 

Third, our SPN model considers both energy and lifetime of 

the system as well as the interplay of attack/defense strategies 

for finding optimal IDS parameters to adaptively counter these 

smart attacks such that the system lifetime is maximized while 

achieving specified mission objectives. Finally, we 

demonstrate how CAVBIDS can apply the optimal IDS 

parameters identified from our SPN model to dynamically 

defend against smart collusion attacks. 

Table III above summarizes our proposed system 

compared to the available surveyed literature. 

III. ADIoTS SYSTEM MODEL 

We consider an ADIoTS comprising mission-oriented 

members or IoT devices (i.e. nodes) where all nodes in the 

ADIoTS are expected to perform mission tasks and IDS duties 

in order to achieve mission goals. In this work we do not 

differentiate between a member and an IoT device but instead 

treat them synonymously. IDS activities are performed by the 

ADIoTS where each node is responsible for participating in 

intrusion detection periodically at every intrusion detection 

interval (namely 𝑇𝐼𝐷𝑆). IoT devices can be compromised via 

capture attacks (through physical or cyber space) and turned 

into insiders performing various malicious attacks. An insider 

is a legitimate member of the mission group and thus has 

 TABLE III 

SUPPORTING FEATURES OF THE PROPOSED SYSTEM COMPARED TO THE AVAILABLE LITERATURE 

 

Previous Work  

 

Intrusion 

Detection 

IoT-Based 

 

Tackles Inside 

Attackers and 

Collusion 

 

Considers 

Lifetime and 

Energy 

Consumption  

Distributed  
SPN Model-Based 

Approach  

[5] ✓ ✓ - Partial - - 

[10],[11] ✓ ✓ - - - - 

[6],[8],[12],[17] ✓ ✓ Partial - - - 

[15] ✓ ✓ Partial Partial - - 

[4] ✓ ✓ - ✓ ✓ - 

[13] ✓ ✓ ✓ Partial ✓ - 

[14],[18] ✓ ✓ Partial - ✓ - 

[25] ✓ - Partial ✓ - ✓ 

[16] ✓ - ✓ ✓ ✓ - 

[26] ✓ - ✓ ✓ ✓ ✓ 

[27],[28] ✓ ✓ - ✓ - ✓ 

[29] ✓ - - Partial - ✓ 

Proposed system ✓ ✓ ✓ ✓ ✓ ✓ 
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access to the group security key for group communication, and 

it will remain undetected unless it exhibits malicious behavior 

and is detected by the IDS. An inside attacker can perform 

packet-dropping attacks by randomly dropping packets 

passing through it, integrity attacks by packet modification, 

and denial of service attacks by overwhelming the 

network/server with service requests. In this paper, we 

propose a voting-based distributed IDS design to detect and 

remove inside attackers in the ADIoTS to ensure successful 

mission execution. 

H

H

H

H

H

T
vote

vote
vote

vote

vote

Host IDS

Target

 
FIGURE 1. Distributed voting-based Intrusion Detection. 

 
At the host-level, a node that is assigned to monitor a 

neighbor target node will use its host IDS capability based 
on lightweight anomaly detection mechanisms to judge if 
the neighbor target node is behaving or misbehaving (see 
Fig. 1). At the system level, we assume that the mission 
commander in a well-protected area will send a mobile 
sink node (e.g., a drone) at every intrusion detection 
interval (namely 𝑇𝐼𝐷𝑆) to collect votes from IoT nodes who 
have been assigned to monitor a target node and then 
based on the voting outcome make a decision about 
whether the target node is behaving or misbehaving. Note 
that the mobile sink node sent by the mission commander 
is not a single point of failure because its only function is 
to collect votes from participating nodes that perform 
host-level intrusion detection on a target node. Should the 
mobile sink node fail to return votes to the mission 
commander, the mission commander can send another 

one immediately. When asked to express its opinion about 

whether a target node in the neighborhood is behaving, a 

node must vote “yes” (meaning behaving) or “no” (meaning 

misbehaving) toward the target node. A malicious node can 

perform “ballot-stuffing” attacks by voting “yes” toward 

another malicious node to keep the malicious target node in 

the system. A malicious node can also perform advanced 
collusion attacks, including “ballot-stuffing” attacks by 
voting “yes” toward another malicious node to keep the 
malicious target node in the system, and “bad-mouthing” 
attacks by voting “no” toward a good node to evict the 
good target node from the system. When the majority of 
votes is “no” the target node is evicted. For the case in 
which a malicious node is voted “yes” by a majority, the 
system results in a false negative. For the case in which a 
good node is voted “no” by a majority, the system results 

in a false positive. Malicious nodes would apply the 
“best” attack strategies with the goal of shortening the 

system lifetime. Good nodes (i.e., defenders) on the other 

hand would select the “best” defense strategies to prolong 

the system lifetime. The attack/defense behavior therefore is 

set up within the context of IDS voting whose effectiveness 

is measured by the false negative probability and false 

positive probability which together affect the system 

lifetime. We note that a good node’s host IDS is not 
perfect, so it may miss detecting a bad node. That is, a 
good node can miss detecting a bad node with a host-level 
false negative probability 𝐻𝑝𝑓𝑛 and it can misidentify a 

good node as a bad node with a host-level false positive 
probability 𝐻𝑝𝑓𝑝.  Such values are frequently small (e.g., 

less than 5%) and are assumed to be known before each 
node is released to operation by software engineering 
testing. 

Furthermore, the mission’s success is dependent on the 

nodes collectively completing the required mission tasks. We 

consider that the ADIoTS nodes are heterogeneous with 

respect to memory and processing capability. While a low 

capability node may complete a small number of tasks, high 

capability nodes may have the capability to complete a larger 

number of tasks within the same time interval. We consider 

that nodes with similar capability will execute the same 

number of tasks within the same time duration. We map the 

amount of task work to a unit of task completion denoted by 

task execution unit (TEU), to effectively measure the 

mission group’s tasks completion, as opposed to counting the 

number of tasks. Fig. 2 depicts the intrusion detection and 

mission task execution of the ADIoTS. Each IoT device is 

responsible for completing TEUs based on its capability. IoT 

devices communicate with each other based on IoT machine-

to-machine (M2M) wireless communication protocols such 

as MQTT [30] and LWM2M [31] without the need to 

connect to the broader Internet. 

TA
SK

TEUs

H
ID

S

vote

vote

vote

vote

vote

Target

 
FIGURE 2. ADIoTS nodes perform distributed voting-based intrusion 
detection and execute mission tasks. ADIoTS nodes are heterogenous with 
low capability (blue) and high capability (green). Each node is equipped 
with modules for executing intrusion detection and executing tasks (i.e., 
TEUs). 

A.  SYSTEM FAILURE TYPES 

We consider the following system failure types: 

• Byzantine failure [32]:  A Byzantine failure occurs if one 
third or more IoT devices in the ADIoTS have been 
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compromised as there is no way to reach a consensus for 
decision making. 

• Attrition failure:  An attrition failure occurs if the 

ADIoTS does not have enough IoT devices left to carry 

out its mission. 

