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ABSTRACT In this paper, the notion of a smart service community is proposed to address the grand 
challenge of a huge number of Internet-of-Things (IoT) devices providing similar services in a smart city 
environment (e.g., parking, food, healthcare, transportation, and entertainment). We propose that a smart 
service community be built as a cloud utility accessible via a mobile application installed in user-owned IoT 
devices, such as smart phones. The cloud utility provides cloud-based interfaces, including registration, 
service satisfaction reporting, recommender credibility reporting, and service recommendation, with the goal 
of recommending the best service providers based on a user’s specified service performance criteria. Trust-
based service management techniques, utilizing IoT-assisted technology, are developed to automatically 
measure service ratings and recommender credibility ratings, and compute one-to-one subjective trust scores 
to allow a user to select the best service providers among all. The feasibility of the proposed approach is 
demonstrated over contemporary service ranking systems using a smart food service community for which 
the major performance metric is the service wait time. 

INDEX TERMS Smart service community, trust management, collusion attack, smart city, Internet-of-
Things (IoT), service management. 

I. INTRODUCTION 
A grand challenge in a future smart city or smart world 
environment is that there will be a huge number of IoT devices 
providing similar services (e.g., parking, food, healthcare, 
transportation, and entertainment). Numerous examples can 
be found in our day-to-day life that we are constantly trying to 
find the best service provider (SP) for a specific service [1-3]. 
When there are many similar SPs available, a service requester 
(SR) will naturally try to determine the best one available. A 
common method of determining the best SP is to compare 
them based on service ratings posted in a service community 
application, such as Yelp for food service, which links to SP 
advertisements about the service provided. This process is not 
only time consuming but also vulnerable to ballot-stuffing 
attacks (i.e., saying a bad SP is a good SP) or bad-mouthing 
attacks (i.e., saying a good SP is a bad SP) by which the rating 
is boosted or defamed by malicious raters.  

Very frequently every user has its own idea of the most 
critical metrics. For example, for food service, a user may 
think the most critical metric is whether an SP can provide the 
service earliest to the customer. In other words, if multiple SPs 

are available with a similar quality of a service, then the 
customer will select the one with the least time to wait. Google 
Maps [4] is an example of an application enabling a user to 
view both the average service time and the average wait time 
at a restaurant, where the average service time is estimated by 
automatically sensing the time a user spends in a geolocation 
through the user’s smart device, and the average service wait 
time is calculated based on manual user feedback provided by 
users after the service is rendered. For an entertainment service 
dealing with space renting, a user may view that the most 
critical metric is the maximum time allowable to reserve an 
allocated space. For a Spa service, a metric of interest could 
be the level of noise in the background and availability of 
background music (e.g., type and genre). Hence, it is important 
to rank SPs based on performance metrics specified by the 
user.  

Existing service ranking systems have several drawbacks. 
First, current service ranking systems lack flexibility to allow 
a user to specify its own performance metrics to rank SPs, so 
very frequently a user would need to read long and inaccurate 
reviews to discover if an SP satisfies his/her need. Second, 
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current service ranking systems depend highly on manual user 
feedback, crowdsourcing, and shared location-based 
information to obtain knowledge about SPs. There is no good 
mechanism to cope with ballot-stuffing attacks or bad-
mouthing attacks. Third, there is virtually no design allowing 
a ranking system to be scalable with a huge number of IoT 
devices that can provide feedback concurrently. Fourth, all 
current service-ranking systems are essentially based on 
reputation rating [5], offering references on whether an SP is 
good or bad based on the majority-based review ratings. There 
is no mechanism that allows a user to filter recommendations 
based on the similarity in taste/interest or social relationships 
with the reviewers, so the user can filter out reviews reported 
by other users who have dissimilar taste/interest or no social 
relationship. 

The above issues are addressed in this paper by proposing 
the notion of “smart service community,” namely SSC. For 
scalability, we propose that an SSC be built as a cloud utility 
allowing users (i.e., owners of IoT SPs and SRs) to register for 
the service community. The SSC provides service rating 
reports after a service is rendered and makes credibility reports 
available based on recommendations received. Above all, the 
SSC allows an SR to select an SP for a requested service and 
query the system for ranking the SPs based on the service 
quality performance metrics specified by the SR. Due to the 
services provided by the SSC, a user would simply access the 
cloud utility via a mobile application installed in his/her IoT 
devices, such as smart phones. 

To overcome the drawbacks of reputation-based service 
ranking systems, we propose subjective-trust-based service 
management. That is, for each performance metric specified 
by an SR, the cloud utility maintains an “one-to-one” 
subjective SR-SP trust score toward an SP for the SR as well 
as an “one-to-one” subjective SR-SR credibility trust score 
toward another SR who serves as a recommender (which we 
call a witness in this paper). Unlike a reputation system [5] 
based on “common beliefs” of all evaluators, the key design 
of our trust-based SSC management lies in the notion of 
“subjective” trust with one-to-one trust evaluation in both the 
SR-SP service trust score and the SR-SR credibility trust 
score. In particular, an SR-SR credibility rating report 
submitted from an SR to the cloud utility reflects the extent to 
which whether the service rating recommendation from 
another SR (serving as a witness [2] or a recommender) 
toward an SP is similar to that of the SR itself. A high SR-SR 
trust score means a high “taste similarity” between the SR and 
a witness SR. If the credibility score of a witness SR is high, 
the witness’s recommendation is integrated into the overall 
SR-SP trust score computation; otherwise, it is discarded or 
treated with a small weight. Our notion of subjective, one-to-
one trust allows an SR to filter out recommendations reported 
by SRs who have dissimilar taste/interest in rating a service 
from the same SP. Even if the majority of SRs perform ballot-
stuffing or bad-mouthing attacks on an SP, an SR would 

accept only recommendations from SRs with high “taste 
similarity” for computing the SR-SP trust score. 

The new design notion of SCC is exemplified with a smart 
food service community for which the major performance 
metric is the wait time for food service. The example SCC 
under our trust-based service management design is 
demonstrated to outperform contemporary service ranking 
systems.  

The key contributions of this paper are as follows: 
1. In this paper the notion of a “smart service 

community” (SSC) is proposed to address the grand 
challenge of a huge number of IoT devices 
providing similar services in a smart city 
environment. We are the first to suggest that an 
SCC be built as a cloud utility accessible via a 
mobile application installed in user-owned IoT 
devices, such as smart phones and exemplify how 
such cloud utility can be built for a smart food 
service community in a smart city setting.  

2. To the best of our knowledge, we are the first to 
leverage smart IoT sensing technology for a user to 
automatically rate a provider’s service and rate the 
feedback from provider evaluators in an SSC. In 
other words, an SR can generate SR-SP service 
ratings as well as SR-SR credibility ratings through 
sensing on sound, lighting, smell, geolocation, 
spaciousness of premises, WiFi duration, and 
availability, all through smart IoT devices.  

3. Novel trust-based service management techniques 
are developed specifically for SSCs. Unlike 
existing service rating systems using reputation [5] 
(i.e., a common belief by the majority of evaluators) 
for rating SPs, we use the concept of “subjective” 
one-to-one trust relationship; hence, both the 
ratings toward service providers and the credibility 
of SR witnesses are subjective and one-to-one 
(based on own belief), reflecting the dynamic 
relationships between each pair of nodes in the 
system. An analytical formulation for calculating a 
subjective trust score and witness credibility score 
is provided, where an analytical formulation for 
calculating the subjective trust score and witness 
credibility score is provided by Josang’s Beta 
Reputation System being utilized while accounting 
for time-decayed positive and negative experiences. 
Our design, through detailed performance 
evaluation, is proved to be highly resilient to self-
promotional attacks (by malicious SPs) and false 
recommendation attacks (by malicious witnesses) 
[6, 7]. 

4. New credibility assessment techniques are 
developed, including “taste similarity credibility,” 
“participation credibility,” and “location 
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credibility” techniques to assess whether a 
performance metric reported by a witness (e.g., 
service wait time for food service) is trustworthy. 
The witness credibility is then used to filter 
recommendations received from witnesses to 
compute the overall trust score of an SP for decision 
making. Our protocol resilience against a high 
percentage of malicious SRs is demonstrated and 
compared with baseline service rating systems.  

The rest of the paper is organized as follows. Section II 
surveys the related work. Section III discusses the assumptions 
and system model, including the threat model. Section IV 
describes our trust management protocol for trust-based 
service management of SSCs in detail. Section V conducts a 
simulation study for a smart food service community to 
evaluate the merit of our approach, and performs a 
comparative analysis with two baseline service ranking 
systems. Finally, Section VI concludes the paper and suggests 
future work directions. 

 
II. RELATED WORK 

Trust is an effective mechanism for achieving trustworthy 
service.  Direct experiences can provide a customer accurate 
information about an SP because personal experiences are 
most trustworthy. Josang’s Beta Reputation System [5] is  a 
well-known protocol for assessing “direct trust.” The basic 
idea is to take binary ratings as input (i.e., positive or negative 
experience) and compute an SP’s trust score by statistically 
updating the Beta distribution probability density function 
such that the posteriori (i.e., updated) trust score is computed 
by combining the priori (i.e., previous) trust score with new 
evidence observed. Our work also adopts Josang’s Beta 
Reputation System [5] for an SR to assess the service rating of 
an SP based on direct experiences.  

If an SR has never had any prior service experiences with 
an SP, then recommendations would be needed. Identifying 
trustworthy recommendations is challenging. In the literature, 
various recommendation filtering methods have been 
developed to filter untrustworthy recommendations. One 
method is social similarity based “collaborative filtering” by 
which a recommendation is considered trustworthy when the 
user providing the recommendation has a high degree of social 
similarity with the SR because a high social similarity between 
the SR and a witness implies trustworthiness. Conversely, a 
recommendation is considered untrustworthy when the 
witness providing the recommendation has a high degree of 
social similarity with the SP [8, 9] because a high social 
similarity between the SP and a witness implies collusion. 
Nitti et al. [10] described how one can build a friendship social 
graph to rate a recommender node based on the friendship 
between the recommender and the SR or SP.  Another method 
is based on the concept of belief discounting [5] by which a 
discount is applied to a recommendation based on the amount 
of trust an SR has toward the recommender. That is, when A 
receives a recommendation from B about C on a service item, 

the recommendation will be “discounted” based on the degree 
to which A trusts B on the service item.  

Relative to [5, 8, 9], we develop “taste similarity 
credibility,” “participation credibility,” and “location 
credibility” design concepts to assess the overall credibility of 
a witness toward a user (See Section IV.B.2 for details). In our 
SSC model, the credibility of a recommender represents the 
extent to which the recommender is trustworthy because the 
recommender and the user are similar in taste in ranking a 
service. Therefore, when an SP is being evaluated on a 
specified user performance metric (e.g., service quality), the 
recommender and the user would provide a similar service 
rating. We propose to use taste-similarity based credibility to 
filter recommendations received from witnesses so that 
untrustworthy recommendations (subjectively from the user’s 
perspective) will be filtered out for computing the user’s 
overall trust score toward an SP that is being evaluated on a 
specific user performance metric. Furthermore, unlike a 
reputation-based system [5] , our trust system is one-to-one 
and subjective by which trust evidence can be collected and 
integrated such that each SR can do one-to-one subjective trust 
assessment toward each SP and one-to-one subjective 
credibility assessment toward each witness. As a result, an SR 
accepts only recommendations from witnesses with high 
credibility scores for computing the overall trust score of an 
SP, thereby effectively fending off recommendation attacks 
(i.e., bad-mouthing and ballot-stuffing attacks) even if the 
majority recommenders are malicious.  

In the trust management domain for IoT systems [11], Chen 
et al. [8, 9] used social similarity including friendship, 
community of interest, and social contact relationships to rate 
recommenders or witnesses assuming that a recommender 
having a close social relationship with an SR would tell the 
truth. Unlike [8, 9], our trust system does not explicitly 
maintain social relationships between any two IoT devices for 
assessing credibility since it may be difficult to obtain such 
social information due to privacy reasons. Rather, we use a 
“service rating similarity” of two SRs toward the same SP at 
the same time after a service is rendered by the SP in lieu of 
the social similarity. The reason is that if two SRs give a 
similar service rating toward an SP’s service rendered in the 
same time frame, then a high taste similarity between the two 
SRs is expected, implying that their view toward a particular 
performance metric of the SP is about the same. Nitti et al. [12] 
proposed a centralized IoT trust management system called 
ObjectiveTrust that assesses the trust score of an IoT device 
node through a weighted sum of the “centrality” score and the 
average opinion score in both long term and short term after 
applying the recommender’s credibility score toward the SP to 
filter untrustworthy recommendations. Their credibility score 
is also based on social similarity. However, they estimated the 
credibility score of a recommender by assuming that a 
recommender having a close social relationship with an SP 
would likely collude with the SP and lie, and consequently be 
assessed with a low credibility score. Their work assumes the 
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presence of a social network graph that can reveal the social 
relationships between any pair of nodes in the system. In 
addition to privacy concerns, scalability is another concern for 
dynamically maintaining an accurate social network graph for 
a large-scale IoT environment, which is very often not 
available in practice. Furthermore, ObjectiveTrust computes 
the “objective trust” (i.e., a common belief or reputation), not 
the “subjective trust” of an IoT device, which is not feasible 
given that such a social graph is very likely unavailable. Our 
work differs from [12] in that we do not assume the presence 
of a social network graph and we consider “subjective” trust, 
including both the one-to-one SR-SP trust score and SR-SR 
credibility score to effectively fend off recommendation and 
collusive attacks. 

Many applications are based on collected user 
crowdsourced geo-referenced data where trust management is 
used to identify trustworthy data for decision making [13].  
Prandi et al. [14, 15] proposed a trust-based system which 
collects user mobile data regarding points of interest to map 
urban accessibility, which in turn provides users with 
disabilities personalized paths based on their preferences and 
needs. They assumed that data sources include regular users 
(and their sensors) and trustworthy experts (e.g., local 
authorities, associations). Through mobile device sensors, 
users can identify barriers and facilities for reporting. Prandi 
et al. [14, 15] additionally relied on a gold set [16, 17] obtained 
from trustworthy experts. A user’s trust is updated by relying 
on comparisons with the majority of users when expert data is 
unavailable. Unlike an accessibility community, service 
providers have competing interests where both service 
providers and recommenders could be tempted to supply false 
recommendations to increase their interests, with no clear 
authoritative source of information to rely on. Vidya and 
Nandini  [18] proposed a trust-based protocol for a smartphone 
application with friendship in social media being the main 
factor characterizing behavior. The authors used both direct 
and indirect observations to build trust, where direct trust is 
based on prior friendship behavior and community 
membership, and indirect trust is based on recommendations. 
Our system also relies on users to collect geo-referenced data; 
however, we consider the use of IoT-assisted technology to 
collect measurements of user-specified metrics. Furthermore, 
the above works considered only objective trust and did not 
consider recommendation attacks.   

Lin and Dong [19] proposed a social IoT model with the 
aim of clarifying trust concepts in social IoT. The authors 
identified limitations of current social trust IoT protocols, such 
as dependence on single evaluation factors/metrics, unilateral 
evaluation of trustor to trustee, consideration of only the 
success rate of the main task, and lack of consideration of 
dynamic environments. However, their work fails to consider 
temporal and spatial factors which can be utilized (e.g., for 
assessing the quality of an SP and a witness). Nitti et al. [20] 
discussed the importance of feedback in trustworthiness 
management in the IoT. They stressed the importance of both 

short-term context associated with environmental conditions 
and long-term context, including the trustee Quality of 
Experience, for accurate feedback assessment. Relative to the 
works cited above [19, 20], we consider one-to-one subjective 
trust assessment for both SR-SP service rating and SR-SR 
credibility rating assessments; in addition, we leverage IoT-
assisted technology for collecting measurements of user-
specified performance metrics, taking into account various 
context factors related to time, location, and capability of IoT 
devices. 