• Resource depletion failure: A resource depletion failure 

occurs if the energy of IoT devices is too depleted to be 

able to accomplish the mission.  

• Application failure: If the number of tasks completed 

does not meet the minimum threshold required to meet 

the mission’s objectives. Such objectives could include 

gathering location-based measurements, performing 

certain calculations while deployed, or performing 

physical tasks (actuating) while deployed. These tasks 

can only be performed by nodes that have not been 

evicted. The number of tasks (or equivalently, completion 

percentage) is application dependent, where critical and 

security sensitive applications may have a higher 

threshold (i.e. lower tolerance) for task completion. 

B.  ATTACK STRATEGIES 

Attack strategies used by a malicious node during IDS 
majority voting include: 

• Persistent: A malicious node attacks recklessly. When 
serving as a voter during IDS majority voting, it will 
always vote “no” to evict a good node (to cause a false 
positive), and “yes” to retain a bad node (to cause a false 
negative). 

• Random: The attack behavior is the same as a persistent 
attacker except that a malicious node only attacks 
randomly with probability 𝑝𝑎 (0 to 1) to avoid detection. 

• Opportunistic: The attack behavior is the same as a 
persistent attacker except that a malicious node only 
attacks opportunistically. That is, when serving as a voter, 
a malicious node will vote to evict a good node, or to 
retain a bad node, only if there is a majority of bad nodes 
among m nodes being selected to perform majority 
voting. 

• Selective: The attacker uses the strategies of Random and 

Opportunistic attacks, but selectively performs actions 

based on the target node under IDS evaluation. When 

there is a majority of bad voters, a bad voter will vote 

against a good target confidently (without concern of 

being detected by the IDS). When the bad voters are less 

than a majority, they perform voting attacks in a random 

fashion, where they vote against lower capability IoT 

nodes with a lower probability than higher capability 

nodes. Thus attack with 𝑃𝑎  (where 𝑃𝑎 = 𝑃𝑎𝑙𝑐 + 𝑃𝑎ℎ𝑐)  if 

bad nodes are less than a majority, where the malicious 

voter attacks low capability and high capability with 𝑃𝑎𝑙𝑐 

and 𝑃𝑎ℎ𝑐 respectively, where 𝑃𝑎𝑙𝑐 ≪ 𝑃𝑎ℎ𝑐.  The strategy 

of malicious voters here is to prioritize evicting high 

capability IoT nodes over lower capability ones while 

keeping IDS suspicion low.  Thus, malicious nodes may 

vote for a good low capability target, not in the hopes of 

the target remaining in the system, but in order to 

maintain a random attack behavior that evades the IDS, 

thus maximizing the probability of the malicious voter 

remaining in the system. The malicious voter does this 

with the aim of remaining in the system for subsequent 

IDS rounds to vote against a high capability target and 

maximize the damage inflicted on the system. It also does 

this since low nodes are of a lower benefit to the system 

and are a lower threat to malicious nodes (as they 

typically have a higher host-level false positive 

probability and a higher false negative probability) in 

comparison to high capability nodes. 

 
Fig. 3 (a) illustrates a scenario of how malicious nodes 

have decided to disregard an opportunity to attack, at time 𝑡, 
to maximize evading detection. On the other hand, in Fig. 3 
(b), the same malicious nodes, at time > 𝑡, have decided to 
attack the high capability target. In this scenario in Fig. 3 (b), 
both malicious nodes have voted to evict the good high 
capability target by voting “no”, and a good node has 
misidentified the target as malicious based on its host IDS 
and voted “no”, thus resulting in a majority calling for 
evicting the high capability target node. 
 

 

LC Target

Yes

Yes

Yes

No

k

Yes

j

x

<<collusion>>

<<collusion>>

Time: t

action: skip
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(a) 

 

HC Target

Yes

Yes

No

No

k

No
j

y

<<collusion>>
action: attack

<<collusion>>
action: attack

Time: > t

 
(b) 

 
FIGURE 3. Selective attack during IDS voting by colluding nodes j and k: 
(a) Intentionally disregarding an opportunity to attack a low capability target 
node at time 𝒕 and evading detection by IDS, (b) Colluding to attack another 
high capability target node at a later time > 𝒕. 

 
The attacker’s benefit of evicting high capability nodes is 

twofold; first high capability nodes have the capability to 
accomplish more tasks and fulfill the application 
requirements such that evicting them increases the probability 
of application failure to the system. Second, high capability 
nodes have better capability to cast accurate votes when 
participating in the IDS (they typically have a lower host-
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level false positive probability and a lower false negative 
probability) thus detecting malicious voters with a higher 
probability than lower capability nodes. This strategy of 
mischievously voting for weaker opponents in order to be 
able to cause failure to stronger opponents later on, exhibits 
similarities to tactical voting (or strategic voting) strategies 
used in political elections where the voter may, at the time of 
voting, vote for its less preferable choice with the aim of 
getting an overall better gain later on by influencing the 
overall outcome  [33, 34]. From the attacker’s perspective, 
this means more damage or higher failure probability to the 
system. 

C.  DEFENSE STRATEGIES 

We list the defense strategies used by all good nodes (as 
dictated by the defense system) during IDS majority voting 
below. The defense strength can be controlled by adjusting 
the following two parameters: 

• The number of voters (𝑚) selected from a target node’s 
location for executing IDS majority voting. Higher m 
means higher detection strength. 

• The intrusion detection interval (𝑇𝐼𝐷𝑆)   to control the 

detection frequency at which IDS voting is performed. 

Smaller 𝑇𝐼𝐷𝑆 means higher detection frequency. 

IV. MODELING AND ANALYSIS 

In this section, we develop an analytical model to describe the 
IDS attack-defense dynamics and analyze the effect of 
attack/defense strategies executed by attackers/defenders on 
the security property and consequently the system lifetime. 
We also develop an iterative computational procedure to 
make it computationally feasible for a large ADIoTS 
consisting of a large number of IoT devices (See Table II for 
the list of parameters used by the analytical model). 

Our analytical model provides the following two pieces of 
information to facilitate modeling of attack/defense 
dynamics: 

1. Location: we like to know the probability that node i is 

located in area l at time t, denoted by 𝑃𝑖,𝑙
𝐿 (𝑡).  By 

inspecting 𝑃𝑖,𝑙
𝐿 (𝑡) and 𝑃𝑗,𝑙

𝐿 (𝑡), we will know if node i and 

node j are in the same location at time t. 
2. Good/Bad/Evicted status: we like to know the 

probability that node i is good, bad, or evicted at time t, 

denoted by 𝑃𝑖
𝑔(𝑡), 𝑃𝑖

𝑏(𝑡) and 𝑃𝑖
𝑒(𝑡), respectively, with 

𝑃𝑖
𝑔(𝑡) + 𝑃𝑖

𝑏(𝑡) + 𝑃𝑖
𝑒(𝑡) = 1.  By inspecting 

𝑃𝑖
𝑔(𝑡), 𝑃𝑖

𝑏(𝑡) and 𝑃𝑖
𝑒(𝑡) for node i, 𝑃𝑗

𝑔(𝑡), 𝑃𝑗
𝑏(𝑡) and 

𝑃𝑗
𝑒(𝑡)for node j, 𝑃𝑘

𝑔(𝑡), 𝑃𝑘
𝑏(𝑡)and 𝑃𝑘

𝑒(𝑡) for node k, and 

so forth,  we know the attack/defense strength at time t. 
If a good target node is surrounded by many bad nodes, 
then there is a high probability that the good target node 
will be misidentified as a bad node (thus causing a false 
positive) and a bad target node will be misidentified as a 
good node (thus causing a false negative). 