Xia et al. [21] proposed a light-weight subjective trust 
inference framework based on both trust assessment and 
prediction for MANETs. The subjectivity comes from each 
node’s direct trust assessment toward a node’s behavior with 
regards to packet reception for predicting routing paths with 
minimum overhead. Wu et al. [22] and Su et al. [23] 
considered collaborative filtering with social similarity for 
service recommendations. Abderrahim et al. [24] proposed a 
centralized trust management system aiming to find the most 
trustworthy service provider for social IoT. They developed a 
trust module for trust and reputation computing, and a learning 
module for behavior classification and decision making. Ding 
et al. [25] considered a time-aware service recommendation 
approach using similarity enhanced collaborative filtering. 
The authors used an autoregressive integrated moving average 
(ARIMA) method to predict future QoS values. After 
considering different QoS indicators, the system finally 
recommends the top 𝑘 candidate services. However, the above 
cited works [21-25] did not consider one-to-one subjective 
evaluation, thereby introducing high susceptibility to 
recommendation attacks. Also, there was no consideration 
given to the characteristics of IoT in rating members and 
verifying recommendations. 

The notion of “smart service community (SSC)” is coined 
in this paper, which is novel. In the literature, we found only 
the parking community proposed by Timpner et al. [3] is close 
to our notion of the SSC. However, there are no SPs in their 
parking community since parking spaces in [3] are not parking 
facilities actively competing for parking services, which 
would otherwise act as SPs in an SSC considered in our paper. 
Their parking community merely comprises SRs whose trust 
scores are updated based on real-time information to check if 
they (as recommenders) tell the truth about whether a parking 
space is free. Our notion of the SSC differs from the parking 
community in [3] in that a service community comprises of 
both SPs and SRs with SPs actively competing for providing 
services that may be interesting to members of the service 
community. We use real-time information to assess not only 
the trustworthiness of an SP, but also the credibility of an SR 
(as a recommender). Moreover, the SR-SP trust score or SR-
SR credibility score evaluation is “subjective” rather than 
“objective” in order to mitigate recommendation and collusive 
attacks. 
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III. SYSTEM MODEL AND ASSUMPTIONS 

A. SYSTEM MODEL 
Our proposed trust-based service community management 
system is based on a centralized cloud utility in the service 
community [26] collecting trust evidence from SRs. Ideally, it 
can run as part of a service ranking application (e.g., Yelp) 
with mechanisms in place to collect positive/negative service 
experiences from SRs and rate SPs. Our notion of an SSC is 
geared toward a specific type of service system typically in a 
smart city setting, e.g., a city parking service system, an Italian 
food service system, a walk-in clinic service system, a bubble 
teashop service system, a phone repair system, a Spa service 
system, a children daycare system, a car wash system, etc. A 
customer seeking for each type of service would access the 
corresponding cloud utility that provides service rankings of 
SPs in the SSC. Very frequently there is a specific set of 
“service quality performance metrics” that are of interest to the 
SRs in the SSC. Table I lists possible “service-quality 
performance metrics” for some example SSCs to which our 
trust-based service management design is applicable.  
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FIGURE 1. System design space of the IoT trust-based Smart Service 

Community management system. 

 

As shown in Fig. 1, an SSC consists of three main actors 
interacting with one another as follows: 
1. Cloud Utility (CU): The CU is a central storage and 

processing unit of the system. The CU allows SPs and 
SRs to register in the system so that they can be 
authenticated. The CU manages service ratings and trust 
scores and provides service portals to allow SPs to 
advertise one or more services offered by them. The CU 
also provides service portals for individual SRs to query 
and rank SPs based on service quality performance 
metrics selected by SRs. The CU is a trusted entity, such 
as Yelp, in a smart food service community. 

2. Service Providers (SPs): An SP must register with the 
CU, so it can advertise its services through the CU. 
Every registered SP must post its performance data for 
service quality performance metrics that would be of 
interest to SRs in the service community. The posting 
frequency may depend on the nature of the performance 
metric, e.g., for the “service wait time” performance 
metric, it can be posted on a minute-by-minute basis. 
However, an SP can be malicious and therefore a trust 
system is needed to rate the trustworthiness of the SP. 

3. Service Requesters (SRs): Every customer who wants to 
use services advertised in an SSC is an SR. An SR can 
be equipped with IoT-assisted technology, i.e., an SR 
can carry handheld or body wearable IoT devices with 
sensory and communication capabilities to 
automatically collect and report measurements of 
certain performance metrics related to a service. 
Therefore, an SR can report information in two ways: 
 Manual: An SR is prompted by the SSC application 

running on the SR’s smart IoT device (e.g., a 
smartphone) to provide feedback consisting of 
answers to CU-prepared questions regarding 
specific service quality performance metrics of an 
SP. This is the default method of collecting metric 
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Dine in restaurant               

Walk-in clinic   - -  -   -  -    

Phone repair shop   - -   -  - - - - - - 

Spa/salon   -            

Children’s daycare -  -   -     -    

Car wash  - - -   - - - - - - - - 
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measurements when IoT sensing technology is 
unable to measure certain user-specified 
performance metric (e.g., payment options). 

 IoT-assisted: An SR uses its IoT device equipped 
with smart sensing technology to automatically 
collect SPs’ service performance measurements. 
This in effect creates the feedback automatically to 
be sent to the CU. Using sensors can provide more 
accurate readings for certain types of service quality 
performance metrics (e.g., 21°C room temperature 
at a restaurant) which otherwise could be 
misinterpreted. IoT sensing technology can 
measure ambient environment changes, including 
lighting, noise, flavor, smell, background music 
detection, cellular coverage, and WiFi availability, 
which in turn allows certain metrics of interest to be 
automatically measured. In a smart food service 
community, the total service time of an SR at an SP 
location may be measured by a sudden change of 
the ambient environment in lighting, noise, and 
background music. The service wait time may be 
measured by sudden changes in flavor and smell 
while all others remain the same. 

An SR can send a query to the CU to rank SPs based on a 
set of performance metrics selected by the SR. An SR can 
also serve as a witness to help other members of the SSC 
to find the best SP based on their own set of service 
quality performance metrics. However, since a witness 
can be malicious, a witness rating system is needed to rate 
the credibility of each witness. Specifically, an SR can 
send an “SR-SP service rating” report to the CU after 
personally receiving a service from an SP. An SR can also 
send an “SR-SR credibility rating” report toward a 
witness.  

Table II lists the notation used in our protocol design. A 
querying SR, say 𝑆𝑅௜, first searches for a set of qualified SPs 
based on a set of “service quality performance metrics” 
deemed as important by the SR. These user-specified service 
quality performance metrics are formalized into search criteria 
and are executed against the CU database through the service 
portals. The CU then returns a set of SPs that satisfy the 
criteria. Each qualified SP returned, say 𝑆𝑃௝, is associated with 

the following information for 𝑆𝑅௜′ s decision making: (1) 

𝑆𝑅௜′𝑠 subjective trust score toward 𝑆𝑃௝, denoted by 𝑆𝑇ௌோ೔

ௌ௉ೕ; (2) 

𝑆𝑃௝′s  advertised performance for metric 𝑚  denoted by 

𝑀௔ௗ௩
ௌ௉ೕ,௠

;  (3) 𝑆𝑃௝′s  projected performance for metric 𝑚 

denoted by 𝑀ௌோ೔

ௌ௉ೕ,௠
; and (4) a list of witnesses who had service 

experience with 𝑆𝑃௝ along with their reported service ratings 

for metric 𝑚  (on the scale of 1 to 5) and the actual 
𝑆𝑃௝ performance experienced for metric 𝑚.  

For example, if we consider the performance metric of 
interest to 𝑆𝑅௜ is the “service wait time” (i.e., time to wait until 
service is rendered),  𝑆𝑅௜  can send a query to the CU with 
search criteria including location, cuisine type, and service 
wait time (assuming it is the only performance metric labeled 
as “𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒” in this use scenario) to find SPs that satisfy 
the search criteria. 

The CU would return a query result containing a record for 
each 𝑆𝑃௝ satisfying the search criteria. The record associated 

with 𝑆𝑃௝ would contain (1) 𝑆𝑅௜′s subjective trust score toward 

𝑆𝑃௝′s service wait time performance; (2) 𝑆𝑃௝′s  advertised 

service wait time 𝑀௔ௗ௩
ௌ௉ೕ,௪௔௜௧_௧

;(3) 𝑆𝑃௝′s projected service wait 

time 𝑀ௌோ೔

ௌ௉ೕ,௪௔௜௧_௧
;  and (4) a set of witnesses having service 

experience with 𝑆𝑃௝, along with the service ratings toward 

𝑆𝑃௝ on the scale of 1-5 for metric “𝑤𝑎𝑖𝑡_𝑡” and the actual wait 

time (in min.) experienced for “𝑤𝑎𝑖𝑡_𝑡”. 
TABLE II 

NOTATIONS 
Parameter Meaning 

𝑀௔ௗ௩
ௌ௉ೕ,௠

 𝑆𝑃௝′s advertised performance value for metric 𝑚 

𝑆𝑇ௌோ೔

ௌ௉ೕ  𝑆𝑅௜′𝑠 subjective trust score toward 𝑆𝑃௝ 

𝑀ௌோ೔

ௌ௉ೕ,௠
𝑆𝑃௝′s projected performance value for metric 𝑚

𝑀௔ௗ௩
ௌ௉ೕ,௪௔௜௧_௧ 𝑆𝑃௝′s advertised service wait time

𝑀ௌோ೔

ௌ௉ೕ,௪௔௜௧_௧
𝑆𝑃௝′s projected service wait time 

𝑇ௌோ೔

ௌ௉ೕ Service rating of 𝑆𝑅௜ toward 𝑆𝑃௝ 

𝐶𝑅ௌோ೔

ௌோೕ Credibility score from 𝑆𝑅௜ toward 𝑆𝑅௝

𝐶𝑅௧௛ Credibility threshold 

𝑆𝑇௧௛ Subjective trust threshold 

𝑆𝑒𝑒𝑛௜,௞
௧  Set of all SRs seen by 𝑆𝑅௜ at location 𝑆𝑃௞ at time 

𝑡

𝐴𝑆௑,௞,௝
௧  

Set of all SRs who saw 𝑆𝑅௝ at location 𝑆𝑃௞ at time 
𝑡

𝑆𝑇ௌோ೔

ௌ௉ೕ,௔௟௟ 𝑆𝑅௜′𝑠 subjective trust score toward 𝑆𝑃௝ across all 
metrics

 
Using the information returned by the CU, a querying SR 

would select what it believes to be the best SP for the service 
it requested. After the service is rendered, the SR assesses its 
own service rating for a metric of interest (say metric 𝑚ሻ 
based on actual experience. The SR serving as a witness 
would then report its service rating as well as the actual 
performance experienced for metric 𝑚 to the CU through the 
service portal provided by the CU. The service rating and the 
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actual performance experienced for metric 𝑚 reported by an 
SR toward each SP will be stored in the CU such that when 
another SR runs a search query for which an SP is a match, 
the witness information associated with the SP will be 
included in response to the querying SR. The stored witness 
information used for the response is organized based on the 
service quality performance metric type and granularity 
since some metrics are relatively static (e.g., payment 
options), while others may be highly dynamic depending on 
the time of day, and day of week (e.g., service wait time). 

B.  THREAT MODEL 
We consider malicious SPs and SRs (when acting as 
witnesses) as the only form of attack. Other forms of attack 
that are possible in a service community, such as Distributed 
Denial of Service (DDoS), system intrusion, and data leaks 
[27], are beyond the scope of this paper. Our threat model 
covers the following attacks: 
1. Self-promoting attack: A malicious SP can advertise a 

false performance level for a particular metric to attract 
more customers. For example, an SP would advertise a 
shorter service wait time than it actually is and a 
customer who selects it for service would experience a 
much longer wait time. 

2. Recommendation attack: A recommendation attack 
occurs when a malicious SR (as a witness) colludes with 
other malicious SPs to increase their chance of being 
selected for service. Two forms of the recommendation 
attack include: 

 Ballot-stuffing attack: In order to gain profit(s) 
by attracting more customers, a malicious SP 
can advertise a false performance level and 
other malicious SRs may backup the false 
performance.  An SR is more likely to trust an 
SP if many SRs acting as witnesses support the 
SP’s advertised performance level. 

 Bad-mouthing attack: Malicious SRs acting as 
witnesses may report a false performance level 
for a good SP (e.g., a large wait time) in order 
to ruin the reputation of the good SP. An SR is 
more likely to distrust an SP if many SRs refute 
the SP’s advertised performance level. 

3. Non-cooperation attack: Malicious SRs acting as 
witnesses may exhibit selfish behavior by utilizing the 
CU’s resources for search functions but are unwilling to 
produce reports to the CU.  

4. Report fabrication attack: Reports may be fabricated by 
malicious SRs acting as witnesses by providing false 
locations [6, 7], pretending to be at an SP’s location at 
time t to rate the SP when in fact they are physically 
elsewhere.  

In the following section, we explain how our trust 
management protocol design copes with these attacks. 

IV. TRUST MANAGEMENT PROTOCOL DESIGN 
In this section, we describe our trust protocol design in detail. 
We first describe our design principles in Section IV.A. Then 
in Section IV.B, we describe the computational procedure for 
computing the one-to-one SR-SP subjective trust score for a 
user service quality performance metric specified by the SR. 
Since the computational procedure is the same for every user  
service quality performance metric specified by the SR, we 
shall generally refer a selected metric as “metric 𝑚” and omit 
saying “for metric 𝑚” when the context is clear. Section IV.B 
is organized as follows: (1) Section IV.B.1 describes how  an 
SR rates an SP based on own experiences. (2) Section IV.B.2 
details how an SR rates a witness. These two pieces of rating 
information are reported to the CU who keeps track of pair-
wise SR-SP and SR-SR trust scores. It is “subjective” because 
the computation is based on the subjective view of the SR who 
issues a query to the CU (about which SPs and witnesses are 
trustworthy based on own experiences). (3) Section IV.B.3 
explains how the CU computes an SR’s “subjective” trust 
score toward an SP. (4) Section IV.B.4 discusses how the CU 
computes an SP’s projected performance (for metric 𝑚ሻ. The 
SP’s projected performance conveys the system’s belief based 
on all collected service ratings and trust evidence. This 
projected performance provides an expected service quality if 
this particular SP is selected for service. (5) Section IV.B.5 
discusses how to select the “best” SP for service among all 
qualified SPs as application-level decisions. Finally, Section 
IV.C describes decision making strategies by an SR when 
there are multiple service quality performance metrics.  

A.  DESIGN PRINCIPLES 
The following design principles are adopted in our SSC trust 
management protocol design: 
1. Own experiences outweighing witness experiences: 

When an SR issues a query to the CU asking for the trust 
score and the projected performance of an SP, the 
calculation should heavily count on this particular SR’s 
own experience (if any), especially in an environment 
with a high concentration of malicious witnesses. 

2. Subjective trust computation: An SR judges whether an 
SP or a witness is good or bad based on its subjective 
view, rather than based on the “common belief” of all 
SRs (e.g., objective trust). The subjective view is 
exercised when an SR evaluates an SP based on own 
service experience as well as when an SR selects 
witnesses based on its own belief that these witnesses 
are highly credible and can provide true witness 
experiences about an SP. 

3. Witness filtering based on witness credibility: Each SR 
has its own one-to-one SR-SR credibility score toward a 
witness because trust (or credibility) rating is subjective 
and one-to-one. Witnesses with low credibility will be 
filtered out to deal with recommendation attacks. 

4. Scalability: For scalability, the one-to-one SR-SP trust 
information and one-to-one SR-SR credibility 
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information are not to be kept in each SR. Rather, the 
CU in the cloud maintains all trust and credibility 
information and performs all necessary computation to 
answer a query issued by an SR regarding the SR-SP 
trust score and an SP’s projected performance. 

B. ONE-TO-ONE SR-SP SUBJECTIVE TRUST SCORE 
FOR A PERFORMANCE METRIC SPECIFIED BY A USER 

1) SR-SP SERVICE RATING SCORE BASED ON OWN 
EXPERIENCE 
When an SR receives service from an SP, it will compare the 
SP’s advertised performance (of a service quality metric, such 
as wait time) with the SP’s actual performance observed. We 
consider the service rating ranged from 1 to 5 as an integer, 
with 1 being least satisfaction and 5 being most satisfaction. 
Specifically, if the actual performance value is less than 20% 
over an SP’s advertised performance value, then the service 
rating is 5, 20-39% then 4, 40-59% then 3, 60-79% then 2, and 
80%-100% then 1.   
 

i
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SP data 
records
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Rating for
metric  

 
(a). (b). (c).