We use Stochastic Petri Net (SPN) modeling techniques to 

provide us the above two pieces of information. We utilize a 

tool called SPNP [1] to define and evaluate SPN node models 

describing node attack-defense behaviors and status, to 

measure the system security metrics for security analysis.  

An SPN model [19] comprises 4 entities: (a) transitions to 

represent occurrences of events, (b) places to represent 

conditions or states; (c) arcs to connect transitions to places 

and specify the directions of transitions; and (d) tokens to 

represent jobs or nodes that can flow from input places into 

output places based on transitions, indicating changes of 

status. 
 Fig. 4 shows the SPN node model for node 𝑖 for modeling 

the location and status of node i over time. It consists of a 

location subnet (top left) providing the location information 

of node i at time t, a timer/energy subnet (top right) providing 

the energy status of node i, and a compromise 

undetected/detected status subnet (bottom) keeping track of 

if node i has been compromised at time t and if the 

compromise has been detected. These subnets are described 

in more detail in the following subsections. Each node in the 

system is separately modeled by an SPN node model. 

Therefore, there will be many SPN node models in the 

system (i.e., one for each node), but each can be run and 

evaluated separately with our hierarchical modeling 

technique.   
 

 
FIGURE 4. Node SPN Model. 

 

A.  MODELING NODE STATUS 

The location subnet (at the top left of Fig. 4) for node 𝑖 
provides us information about 𝑃𝑖,𝑙

𝐿 (𝑡). The id of the current 

location of node 𝑖 is indicated by the number of tokens in 

place LOC. The autonomous distributed IoT environment can 

be modeled as an M×M location grid, with the unit length 

equal to the wireless radio range (R) and each location is 

labeled with a unique location id. We allow each node to have 

its own mobility pattern specified by a sequence of time-

ordered (location id, residence time) tuples, meaning that the 

IoT device stays at a location with the location id so indicated 

for this much time with the residence time so indicated. The 

mobility pattern can be generated by simulating the 

movement of a node following a mobility model such as the 

random movement model or the social SWIM mobility model 

[35]. The transition T_LOCATION is triggered when node 𝑖 
moves from its current location to the next location with the 

transition rate calculated as 1 𝑅𝑇⁄  where RT is the residence 

 UCN 
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time in the current location. Depending on the next location, 

the number of tokens in place LOC is adjusted to reflect the 

id of the location it resides under (after the movement is 

made), so by looking at the number of tokens in place LOC 

at time t we know the location of node 𝑖 at time t. 

The compromise undetected/detected status subnet (at the 

middle of Fig. 4) for node 𝑖  gives us information 

about  𝑃𝑖
𝑔(𝑡), 𝑃𝑖

𝑏(𝑡) and 𝑃𝑖
𝑒(𝑡). The status of node 𝑖  is 

indicated by a token which flows from one place to another. 

Place UCN indicates that node 𝑖 is compromised. A node is 

compromised when transition T_COMPRO with rate 𝜆𝑐𝑜𝑚 

fires where 𝜆𝑐𝑜𝑚 is the per-node capture rate. The transition  

T_COMPRO is enabled if the node is not yet compromised 

or evicted. When node 𝑖  is compromised, a token goes to 

UCN, meaning that node 𝑖 is now a malicious node not yet 

detected by IDS, so it may perform persistent, random, or 

opportunistic attacks. Place DCN means that node 𝑖  is 

evicted. An eviction can occur in two ways. The first way is 

that node 𝑖  was compromised (i.e., the token was in place 

UCN) and is correctly identified by the system IDS, causing 

the token to flow from into DCN and node 𝑖 to be evicted 

immediately. The transition rate of T_IDS is 

(1 − 𝑃𝑓𝑛
𝐼𝐷𝑆) 𝑇𝐼𝐷𝑆⁄  where 𝑃𝑓𝑛

𝐼𝐷𝑆 (derived in Equation 1 below) 

is the false negative probability of the system IDS and 𝑇𝐼𝐷𝑆 is 

the IDS detection interval. The second way is that node 𝑖 was 

a good node but is misidentified as a bad node by the system 

IDS, causing the token to be deposited in place DCN and node 

𝑖 to be evicted immediately. The transition rate of T_IDSFA 

is 𝑃𝑓𝑝
𝐼𝐷𝑆 𝑇𝐼𝐷𝑆⁄  where 𝑃𝑓𝑝

𝐼𝐷𝑆(derived in Equation 1 below) is the 

false positive probability of the system IDS. 

The timer subnet (at the top right of Figure 4) keeps track 

of elapsed time in the node SPN model. After 𝑇𝐼𝐷𝑆 is elapsed, 

T_TIMER fires and a token is added to place TIME. 

T_TIMER is disabled when the node is evicted (i.e., when a 

token is in place DCN). By looking at the number of tokens 

in place TIME, one can tell the current time. This information 

allows 𝑃𝑓𝑝
𝐼𝐷𝑆 and 𝑃𝑓𝑛

𝐼𝐷𝑆 to be updated in increments of 𝑇𝐼𝐷𝑆 

dynamically to reflect the effect of IDS attacker/defense 

dynamics on 𝑃𝑓𝑝
𝐼𝐷𝑆and 𝑃𝑓𝑛

𝐼𝐷𝑆.  We also use the timer subnet as 

the energy subnet with each token deposited in place TIME 

indicating the amount of energy spent by node 𝑖  in an 

intrusion detection cycle. By knowing the number of IDS 

cycles elapsed (from place TIME) and the percentage of 

energy spent by node 𝑖 per cycle for executing monitoring, 

reporting, task execution, and performing IDS functions, 

denoted by 𝑃𝑒 , we can estimate the remaining energy of node 

𝑖 at time t. 
The task subnet for node 𝑖 (at the bottom of Fig. 4) is to 

keep track of the tasks completed by node 𝑖. The transition 
T_TASKS is triggered periodically with rate 1/𝐸𝑇 where 𝐸𝑇 
is the execution time. Thus, in every 𝐸𝑇 interval, a unit of 
tasks (a TEU) is completed, and tokens representing this unit 
will be deposited into place TASKS. While a low capability 
node may deposit a small number of tokens, high capability 
nodes may have the capability to complete a larger amount of 
work within the 𝐸𝑇 interval, resulting in a larger number of 
tokens being deposited in the same execution time duration. 
We denote the task tokens deposited for low capability nodes 
and high capability nodes over the 𝐸𝑇 interval by 𝑡𝑡𝑙𝑐

𝐸𝑇and 

𝑡𝑡ℎ𝑐
𝐸𝑇 respectively. As a result, we expect that 𝑡𝑡𝑙𝑐

𝐸𝑇 > 𝑡𝑡ℎ𝑐
𝐸𝑇. A 

node may execute tasks of different types including 
monitoring, actuating, or computation, each represented by a 
different number of tokens and executed as requested by the 
system. In this work, for simplicity, we do not differentiate 
between different task types and consider that nodes with 
similar capability will execute the same number of tasks 
within the same time duration (i.e., 𝐸𝑇). 

B.  MODELING ATTACKER/DEFENDER STRATEGIES 

An attacker can perform persistent, random, or opportunistic 

attacks while participating in the majority voting IDS 

function. The attack strategy chosen affects the system IDS 

security measured by the false negative probability (𝑃𝑓𝑛
𝐼𝐷𝑆) 

and the false positive probability (𝑃𝑓𝑝
𝐼𝐷𝑆).   

 We derive the false positive probability (𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙)) and 

false negative probability (𝑃𝑓𝑛
𝐼𝐷𝑆(𝑡, 𝑙)) for diagnosing a target 

node at location l and time t surrounded by 𝑛𝑔𝑜𝑜𝑑(𝑡, 𝑙) good 

nodes and 𝑛𝑏𝑎𝑑(𝑡, 𝑙)  bad nodes. Henceforth, the notation 

(𝑡, 𝑙) at the end of a symbol is omitted for brevity.  

 Equation 1 gives a closed-form solution for 𝑃𝑓𝑝
𝐼𝐷𝑆 and 

𝑃𝑓𝑛
𝐼𝐷𝑆under random attack behavior where 𝐶 (

𝑎
𝑏
) is the # of 

combinations to select a from b, 𝑛𝑏𝑎𝑑
𝑎  and 𝑛𝑏𝑎𝑑

𝑖  are the 

numbers of “active” and “inactive” bad nodes, given by 

𝑛𝑏𝑎𝑑 × 𝑝𝑎  and 𝑛𝑏𝑎𝑑 × (1 − 𝑝𝑎), respectively; 𝑚𝑚𝑎𝑗 is the 

minimum majority of m, e.g., 3 is the minimum majority of 

5; and ⍵ is 𝐻𝑝𝑓𝑝 for calculating 𝑃𝑓𝑝
𝐼𝐷𝑆  and 𝐻𝑝𝑓𝑛 for 

calculating 𝑃𝑓𝑛
𝐼𝐷𝑆.  Here 𝐻𝑝𝑓𝑝  and 𝐻𝑝𝑓𝑛 are the host-level 

false positive probability and false negative probability, 

𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙) 𝑜𝑟 𝑃𝑓𝑛

𝐼𝐷𝑆(𝑡, 𝑙) = 

∑

[
 
 
 
 𝐶 (

𝑛𝑏𝑎𝑑
𝑎

𝑚𝑚𝑎𝑗 + 𝑖
) ×  𝐶 (

𝑛𝑔𝑜𝑜𝑑 + 𝑛𝑏𝑎𝑑
𝑖

𝑚 − (𝑚𝑚𝑎𝑗 + 𝑖)
)

𝐶 (𝑛𝑏𝑎𝑑
𝑎 + 𝑛𝑏𝑎𝑑

𝑖 + 𝑛𝑔𝑜𝑜𝑑

𝑚
)

]
 
 
 
 𝑚−𝑚𝑚𝑎𝑗

𝑖=0

+ ∑

[
 
 
 
 𝐶 (

𝑛𝑏𝑎𝑑
𝑎

𝑖
) × ∑ [𝐶 (

𝑛𝑔𝑜𝑜𝑑 + 𝑛𝑏𝑎𝑑
𝑖

𝑗
) × ⍵𝑗 × 𝐶 (

𝑛𝑔𝑜𝑜𝑑 + 𝑛𝑏𝑎𝑑
𝑖 − 𝑗

𝑚 − 𝑖 − 𝑗
) × (1 − ⍵)𝑚−𝑖−𝑗]𝑚−𝑖

𝑗=𝑚𝑚𝑎𝑗−𝑖

𝐶 (𝑛𝑏𝑎𝑑
𝑎 + 𝑛𝑏𝑎𝑑

𝑖 + 𝑛𝑔𝑜𝑜𝑑

𝑚
)

]
 
 
 
 𝑚−𝑚𝑚𝑎𝑗

𝑖=0

 

(1)  
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respectively, as a result of each node executing host-level IDS 

duties monitoring behaving or misbehaving of a neighbor 

node as described earlier. They are given as input at the 

system start-up time. 
Here we note that persistent attack is a special case of 

random attack with 𝑝𝑎 = 1. Equation 1 can also be used to 
model opportunistic attack behavior such that 𝑝𝑎 = 1 when 
during IDS voting, more than one half of the nodes selected 

for IDS voting are bad nodes, thus resulting in 𝑃𝑓𝑝
𝐼𝐷𝑆 = 1 and 

𝑃𝑓𝑛
𝐼𝐷𝑆 = 1. If more than one half of the nodes selected for IDS 

voting are good nodes, an opportunistic attacker would 
simply fall back to random attack behavior because there is 
still a chance good nodes can still vote to evict a good target 
node (with probability 𝐻𝑝𝑓𝑝 ),  or retain a bad target node 

(with probability 𝐻𝑝𝑓𝑛).   

Under selective attack, attackers selectively prioritize 
high capability nodes during an attack. When bad nodes are a 
majority, the attackers always vote against good target nodes 
and vote for bad target nodes as in opportunistic attack, 
irrelevant of its capability. If bad nodes are less than a 
majority, the attackers only attack with probability 𝑝𝑎 
randomly. However, they give priority to selectively attack 
high capability nodes over lower capability nodes in order to 
achieve an application failure. In effect, attackers collude to 
evict the same expected number of target nodes under random 
attack with probability 𝑝𝑎.  

C.  COMPUTATIONAL PROCEDURE 

The underlying model of a node SPN model as shown in Fig. 
4 is a continuous-time semi-Markov process with 5 state 
components, LOC, TIME, UCN, DCN, and TASKS 
describing the behavior of a node as time progresses.  

One could put all node SPN models into one big SPN 
model and run it in SPNP [1] to yield the system mean time 
to failure (MTTF) as the security metric. However, the 
computational complexity is 𝑂(𝑐𝑛)  where 𝑐 = 5  is the 
number of state components (LOC, TIME, UCN, DCN, 
TASKS) and 𝑛 is the number of nodes in the ADIoTS. It is 
computationally infeasible for a large n because of the state 
explosion problem as the underlying Markov model needs to 
consider the number of nodes in the system, the components 
for each node, and the states per component. 
 

 
 
FIGURE 5. Flow of SPN Model Execution.  

 
We develop an iterative computational procedure with 

linear complexity of 𝑂(𝑛)  to make it computationally 
feasible for a large ADIoTS. As illustrated in Fig. 5, the driver 
program will invoke SPNP [1] to run and evaluate the node 
SPN model n times, one for each distinct node, and then 

integrate their outputs together to yield the system lifetime as 
output. Since SPNP is invoked only n times, the complexity 
is O(n) where n is the number of nodes in the ADIoTS. 