FIGURE 2. The process of assessing 𝑺𝑷𝒋’s trust score: (a) 𝑺𝑷𝒋 advertises 
its performance for metric 𝒎 to CU; (b) 𝑺𝑹𝒊  sends a query to the CU 
containing the performance metrics required. The CU finds all SPs that 
satisfy the query including 𝑺𝑷𝒋;  and (c) 𝑺𝑹𝒊  chooses 𝑺𝑷𝒋  based on 
application-level decision making, visits 𝑺𝑷𝒋 to obtain the service, and 
then compares 𝑺𝑷𝒋 advertised performance for metric 𝒎 with the actual 
performance experienced to obtain a new service rating for metric 𝒎 
(using smart IoT devices) and reports the service rating for 𝒎 to CU. 

 
Josang’s Beta reputation system [5] is utilized to calculate 

the SR’s service rating toward an SP based on the historical 
service transactions between the two entities. An SR 𝑖 , 
denoted by 𝑆𝑅௜, assesses the service rating of an SP 𝑗, denoted 
by 𝑆𝑃௝, by: 

                                    𝑇ௌோ೔

ௌ௉ೕ ൌ
ఈ

ఈାఉ
 (1) 

                            𝛼 ൌ ∑ 𝑓ௌோ೔

ௌ௉ೕሺ𝑡ሻ௔௟௟ 𝑒ିఒ೏ሺ௧೙೚ೢି௧ሻ (2) 

                       𝛽 ൌ ∑ ሺ1 െ 𝑓ௌோ೔

ௌ௉ೕሺ𝑡ሻሻ௔௟௟ 𝑒ିఒ೏ሺ௧೙೚ೢି௧ሻ (3) 

where 𝛼  and 𝛽  are the cumulative amounts of positive and 
negative experiences, respectively, with time decay from 𝑆𝑅௜ 
toward 𝑆𝑃௝ with 𝛼 ൌ 1 and  𝛽 ൌ 1 initially given. Here 

𝑓ௌோ೔

ௌ௉ೕሺ𝑡ሻ represents the amount of positive experience of the 

rating computed at time 𝑡 and can be computed as 𝑓ௌோ೔

ௌ௉ೕሺ𝑡ሻ  = 

(service rating at time 𝑡)/5, resulting in a service satisfaction 
level that is either 1, 0.8, 0.6, 0.4, or 0.2. The 
term 𝑒ିఒ೏ሺ௧೙೚ೢି௧ሻ in (2) and (3) represents time decay where 

𝑡௡௢௪ is the current time, and 𝜆ௗ is the decay parameter to 
discount old service experiences. By using time decay, more 
recent experiences by 𝑆𝑅௜  toward 𝑆𝑃௝  are given a higher 

weight toward 𝑇ௌோ೔

ௌ௉ೕ . The service rating score is updated 

whenever 𝑆𝑅௜  receives service from 𝑆𝑃௝  and subsequently 
assesses whether it is a positive or negative service experience. 
To support the design principle of “scalability” each SR 
reports its service rating toward an SP to the CU who 

maintains 𝑇ௌோ೔

ௌ௉ೕ  for all pairs of 𝑆𝑅௜  and 𝑆𝑃௝ . The process of 

assessing an SP’s service rating is depicted in Fig. 2. 

2) SR-SR CREDIBILITY SCORE  
The trustworthiness of a witness (who is an SR acting as a 
witness) is rated by its credibility. The credibility score of a 
witness is based on (1) the “taste similarity” in reporting 
similar SR-SP service ratings for a performance metric (called 
taste similarity credibility or 𝑡𝑠𝑐 ), (2) the participation in 
reporting to the service community via CU (called 
participation credibility or 𝑝𝑐), and (3) the location credibility 
of reports (called location credibility or 𝑙𝑐 ), all from the 
perspective of the “trustor” SR toward a “trustee” SR, thus 
resulting in an one-to-one SR-SR credibility score. An 
observed/logged event relating to these factors can be 
represented by a level of satisfaction from the trustor SR 
toward the trustee SR, which in turn is sent to the CU to update 
the pair-wise SR-SR credibility score. We denote the 

credibility score from 𝑆𝑅௜ toward 𝑆𝑅௝ by 𝐶𝑅ௌோ೔

ௌோೕ, given as: 

𝐶𝑅ௌோ೔

ௌோೕ ൌ
௔

௔ା௕
 (4) 

𝑎 ൌ  ∑ 𝑤௜ ൈ 𝑎௜௜  (5) 

𝑏 ൌ  ∑ 𝑤௜ ൈ 𝑏௜௜  (6) 

where 𝑎௜ and 𝑏௜ represent the aggregate levels of satisfaction 
and dissatisfaction, respectively, for credibility type 𝑖 . 𝑤௜ 
represents the allocated credibility weight given by the SR for 
credibility type 𝑖, where  𝑖 ∈ ሼ𝑡𝑠𝑐, 𝑝𝑐, 𝑙𝑐ሽ discussed above and 
the chosen weights are restricted by ∑ 𝑤௜ ൌ 1௜ . The weights, 
𝑤௧௦௖ , 𝑤௣௖ , and 𝑤௟௖ , should be adjusted to reflect the 
importance of various credibility types in an SCC. For 
example, participation may not be mandatory by all witnesses 
for a particular application and in this case 𝑤௣௖ would be low. 
Next, we discuss each of the credibility types in more detail. 

Taste similarity credibility: A witness reports its service 
rating toward an SP for a performance metric of interest after 
service is rendered. Once an SR itself experiences service from 
the same SP, it will compare its own service rating with the 
service rating reported by a witness to assess the witness’s 
taste similarity credibility. If the service rating is similar, then 
it means that they have a high level of “taste similarity” in 
rating the same SP with respect to the performance metric in 
question and the witness is considered trustworthy because the 
SR and the witness share a similar taste toward the same 
service provided by the same SP. A witness’s taste similarity 
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credibility rating is ranged from 1 to 5 as an integer, 
representing the difference between the SR’s service rating 
and the witness’s reported service rating. For example, if we 
consider the metric of interest is “wait time,” then one way to 
obtain the taste similarity credibility rating is to find the 
absolute value of an SR’s own wait time service rating minus 
the witness’s wait time service rating denoted by 𝑑. Then the 
taste similarity credibility rating is 5 െ 𝑑. So if the two wait 
time service ratings are the same, then 𝑑 ൌ 0 and the taste 
similarity credibility rating is 5. If the SR’s wait time rating is 
5 but the witness’s wait time rating is 1, then the taste 
similarity credibility rating is 5 െ 𝑑 ൌ 5 െ 4 ൌ 1. To support 
the design principle of “scalability,” an SR reports the 
resulting taste similarity credibility rating about a witness to 
the CU who keeps a database of all pair-wise SR-SR 
credibility ratings. Specifically, the cumulative amounts of 
time-decayed positive and negative experiences from 𝑆𝑅௜ 
toward 𝑆𝑅௝ can be derived as: 

𝑎௧௦௖ = ∑ 𝑔ௌோ೔

ௌோೕ,೟ೞ೎ሺ𝑡ሻ ൈ 𝑑௧௦௖ሺ𝑡ሻ௔௟௟  (7) 

𝑏௧௦௖ = ∑ ሺ1 െ 𝑔ௌோ೔

ௌோೕ,೟ೞ೎ሺ𝑡ሻሻ ൈ௔௟௟ 𝑑௧௦௖ሺ𝑡ሻ (8) 

with 𝑎௧௦௖ ൌ 1 and  𝑏௧௦௖ ൌ 1 initially, and 𝑑௧௦௖ሺ𝑡ሻ is a decay 
factor for the taste similarity credibility rating where 
𝑑௧௦௖ሺ𝑡ሻ ൌ 𝑒ିఒ೏ሺୱ୲ୢୣ୴ሺ௧೙೚ೢ,௧,௅ௐோೕሺ௧ሻሻሻ.  Here 𝑎௧௦௖ and  𝑏௧௦௖  are 
accumulated over all witness assessments, each occurring at a 
separate time 𝑡 when a witness report is received by the CU. 