The basic idea of our iterative computational procedure is 

to update the false positive probability 𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡)  and false 

negative probability 𝑃𝑓𝑛
𝐼𝐷𝑆(𝑡) iteratively until convergence, as 

follows: 
The driver runs each node SPN model for node 𝑖  to 

completion using SPNP  [1]  until node 𝑖 is in an absorbing 
state, i.e., until node 𝑖 is evicted (i.e., a token is in place DCN) 
or until energy is exhausted (i.e., maximum tokens are in 

place TIME). Initially we set 𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡) and 𝑃𝑓𝑛

𝐼𝐷𝑆(𝑡) to 5% in 

the first iteration. We then reset them to the new values 
computed in step 3 in subsequent iterations. 

For each node SPN model for node 𝑖, generate the output 

𝑃𝑖,𝑙
𝐿 (𝑡), 𝑃𝑖

𝑔(𝑡), 𝑃𝑖
𝑏(𝑡), and 𝑃𝑖

𝑒(𝑡) in increment of 𝑇𝐼𝐷𝑆.  

Based on node status probabilities reported by all nodes 
(in previous step 2), compute the false positive probability 

𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡) and false negative probability 𝑃𝑓𝑛

𝐼𝐷𝑆(𝑡) for node 𝑖 (in 

increment of 𝑇𝐼𝐷𝑆). The time t at which the computation is 
performed can be looked up by inspecting the number of 
tokens in place TIME. Specifically,  

𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡)  = ∑ 𝑃𝑖,𝑙

𝐿 (𝑡)𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙)                               

𝑙
 (2) 

where 𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡, 𝑙) is computed based on Equation 1 with 

𝑛𝑏𝑎𝑑(𝑡, 𝑙) = ∑ 𝑃𝑘,𝑙
𝐿 (𝑡)𝑃𝑘

𝑏(𝑡)𝑘≠𝑖
𝑘  and 𝑛𝑔𝑜𝑜𝑑(𝑡, 𝑙) = 

∑ 𝑃𝑘,𝑙
𝐿 (𝑡)𝑃𝑘

𝑔(𝑡)𝑘≠𝑖
𝑘 .   

Check if the Mean Percentage Difference (MPD) of an 

important parameter 𝑋𝑖(𝑡)  of node 𝑖  (such as 𝑃𝑓𝑛
𝐼𝐷𝑆(𝑡))  in 

iteration j and iteration j+1 is less than the minimum threshold 

(set at 1%), i.e., |𝑋𝑖
𝑗+1 (𝑡) − 𝑋𝑖

𝑗 (𝑡)|/𝑋𝑖
𝑗(𝑡) < 1%. If no, go to 

step 1 to continue the iterative computational process. If yes, 
compute the MTTF of the system based on the failure 
conditions and exit. For attrition failure, MTTF can be 
identified by first sorting the mean time to bad/evicted status 
for all nodes and then the first time at which the number of 
good nodes falls below the system allowable minimum 

threshold (𝑛𝑔𝑜𝑜𝑑
𝑇𝐻 ) is the MTTF. For Byzantine failure, the 

first time at which the number of bad nodes is equal to or 
greater than 1/3 of the total number of good and bad nodes is 
the MTTF. For energy depletion failure, the first time at 
which the number of nodes with adequate energy falls below 
a threshold (𝐸𝑇𝐻)is the MTTF. A nodes energy resource is 
indicated by the number of tokens in place TIME in the timer 
subnet and when it reaches a maximum allowable it indicates 
that the IoT device is too depleted. For application failure, the 
first time when the task completion rate of nodes (computed 
by dividing the number of tasks completed as indicated by the 
number of tokens in place TASKS in the task subnet, by the 
current time as indicated by the number of tokens in place 
TIME in the timer subnet) collectively falls below the system 
allowable minimum threshold (𝑡𝑐𝑇𝐻).  

 
 
 
 
We list the computational procedure below: 

1: 𝑫𝒓𝒊𝒗𝒆𝒓 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏: 
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2: 𝒘𝒉𝒊𝒍𝒆 𝑛𝑜𝑡 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 

3: 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 
4: 𝑟𝑢𝑛 𝑆𝑃𝑁 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  

 (𝑙𝑖𝑛𝑒 10) 
5: 𝒊𝒇 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 𝒕𝒉𝒆𝒏 

6: 𝑓𝑖𝑛𝑑 𝑀𝑇𝑇𝐹 (𝑙𝑖𝑛𝑒 19) 𝑎𝑛𝑑 𝑒𝑥𝑖𝑡  
7: 𝒆𝒍𝒔𝒆 
8: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑛𝑒𝑥𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛;   𝑝𝑎𝑠𝑠 𝑠𝑎𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑜𝑓 𝑡ℎ𝑖𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛; 
𝑔𝑜 𝑡𝑜 𝑙𝑖𝑛𝑒 3 

9:  

10: 𝑹𝒖𝒏𝒏𝒊𝒏𝒈 𝒏𝒐𝒅𝒆 𝑺𝑷𝑵 𝒎𝒐𝒅𝒆𝒍 (𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏): 
11: 𝒘𝒉𝒊𝒍𝒆 𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝐼𝐷𝑆 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 
12: 𝐹𝑖𝑛𝑑 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝐷𝑆 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 
13: 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛’𝑠 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡  
(𝑢𝑛𝑙𝑒𝑠𝑠 𝑓𝑖𝑟𝑠𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  𝑤ℎ𝑒𝑟𝑒 𝑖𝑡 𝑒𝑞𝑢𝑎𝑙𝑠 1) 

14: 𝑈𝑠𝑒 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑛𝑜𝑑𝑒𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑃𝑓𝑝
𝐼𝐷𝑆

/𝑃𝑓𝑛
𝐼𝐷𝑆

  

 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  
(𝑢𝑠𝑒 5%  𝑖𝑓 𝑖𝑡 𝑒𝑞𝑢𝑎𝑙𝑠 1) 

15: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑛𝑒𝑤 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 
16: 𝑰𝒇 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑚𝑒𝑡 𝒕𝒉𝒆𝒏  

17: 𝑚𝑎𝑟𝑘 𝑡ℎ𝑖𝑠 𝑛𝑜𝑑𝑒 𝑎𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 
18:  
19: 𝑭𝒊𝒏𝒅 𝑴𝑻𝑻𝑭: 
20: 𝒘𝒉𝒊𝒍𝒆 𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑨𝑵𝑫  

𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝐼𝐷𝑆 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 
21: 𝐹𝑖𝑛𝑑 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑑𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 
22: 

𝑓𝑖𝑛𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 𝑃𝑓𝑝
𝐼𝐷𝑆

/𝑃𝑓𝑛
𝐼𝐷𝑆

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 

23: 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝐼𝐷𝑆 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 

24: 𝒊𝒇 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛 𝒐𝒓 𝐵𝑦𝑧𝑎𝑛𝑡𝑖𝑛𝑒 𝒐𝒓 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝒐𝒓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝒕𝒉𝒆𝒏 

25: 𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑓𝑎𝑙𝑠𝑒 

26: 𝑀𝑇𝑇𝐹 =  𝑡 

V. APPLYING OPTIMAL DEFENSE SETTINGS FOR 
LIFETIME MAXIMIZATION 

Our analytical results identify optimal defense settings in 
terms of the best (𝑇𝐼𝐷𝑆 , m) combination under which the 
ADIoTS lifetime is maximized. This includes best defense 
settings for sophisticated collusion-based attacks by inside 
attackers such as Random, Opportunistic, and Selective 
attacks. To apply the findings in this paper, the mission 
commander can apply the best defense settings in terms of 
( 𝑇𝐼𝐷𝑆 , m) dynamically based on the current ADIoTS 
operational and environmental conditions sensed at runtime 
to maximize the ADIoTS lifetime. This is depicted in Fig. 6 
where optimal defense settings are generated offline and 
stored in the form of a lookup table based on the analytical 
results obtained in the paper (top half of Fig. 6). When new 
ADIoTS operational and environmental conditions are 
sensed, a search is performed based on closest match or 
extrapolation techniques to find the best defense settings of 
(𝑇𝐼𝐷𝑆 , m) to apply so as to maximize the system lifetime 
(lower half of Fig. 6). 
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FIGURE 6. Flow of Determining Optimal Defense Settings for Lifetime 
Maximization.  

VI. EVALUATION 

In this section, we use the stochastic Petri net package (SPNP) 
[1] to define and analytically solve the SPN model developed 
to yield the system lifetime as output, when given a set of 
parameter values characterizing the operational and 
environmental conditions as listed in Table IV as input. All 
parameters except the number of voters (m) and the IDS 
detection interval (𝑇𝐼𝐷𝑆) have their values derived from an 
ADIoTS described in [36] comprising 128 sensor-carrying 
mobile nodes. The number of voters (m) and the IDS 
detection interval (𝑇𝐼𝐷𝑆) are design parameters whose values 
are to be identified and applied at runtime to maximize the 
system lifetime. 

 
TABLE IV 

PARAMETERS FOR AN ADIOTS 

Symbol Meaning Value 

n Number of nodes 128 

𝑛𝑔𝑜𝑜𝑑
𝑇𝐻  Minimum threshold for attrition failure 32,51 

𝐸𝑇𝐻 Resource depletion threshold 5% 

𝑡𝑐𝑇𝐻 Task execution rate threshold 25% 

𝑛ℎ𝑐 Percentage of high capability nodes 30% 

𝐻𝑝𝑓𝑛 Host IDS false negative probability [2.5,5,7.5]% 

𝐻𝑝𝑓𝑝 Host IDS false positive probability [2.5,5,7.5]% 

𝜆𝑐𝑜𝑚 Per-node capture rate 1/1800-5400 

m Number of voters per IDS voting 3,5,7 

𝑇𝐼𝐷𝑆 IDS interval 0-1400 

𝑃𝑒 Percentage of energy spent per 𝑇𝐼𝐷𝑆 0.01% 

𝑃𝑎 Random attack probability [0, 1] 

𝑀𝑥𝑀 Operation area 64x64 m2 

R Radio range 100 m 

 

The 128 sensor-carrying mobile IoT devices are randomly 
deployed in a 64x64 m2 operational area, each following the 
SWIM mobility model [35] after deployment. The radio 
range is 100 m for peer-to-peer communication for the 128 
nodes. When there are fewer than 32 devices in the system, 
the system is not able to perform its intended function, leading 
to an attrition failure. At the host level, each device monitors 
its immediate neighbors with a false negative probability 
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𝐻𝑝𝑓𝑛 ranging in 2.5%-7.5% and a false positive probability 

𝐻𝑝𝑓𝑝 ranging in 2.5%-7.5%. Such values are assumed to be 

known before each device is released to operation by software 
engineering testing. IoT devices are compromised due to 
capture attacks by which a good device that is being captured 
is converted into a bad device. The per-node capture rate 
𝜆𝑐𝑜𝑚 ranges from 1/5400 to 1/1800, meaning that on average 
after 1800-5400 (seconds, minutes, hours, or days depending 
on the system under consideration) is elapsed, a node would 
likely be captured and turned into malicious. Assume that the 
amount of energy consumed for each IoT device in an IDS 
period is 0.01%. The security metric is the system MTTF 
which is measured when the system fails due to Byzantine, 
attrition, application, or energy depletion failure. 

Fig. 7 shows the system MTTF (s) vs 𝑇𝐼𝐷𝑆  (s) for the 
ADIoTS in the case in which the attack strategy is persistent 
attack ( 𝑃𝑎 = 1) to quickly fail the system. The defense 
strategies considered are the number of voters (m) in majority 
voting IDS and the IDS detection interval (𝑇𝐼𝐷𝑆). With the 
persistent attack strategy in place, an attacker always 
performs ballot-stuffing (saying a bad node is a good node) 
and bad-mouthing attacks (saying a good node is a bad node) 
whenever it has a chance, to cause Byzantine and attrition 
failures at the fastest pace. Under this attacker strategy, there 
exists an optimal 𝑇𝐼𝐷𝑆 under which the system lifetime is 
maximized. This is due to the following reasons: When 𝑇𝐼𝐷𝑆 
is too low, the frequency of performing intrusion detection is 
high, thus causing energy depletion failures to happen early 
on. When 𝑇𝐼𝐷𝑆  is too high, it does not perform intrusion 
detection often enough to detect and remove bad nodes from 
the system. As a result, many bad nodes remain undetected in 
the system. This also results in a short lifetime, due to both 
Byzantine failure (when at least one third of the nodes are bad 
nodes) and attrition failure (when the number of good nodes 

falls below 𝑛𝑔𝑜𝑜𝑑
𝑇𝐻 ). 

 

 

FIGURE 7. Optimal defense settings of (𝑻𝑰𝑫𝑺, m) for maximizing MTTF of an 
ADIoTS as defined by Table IV, with 𝝀𝒄𝒐𝒎=1/3600 and 𝑯𝒑𝒇𝒏= 𝑯𝒑𝒇𝒑=5%. 

 

The effect of the number of voters (m) is clearly 
demonstrated in Fig. 7. We observe that the optimal 𝑇𝐼𝐷𝑆 
depends on m and m = 5 is the best choice of this defense 
strategy for maximizing the system lifetime for the example 
ADIoTS. The reason is that when m is high, it tends to deplete 

energy early on thus causing resource depletion failure. When 
m is low, it tends to leave too many bad nodes undetected in 
the system, thus causing Byzantine or attrition failure. 
Consequently, m = 5 can best balance resource depletion 
failure versus Byzantine or attrition failure to maximize the 
system lifetime. The most striking observation is that an 
optimal defense strategy exists in terms of the best (𝑇𝐼𝐷𝑆, m) 
combination that will maximize the system MTTF, when the 
attack strategy is persistent attack (𝑃𝑎= 1).  

The effect of per-host defense capability in terms of 
intrusion detection accuracy, represented by the host IDS 
false negative probability 𝐻𝑝𝑓𝑛  and the host false positive 

probability 𝐻𝑝𝑓𝑝, on the system lifetime is demonstrated in 

Fig. 8. We first observe that the system lifetime is higher 
when the system has better defense capability, i.e., when 
𝐻𝑝𝑓𝑛 and 𝐻𝑝𝑓𝑝 are lower. 