𝑔ௌோ೔

ௌோೕ,௧௦௖
ሺ𝑡ሻ is the amount of positive experience of the taste 

similarity credibility rating at time 𝑡 computed based on the 
last provided 𝑆𝑅௝ taste similarity credibility rating at time 𝑡, 

computed by 𝑔ௌோ೔

ௌோೕ,೟ೞ೎  = (witness taste similarity credibility 

rating at time 𝑡)/5, resulting in a service satisfaction level that 
is either 1, 0.8, 0.6, 0.4, or 0.2. The 
term  𝑒ିఒ೏ሺୱ୲ୢୣ୴ሺ௧೙೚ೢ,௧,௅ௐோೕሺ௧ሻሻሻ  represents time decay where 
𝜆ௗ is the decay parameter and stdevሺ𝑡௡௢௪, 𝑡, 𝐿𝑊𝑅௝ሺ𝑡ሻሻ is the 
standard deviation of the time of a current visit to 𝑆𝑃௝ (𝑡௡௢௪), 
time of 𝑆𝑅௜ judging witness 𝑆𝑅௝ (𝑡), and the result of function 
𝐿𝑊𝑅௝ሺ𝑡ሻ, which is the time of the last witness report from 
witness 𝑆𝑅௝  rating 𝑆𝑃௝  prior to time point 𝑡. This keeps the 

calculated 𝐶𝑅ௌோ೔

ௌோೕmore relevant at the time of assessment by 

minimizing the weight of old data. In addition, this way allows 
fair assessment so that reported taste similarity credibility 
ratings by the witness cannot be expected to be similar to 
current taste similarity credibility ratings if there is a large time 
gap. Fig. 3 shows the process of computing the 𝑆𝑅௜-𝑆𝑅௝ taste 
similarity credibility rating.  
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FIGURE 3. The process of computing the 𝑺𝑹𝒊 - 𝑺𝑷𝒋 taste similarity 
credibility rating for metric m: (a) 𝑺𝑹𝒋 sends its service rating for metric 
𝒎 after visiting 𝑺𝑷𝒋  to the CU at time ൏ 𝒕; (b) At time ൒ 𝒕, 𝑺𝑹𝒊  sends a 
query containing the performance metrics required to the CU. The CU 
finds all SPs (including 𝑺𝑷𝒋 ) that satisfy the query and all witnesses’ 
service ratings (including 𝑺𝑹𝒋’s service rating for metric 𝒎 toward 𝑺𝑷𝒋); 
and (c) 𝑺𝑹𝒊  chooses 𝑺𝑷𝒋  based on application-level decision making, 
visits 𝑺𝑷𝒋 to obtain the service, and then compares its service rating for 
metric 𝒎 with that of witness 𝑺𝑹𝒋 ’s service rating for metric 𝒎 (using 
smart IoT devices), and reports the 𝑺𝑹𝒊 -𝑺𝑷𝒋 taste similarity credibility 
rating for metric 𝒎 to the CU. 
 

Participation credibility: This credibility type determines if 
a witness exhibits selfish behavior and is utilizing the CU for 
search functions but is unwilling to produce reports to the CU, 
thus exhibiting the signs of a non-cooperation attack on the 
system.  An SR could question the integrity of a witness if it 
detects non-cooperation. Let 𝑆𝑒𝑒𝑛௜,௞

௧  be the set containing all 

SRs seen by 𝑆𝑅௜  at location 𝑆𝑃௞  at time 𝑡. If 𝑆𝑅௝ ∈ 𝑆𝑒𝑒𝑛௜,௞
௧  

but is not included in the witness list contained in the query 
reply 𝑄𝑅௜,௞

௧  sent by the CU, then 𝑆𝑅௝ did not review 𝑆𝑃௞ yet it 

was physically present at 𝑆𝑃௞ . This cross-checking can be 
done at a certain timepoint (e.g., the end of a day) where the 
seen lists for all visited locations by 𝑆𝑅௜ can be cross-checked 
against logged query replies by the CU. Alternatively, 𝑆𝑅௜ can 
take a more proactive approach by verifying on the spot by 
purposely sending a query to the CU at time 𝑡 for 𝑆𝑃௞, then 
examine the query reply of the CU to see if 𝑆𝑅௝  is in the 

witness list but 𝑆𝑅௝ ∈  𝑆𝑒𝑒𝑛௜,௞
௧  locally on 𝑆𝑅௜.  

Furthermore, this instance of selfish behavior can be 
captured automatically by IoT-assisted technology. 
Specifically, 𝑆𝑅௜ ’s smart devices can confirm that 𝑆𝑅௝  is in 
fact at the 𝑆𝑃௞ by short-range communication (functioning as 
a substitute for physical eye sight). Such communication 
would be enabled a priori via an SSC app running on smart 
devices. 𝑆𝑅௜’s  device would then communicate directly (on 
behalf of its owner) with the CU to update 𝑆𝑅௝’s participation 
credibility accordingly without any mandatory manual entry. 
Alternatively, in the absence of IoT-assisted automatic 
verification, 𝑆𝑅௜  can rely on physical eyesight alone to first 
identify possible selfish witnesses and then send a query 
manually to the CU (e.g., using a smart phone) to initiate the 
verification as mentioned earlier. We model participation 
credibility as: 

𝑎௣௖ ൌ ∑ 𝑔ௌோ೔

ௌோೕ,೛೎ሺ𝑡ሻ ൈ 𝑑௣௖ሺ𝑡ሻ௔௟௟  (9) 

𝑏௣௖ ൌ ∑ ሺ1 െ 𝑔ௌோ೔

ௌோೕ,೛೎ሺ𝑡ሻሻ ൈ௔௟௟ 𝑑௣௖ሺ𝑡ሻ (10) 
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with 𝛼௣௖ ൌ 1 and  𝑏௣௖ ൌ 1 initially, and 𝑑௣௖ሺ𝑡ሻ  is a decay 

factor for participation credibility where 𝑑௣௖ሺ𝑡ሻ ൌ
𝑒ିఒ೏ሺ௧೙೚ೢି௧ሻሻ.  
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FIGURE 4. Cases of 𝑺𝑹𝒋 ’s participation credibility: (a)  𝑺𝑹𝒊  comes in 
contact with 𝑺𝑹𝒋 at location 𝑺𝑷𝒌, adds 𝑺𝑹𝒋 to the seen list, then sends the 
seen list to the CU with 𝑺𝑹𝒋 ∈ 𝑺𝒆𝒆𝒏𝒊,𝒌

𝒕  and 𝑺𝑹𝒋 is matched successfully 
with the witness list for rating 𝑺𝑷𝒌contained in the query reply 𝑸𝑹𝒊,𝒌

𝒕 ; and 
(b) 𝑺𝑹𝒋 ∈ 𝑺𝒆𝒆𝒏𝒊,𝒌

𝒕  but there is no match with the witness list for rating 𝑺𝑷𝒌 
contained in the query reply 𝑸𝑹𝒊,𝒌

𝒕 , indicating lack of participation. 

 
The purpose of the decay factor is again to give recent 

events of participation a higher weight. The positive 
experience (see (9)) of participation credibility for 𝑆𝑅௝ seen at 

location 𝑆𝑃௞ at time 𝑡 is captured by 𝑔ௌோ೔

ௌோೕ,೛೎ሺ𝑡ሻ as follows: 

𝑔ௌோ೔

ௌோೕ,೛೎ሺ𝑡ሻ ൌ ቊ
𝐶ௌோ೔

 ,       𝑆𝑅௝ ∈  𝑆𝑒𝑒𝑛௜,௞
௧  ∧   𝑆𝑅௝  ∈ 𝑄𝑅௜,௞

௧  

1 െ 𝐶ௌோ೔
 , 𝑆𝑅௝ ∈  𝑆𝑒𝑒𝑛௜,௞

௧  ∧   𝑆𝑅௝  ∉ 𝑄𝑅௜,௞
௧  (11) 

where 𝐶ௌோ೔
 is the capability of 𝑆𝑅௜  to identify other SRs 

within its vicinity. We set 𝐶ௌோ೔
ൌ 1 for using both IoT-assisted 

and manual verification, 𝐶ௌோ೔
ൌ 0.9  for IoT-assisted 

verification only, and 𝐶ௌோ೔
ൌ 0.8 for manual verification only. 