 

 

FIGURE 8. Effect of defense capability in terms of (𝑯𝒑𝒇𝒏, 𝑯𝒑𝒇𝒑) on MTTF of 

an ADIoTS as defined by Table IV, with m = 5 and 𝝀𝒄𝒐𝒎=1/3600. 

 
 We also observe that the optimal 𝑇𝐼𝐷𝑆  at which the 

system MTTF is maximized strongly depends on the defense 
capability. That is, the optimal 𝑇𝐼𝐷𝑆  that maximizes MTTF 
increases as 𝐻𝑝𝑓𝑛 and 𝐻𝑝𝑓𝑝 increase. The reason is that when 

the defense capability becomes weaker (meaning 𝐻𝑝𝑓𝑛  and 

𝐻𝑝𝑓𝑝 have higher values at 7.5% in Fig. 8), many malicious 

nodes may be undetected and remained the system while 
many good nodes may be misidentified as malicious and 
evited from the system, thus resulting in Byzantine or attrition 
failures. This happens more often when the detection interval 
is smaller. Consequently, when 𝐻𝑝𝑓𝑛 and 𝐻𝑝𝑓𝑝 are high, the 

system is better off using a large optimal 𝑇𝐼𝐷𝑆 value. Fig. 8 
demonstrates this trend, i.e., when 𝐻𝑝𝑓𝑛 and 𝐻𝑝𝑓𝑝 are higher 

at 7.5% the optimal 𝑇𝐼𝐷𝑆 is 120 while when 𝐻𝑝𝑓𝑛 and 𝐻𝑝𝑓𝑝 

are lower at 2.5% the optimal 𝑇𝐼𝐷𝑆 is 60. The results reveal 
that the per-node defense capability affects not only the 
system lifetime but also the optimal detection interval 𝑇𝐼𝐷𝑆 (a 
defense strategy) under which the system lifetime is 
maximized. 

The effect of attacker capability in terms of per-node 
compromise rate 𝜆𝑐𝑜𝑚on the system lifetime is demonstrated 
in Fig. 9. We first observe that the system lifetime is lower 
when the attacker capability is high, i.e., when 𝜆𝑐𝑜𝑚 is higher. 
We also observe that the optimal 𝑇𝐼𝐷𝑆 at which the system 
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MTTF is maximized strongly depends on the attacker 
capability. That is, the optimal 𝑇𝐼𝐷𝑆  that maximizes MTTF 
decreases as 𝜆𝑐𝑜𝑚 increases. The reason is that when the 
attacker capability is higher (meaning 𝜆𝑐𝑜𝑚  is higher at 
1/1800 in Fig. 9), many good nodes may be compromised and 
turned into malicious in which case the system is better off by 
running intrusion detection more often by making 𝑇𝐼𝐷𝑆 
smaller to catch and evict malicious nodes from the system to 
prevent Byzantine failure from occurring. Fig. 9 demonstrates 
this trend, i.e., when 𝜆𝑐𝑜𝑚 is higher at 1/1800 the optimal 𝑇𝐼𝐷𝑆 
is 40 while when𝜆𝑐𝑜𝑚 is lower at 1/5400 the optimal 𝑇𝐼𝐷𝑆 is 
160. The results reveal that the attacker capability also affects 
the optimal detection interval 𝑇𝐼𝐷𝑆 (a defense strategy) under 
which the system lifetime is maximized.  

 

 

FIGURE 9. Effect of attack capability in terms of 𝝀𝒄𝒐𝒎 on MTTF of an 
ADIoTS as defined by Table IV, with m = 5 and 𝑯𝒑𝒇𝒏= 𝑯𝒑𝒇𝒑=5%. 

 

FIGURE 10. Effect of attack strategy on system lifetime under varying 
𝑻𝑰𝑫𝑺. 

 
Unlike defense capability, attacker capability is not a 

choice of the defense system. However, when learning the 
attacker capability is strong (e.g., from experiences), the 
results suggest that the system should shorten the detection 
interval to maximize the system lifetime. The optimal 
detection interval 𝑇𝐼𝐷𝑆 of course depends on the operational 
setting represented by the set of parameters defined in Table 
IV. Given the operational setting, the methodology proposed 

in the paper helps identify the optimal ( 𝑇𝐼𝐷𝑆 , m) for 
maximizing the system lifetime. 

The security analysis thus far considers a homogenous 
system where all nodes are of similar capability. To illustrate 
the effects of selective attacks and application failures, we 
consider below a heterogeneous ADIoT system consisting of 
both high and low capability nodes, as discussed in Section 
III. Fig. 10 shows the effect of attack strategy on system 
failure conditions, under varying 𝑇𝐼𝐷𝑆 values. For clarity, we 
list the system failure condition triggered for Fig. 10 results 
separately in Table V. We show the effect of random, 
opportunistic, and selective attacks on system failures. As a 
persistent attack is a special case of a random attack with 
𝑃𝑎 = 1, we omit persistent attack for brevity. We consider the 
system failure types as discussed in Section III.A, namely, 
Byzantine, resource depletion, attrition, and application 
failures. We consider that of the deployed nodes 30% are of 
high capability (i.e., 𝑛ℎ𝑐 = 30% ), where they execute 4 
TEUs (Task Execution Units) as opposed to 1 TEU by lower 
capability nodes, hence contributing more towards task 
completion.   

First, from Fig. 10 we again observe that there exists an 
optimal 𝑇𝐼𝐷𝑆 that maximizes the system lifetime in response 
to various attack strategies. We observed this for persistent 
attacks earlier in Figures 7-9. Now we also observe it for 
random, opportunistic, and selective attacks. 

Second, we find that in all attack strategies, using a very 
high intrusion detection frequency (small 𝑇𝐼𝐷𝑆 ) results in 
rapid node energy consumption causing a resource depletion 
failure before other failure conditions can occur (e.g., when 
𝑇𝐼𝐷𝑆=10, all failures under all attack strategies are due to 
resource depletion). Conversely, using a very low intrusion 
detection frequency (high 𝑇𝐼𝐷𝑆) results in a Byzantine failure 
occurring first, as IDS bad node eviction cannot cope with the 
compromise rate thus resulting in bad nodes > 1/3  good 
nodes  (e.g., when 𝑇𝐼𝐷𝑆 = 640). This is further illustrated in 
Fig. 11 (for the opportunistic attack case of Fig. 10), where 
the system good and bad node populations are shown as a 
function of time, as a result of node compromise and IDS 
execution (we do not show the evicted node population in Fig. 
11 for brevity). Thus we observe that 𝑇𝐼𝐷𝑆 greatly effects the 
system failure conditions (i.e., which system failure occurs 
first).  