Thus, a selfish non-cooperative 𝑆𝑅௝ , as seen by 𝑆𝑅௜,  will 

decrease its credibility score 𝐶𝑅ௌோ೔

ௌோೕ  thus decreasing the 

chance of 𝑆𝑅௝  influencing the subjective trust toward other 
SPs. The behavior can be further verified by application-level 
messages showing that 𝑆𝑅௝  was at the location and an 
interaction with the smartphone application was logged at that 
time. Equation (11) above models both the cases of positive 
participation evidence and lack of participation evidence as 
illustrated in Fig. 4 (a) and Fig. 4 (b), respectively. 

Location credibility: The purpose of location credibility is 
to verify the correctness of an SR’s location, thus identifying 
suspicious witness participation and witness SP report 
fabrication entailing a report fabrication attack. If 𝑆𝑅௜  is at 
location 𝑆𝑃௞  at time 𝑡 and both 𝑆𝑒𝑒𝑛௜,௞

௧  and the query reply 

𝑄𝑅௜,௞
௧  show that 𝑆𝑅௝ was at  location 𝑆𝑃௞ at time 𝑡, it marks 

positive results and sets 𝑆𝑅௝′s location credibility to 𝐶ௌோ೔
, the 

capability of 𝑆𝑅௜ to identify other SRs within its vicinity (Case 
1). However, if 𝑆𝑅௜ is at location 𝑆𝑃௞ at time 𝑡 and is unable 

to detect 𝑆𝑅௝ yet 𝑆𝑅௝ is in the witness list contained in 𝑄𝑅௜,௞
௧ , 

then 𝑆𝑅௝ might have fabricated this witness service rating and 

could be physically elsewhere. The CU can corroborate 𝑆𝑅௜′s 
suspicion regarding 𝑆𝑅௝  without invading 𝑆𝑅௝′ s privacy 

(avoid sharing actual location information at time 𝑡 ) as 
follows: 𝑆𝑅௜  first sends its seen list 𝑆𝑒𝑒𝑛௜,௞

௧  to the CU as a 

proof of 𝑆𝑅௝
ᇱ s absence. The CU then cross-checks existing 

witness records for time 𝑡  and identifies all SRs who have 
encountered 𝑗  at location 𝑆𝑃௞  denoted by the set 𝐴𝑆௑,௞,௝

௧ . If 

such SRs exist, then the witness in question was seen by the 
SRs and 𝑆𝑅௜ might have been unable to detect 𝑆𝑅௝’s presence 

at location 𝑆𝑃௞ at time 𝑡. The CU uses 𝑆𝑅௜′s saved credibility 
scores and checks if the aggregate credibility of the 𝐴𝑆௑,௞,௝

௧  set 

using credibility function CR, denoted by CRሺ𝐴𝑆௑,௞,௝
௧ ሻ, is over 

a desired credibility threshold 𝐶𝑅௧௛. If yes, it marks positive 
results (Case 2); otherwise, it marks negative results (Case 3).  

More specifically, we model location credibility as: 

𝑎௣௖ ൌ ∑ 𝑔ௌோ೔

ௌோೕ,೗೎ሺ𝑡ሻ ൈ 𝑑௟௖ሺ𝑡ሻ௔௟௟  (12) 

𝑏௣௖ ൌ ∑ ሺ1 െ 𝑔ௌோ೔

ௌோೕ,೗೎ሺ𝑡ሻሻ ൈ௔௟௟ 𝑑௟௖ሺ𝑡ሻ (13) 

with 𝛼௟௖ ൌ 1 and  𝑏௟௖ ൌ 1 initially, and 𝑑௟௖ሺ𝑡ሻ  is a decay 
factor for location credibility with 𝑑௟௖ሺ𝑡ሻ ൌ 𝑒ିఒ೏ሺ௧೙೚ೢି௧ሻሻ . 
The purpose of the decay factor is to give recent events of 
location credibility a higher weight. The positive experience 
(because it is in (12)) of location credibility for 𝑆𝑅௝ listed in 

the query reply 𝑄𝑅ௌோ೔

௞,௧  at time 𝑡  is captured by 𝑔ௌோ೔

ௌோೕ,೗೎ሺ𝑡ሻ as 

follows: 

𝑔ௌோ೔

ௌோೕ,೗೎ሺ𝑡ሻ

ൌ

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧  𝐶ௌோ೔

 ,                                   ൣ൫𝑆𝑅௝  ∈ 𝑄𝑅ௌோ೔

௞,௧ ൯ ∧ ൫𝑆𝑅௝ ∈  𝑆𝑒𝑒𝑛௜,௞
௧ ൯൧

min ቆ
 𝐶ௌோ೔

,

CRሺ𝐴𝑆௑,௞,௝
௧ ሻ

ቇ,                           

⎣
⎢
⎢
⎢
⎢
⎡ ൫𝑆𝑅௝  ∈ 𝑄𝑅ௌோ೔

௞,௧ ൯

∧ ൫𝑆𝑅௝ ∉ 𝑆𝑒𝑒𝑛௜,௞
௧ ൯

∧ ൫ห𝐴𝑆௑,௞,௝
௧ ห ൐ 0൯

∧ ൫CRሺ𝐴𝑆௑,௞,௝
௧ ሻ ൒ 𝐶𝑅௧ℎ൯⎦

⎥
⎥
⎥
⎥
⎤

1 െ 𝐶ௌோ೔
,           ൥

൫𝑆𝑅௝  ∈ 𝑄𝑅ௌோ೔

௞,௧ ൯ ∧ ൫𝑆𝑅௝ ∉ 𝑆𝑒𝑒𝑛௜,௞
௧ ൯

∧ ቀ൫ห𝐴𝑆௑,௞,௝
௧ ห ൐ 0൯ ∨ ൫CRሺ𝐴𝑆௑,௞,௝

௧ ሻ ൏ 𝐶𝑅௧ℎ൯ቁ
൩

 

 (14) 

𝐶𝑅ሺ𝐴𝑆௑,௞,௝
௧ ሻ ൌ

∑ ஼ோೄೃ೔
ೄೃೣ

ೣ ∈ ಲೄ೉,ೖ,ೕ
೟  

ቚ஺ௌ೉,ೖ,ೕ
೟ ቚ

 (15) 

where the first, second, and third cases in (14) match Case 1, 
Case 2, and Case 3, respectively. Fig. 5 (a) and Fig. 5 (b) 
illustrate Case 1 and Case 2 or 3, respectively. Note that all 
cases are based upon 𝑆𝑅௜′s  subjective one-to-one view 
regarding other SRs (i.e., no common belief is used) and the 
CU only helps in determining who else has seen 𝑆𝑅௝  at 

location 𝑆𝑃௞ at time 𝑡. 
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FIGURE 5. Cases of 𝑺𝑹𝒋’s location credibility: (a) Case 1:  𝑺𝑹𝒊 is at location 
𝑺𝑷𝒌 at time 𝒕 and both 𝑺𝒆𝒆𝒏𝒊,𝒌

𝒕  and the query reply 𝑸𝑹𝒊,𝒌
𝒕  show that 𝑺𝑹𝒋 was 

at location 𝑺𝑷𝒌 at time 𝒕; and (b) Case 2 or 3: 𝑺𝑹𝒊 is at location 𝑺𝑷𝒌 at time 𝒕 
and is unable to detect 𝑺𝑹𝒋 yet 𝑺𝑹𝒋 is in the witness list contained in 𝑸𝑹𝒊,𝒌

𝒕 . 
Therefore, 𝑺𝑹𝒊 asks the CU to cross-check the seen lists submitted by all 
SRs who have encountered 𝑺𝑹𝒋 at location 𝑺𝑷𝒌 at time 𝒕. Case 2 or Case 3 
depends on whether 𝐂𝐑ሺ𝑨𝑺𝑿,𝒌,𝒋

𝒕 ሻ is greater than 𝑪𝑹𝒕𝒉.  