Third, we observe that the opportunistic attack results in 
lower system lifetime than random attack, since the 
opportunistic attack, in addition to attacking randomly, takes 
advantage of IDS voting occurrences where bad nodes form 
a majority in which case it always votes against good nodes 
and votes for bad nodes. Similarly, we observe that selective 
attack, in addition to attacking opportunistically, especially 
targets high capability nodes that are critical in meeting task 
execution rate. Thus, under the selective attack strategy, high 
capability nodes are chosen by colluding attackers as main 
targets. This has the effect of resulting in application failures 
(last column of Table V). Also, the colluding attackers still 
use the strategies of random and opportunistic attacks to result 
in Byzantine failures. As a result, the selective attack is the 
most effective attack strategy among all to minimize MTTF. 
However, as we observe from Fig. 10, the system designer 
can optimally adjust the 𝑇𝐼𝐷𝑆 value to obtain the best 
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achievable MTTF (along with the best selection of m value 
although it is not shown in Fig. 10)  against the selective 
attack strategy.  

 
TABLE V 

FIRST FAILURE OCCURRENCE TYPE FOR VARYING ATTACKS AND UNDER 

VARYING 𝑇𝐼𝐷𝑆 

 Attack type 

  Random Opportunistic Selective 

 

𝑇𝐼𝐷𝑆 

10 Res. Dep. Res. Dep. Res. Dep. 

40 Attrition Attrition Application 

80 Attrition Attrition Application 

240 Attrition Attrition Application 

640 Byzantine Byzantine Byzantine 

 

 
FIGURE 11. An illustration showing the occurrence of Byzantine and 
attrition failures under opportunistic attack for the two cases of 𝑻𝑰𝑫𝑺 being 
640 and 80, respectively. 

 
Fig. 12 and Fig. 13 respectively compare two baseline IDS 

schemes against our proposed CAVBIDS scheme. 
For the first baseline comparison, Fig. 12 shows the 

performance comparison of our proposed CAVBIDS scheme 
with a baseline IDS scheme that uses a fixed or static 
detection interval without changing the defense strength in 
terms of the detection interval length in response to attacker 
strength (i.e., compromise rate λcom ). We observe that 
CAVBIDS outperforms the first baseline scheme using a 
large detection interval (i.e. TIDS = 320 ) as the attacker 
strength varies from high (e.g., compromise 
interval  1 λcom⁄ = 40 ) to low (e.g., compromise 
interval 1 λcom⁄ = 100).  The first baseline scheme performs 
comparably with CAVBIDS only when the attacker 
compromise rate is low (e.g., compromise interval 1 λcom⁄ =
100) at which point CAVBIDS also selects TIDS = 320 as 
the optimal defense strength. 

For the second baseline comparison, in Fig. 13 shows the 
performance comparison of our CAVBIDS scheme with a 
baseline IDS scheme that uses a fixed number of host IDS 
voters for the ADIoT target voting, without changing the 
defense strength in terms of the number of voters in response 
to attacker strength (i.e., compromise rate λcom). We again 

observe that CAVBIDS outperforms the second baseline 
scheme using a small number of voters (i.e. 𝑚 = 3) as the 
attacker strength varies from high (e.g., compromise 
interval  1 λcom⁄ = 40 ) to low (e.g., compromise 
interval  1 λcom⁄ = 100 ). The second baseline scheme 
performs comparably with CAVBIDS only when the attacker 
compromise rate is low (e.g., compromise interval 1 λcom⁄ =
90 − 100) at which point CAVBIDS also selects 𝑚 = 3 as 
the optimal defense strength. 

 
FIGURE 12. Comparing MTTF in a baseline IDS scheme where the detection 
interval is fixed (𝑻𝑰𝑫𝑺 = 𝟑𝟐𝟎) with our CAVBIDS scheme  where 𝑻𝑰𝑫𝑺  is 
adjusted based on expected compromise interval (𝟏/𝝀𝒄𝒐𝒎). 

 
FIGURE 13. Comparing MTTF in a baseline IDS scheme where the number 
of Host IDS voters is fixed (𝒎 = 𝟑) with our CAVBIDS scheme where 𝒎 is 
adjusted based on expected compromise interval (𝟏/𝝀𝒄𝒐𝒎). 

 
All above results obtained in this section are based on 

analytical evaluation. That is, given a set of parameter values 
characterizing the operational and environmental conditions 
of the 128-node ADIoTS as described in [36], we apply SPNP 
to run the 128 node SPN models, integrate the results from 
128 outputs, and through assigning rewards with states of the 
system, identify the best defense settings of m and 𝑇𝐼𝐷𝑆 under 
which the system lifetime is maximized. The obtained results 
can be further validated by building a testbed for the 128-node 
ADIoTS to generate empirical results to match against the 
analytical results obtained in this paper. The practical 
implications of the obtained results are as follows: Our 
analytical results identify optimal defense settings in terms of 
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the best (𝑇𝐼𝐷𝑆 , m) combination under which the ADIoTS 
lifetime is maximized. This includes best defense settings for 
sophisticated collusion-based attacks by inside attackers such 
as Random, Opportunistic, and Selective attacks. To apply 
the findings in this paper, the mission commander can apply 
the best defense settings in terms of (𝑇𝐼𝐷𝑆, m) dynamically 
based on the current ADIoTS operational and environmental 
conditions sensed at runtime to maximize the ADIoTS 
lifetime. This is depicted in Fig. 6 where optimal defense 
settings are generated offline and stored in the form of a 
lookup table based on the analytical results obtained in the 
paper (top half of Fig. 6). When new ADIoTS operational and 
environmental conditions are sensed, a search is performed 
based on closest match or extrapolation techniques to find the 
best defense settings of (𝑇𝐼𝐷𝑆, m) to apply so as to maximize 
the system lifetime (lower half of Fig. 6). 

VII. CONCLUSION 

In this work, we developed IDS duties that must be executed 

by every node of an autonomous distributed IoT system 

(ADIoTS) with the objective of maximizing the system 

MTTF. We developed SPN-based behavior models as well as 

a scalable iterative computational procedure with linear 

complexity in the number of nodes, allowing IDS 

attack/defense strategies for executing voting-based IDS 

functions to be specified and analyzed. We demonstrated the 

applicability with a selected set of attack-defense strategies 

and identified optimal defense settings in terms of the best 

(𝑇𝐼𝐷𝑆, m) combination under which the ADIoTS lifetime is 

maximized. We also demonstrated that the per-node defense 

capability and the per-node attacker capability will affect not 

only the system lifetime but also the optimal detection interval 

𝑇𝐼𝐷𝑆 (a defense strategy) under which the system lifetime is 

maximized. We also analyzed the effect of attack strategies on 

system failure conditions and system lifetime, identified the 

most damaging attack strategy among all, and suggested 

defense strategies in terms of (𝑇𝐼𝐷𝑆, m) for maximizing the 

system MTTF. In the future, we plan to extend this work to 

consider additional sophisticated collusion and strategic 

attacks, new IDS defense strategies, and more SPN-based 

modeling and complexity analysis for IoT system 

components. We plan to implement a testbed for the ADIoTS 

comprising 128 sensor-carrying mobile nodes as described in 

[36] using Raspberry Pi deployed nodes, each having a host 

IDS with lightweight detection techniques, By matching the 

analytical results obtained in the paper against the empirical 

results obtained from the testbed, we can validate the 

effectiveness of our collusion-aware voting-based IDS design 

proposed in this paper. 
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