3) SR-SP SUBJECTIVE TRUST SCORE 
An SR’s subjective trust score toward an SP has the physical 
meaning of whether the SR believes if the SP is malicious, i.e., 
lying about the service performance. The CU updates 𝑆𝑅௜′𝑠 
subjective trust score toward 𝑆𝑃௝whenever it receives a new 

𝑇ௌோ೔

ௌ௉ೕ value (from (1)) or a new 𝐶𝑅ௌோ೔

ௌோೕ  value (from (4)). To 

support the design principle of “subjective trust computation 
instead of objective trust computation,” the CU computes 

𝑆𝑅௜′𝑠 subjective trust score toward 𝑆𝑃௝, denoted by 𝑆𝑇ௌோ೔

ௌ௉ೕ, as 

follows: 

𝑆𝑇ௌோ೔

ௌ௉ೕ ൌ ∑ ሺ
஼ோೄೃ೔

ೄೃೕ

∑ ஼ோೄೃ೔

ೄೃೕ೙ೝ
ೕసభ

ሻ𝑇ௌோೕ

ௌ௉ೕ௡ೝ
௝ୀଵ  (16) 

where 𝑛௥  is the number of witnesses having the highest 

credibility scores among all witnesses, 𝑇ௌோೕ

ௌ௉ೕ (from (1)) is the 

service rating of 𝑆𝑃௝ as reported by 𝑆𝑅௝acting as a witness, and 

𝐶𝑅ௌோ೔

ௌோೕ(from (4)) is the credibility score of 𝑆𝑅௝ as evaluated by 

𝑆𝑅௜. The idea behind (16) is that the lower the credibility of 

𝑆𝑅௝ (acting as a witness), the lower the weight toward 𝑆𝑇ௌோ೔

ௌ௉ೕ 

computation. Thus, 𝑆𝑇ௌோ೔

ௌ௉ೕ is simply a weighted sum, i.e., the 

sum of the service rating scores reported from all SRs 
weighted by their respective credibility scores. To support the 
design principle of “own experiences outweighing witness 
experiences,” we set the credibility of the querying SR (𝑆𝑅௜) 
to 1, i.e., 𝐶𝑅ௌோ೔

ௌோ೔ ൌ 1, to allow 𝑆𝑅௜ to be a first-hand witness 

(i.e., self-evaluation) and also to make 𝑆𝑅௜
′s own experiences 

outweigh other witnesses’ experiences. To support the design 
principle of “witness filtering based on witness credibility,” 
we define a minimum credibility rating threshold ሺ𝐶𝑅௧௛ሻ to 
filter out untrustworthy witnesses. Specifically, we only allow 
up to 𝑛௥witnesses whose credibility rating scores are higher 
than the minimum threshold. More specifically, to defend 

against bad-mouthing attacks (saying a good SR’s credibility 
rating is low) and ballot-stuffing attacks (saying a malicious 
SR’s credibility rating is high), witness filtering is applied by 

comparing 𝑆𝑅௜
ᇱ𝑠  own credibility rating toward 𝑆𝑅௝,  𝐶𝑅ௌோ೔

ௌோೕ, 

with 𝐶𝑅௧௛. If it does not pass the minimum threshold, 𝑆𝑅௝ is 

filtered out and its service rating recommendation 𝑇ௌோೕ

ௌ௉ೕ is 

discarded. If there is no witness SR qualified, then 𝑛௥=1 in 
which case 𝑆𝑅௜  is the only witness (i.e., self-evaluation). If 
𝑆𝑅௜ itself does not have any experience with 𝑆𝑃௝, then there is 

no credible witness, in which case 𝑛௥=0 and 𝑆𝑇ௌோ೔

ௌ௉ೕ  remains 

the same as before. 

4) SP’S PROJECTED PERFORMANCE  
An SP, say 𝑆𝑃௝,  advertises its performance for metric 𝑚 

(denoted by 𝑀௔ௗ௩
ௌ௉ೕ,௠

) to attract customers to select it for 
service. However, 𝑆𝑃௝ may perform self-promotional attacks. 
To help a querying SR, say 𝑆𝑅௜, understand if 𝑆𝑃௝′s advertised 
performance data is false, as part of a query reply message, the 
CU returns the “𝑆𝑃௝ ’s projected performance” (denoted by 

𝑀ௌோ೔

ௌ௉ೕ,௠
ሻ  to 𝑆𝑅௜  based on a weighted sum calculation, as 

follows: 

𝑀ௌோ೔

ௌ௉ೕ,௠
ൌ ∑ ሺ

஼ோೄೃ೔

ೄೃೕ

∑ ஼ோೄೃ೔

ೄೃೕ೙ೝ
ೕసభ

ሻ𝑀ௌோೕ

ௌ௉ೕ,௠௡ೝ
௝ୀଵ  (17) 

where 𝑛௥ is the number of witnesses with the highest 
credibility selected among all (including self) that have 

reported service ratings of 𝑆𝑃௝  to the CU, and 𝑀ௌோೕ

ௌ௉ೕ,௠
 is the 

actual performance value of 𝑆𝑃௝ as observed and reported to 
the CU by 𝑆𝑅௝ (acting as a witness). In (17), we assign a higher 
weight to a witness with a higher credibility, so the 
performance value reported by the witness with high 
credibility will dominate the resulting 𝑆𝑃௝′s  projected 
performance. In particular, the SR itself has a credibility score 
of 1, thereby ensuring that it (as a self-witness) has the highest 
weight among all witnesses. 

5) APPLICATION-LEVEL USER DECISION MAKING 
For each candidate 𝑆𝑃௝ that satisfies 𝑆𝑅௜’s service criteria and 
queries regarding service performance metric 𝑚 , the CU 
returns a 4-tuple record to 𝑆𝑅௜ as follows: (a) 𝑆𝑅௜′𝑠 subjective 

trust score toward 𝑆𝑃௝ ሺ𝑆𝑇ௌோ೔

ௌ௉ೕ from (16)), (b) 𝑆𝑃௝ ′𝑠 projected 

performance ሺ𝑀ௌோ೔

ௌ௉ೕ,௠
from (17)), (c) 𝑆𝑃௝ ′𝑠  advertised 

performance (𝑀௔ௗ௩
ௌ௉ೕ,௠

) and (d) a list of all witnesses who have 
reported service ratings and performance values for metric 𝑚 
for 𝑆𝑃௝. The decision to select the “best” SP for service among 
all qualified SPs depends on the application-level decision. 
For example, if the service quality performance metric is “wait 
time,” the following three application-level user decision 
making policies can be considered (here metric 𝑚  is 
“𝑤𝑎𝑖𝑡_𝑡”): 
1. Select the least wait time SP:  That is, select the SP with 



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2901023, IEEE
Access

12 VOLUME XX, 2017 

the smallest 𝑀ௌோ೔

ௌ௉ೕ,௪௔௜௧_௧
value (i.e., the smallest wait time 

regardless of whether the SP is lying or not). 
2. Select the most trustworthy SP: That is, select the SP 

with the largest 𝑆𝑇ௌோ೔

ௌ௉ೕvalue (i.e., the most trustworthy 

SP). 
3. Select the least wait time SP among trustworthy SPs: 

That is, select the SP with the smallest 𝑀ௌோ೔

ௌ௉ೕ,௪௔௜௧_௧
value 

among all qualified SPs whose 𝑆𝑇ௌோ೔

ௌ௉ೕ value is no less 

than the minimum trust threshold 𝑆𝑇௧௛.  
Once 𝑆𝑅௜  selects the best SP, it proceeds to request the 

service from the best SP. After the service is rendered by the 
SP, 𝑆𝑅௜ compares its own service rating with each witness’s 
service rating (available in the 4-tuple record returned by the 
CU) to update each witness’s credibility rating to the CU. 

C.  APPLICATION-LEVEL USER DECISION MAKING 
WITH MULTIPLE SERVICE QUALITY PERFORMANCE 
METRICS 
The CU applies the same computation procedure as described 
in Section IV.B for each user service quality performance 
metric selected by an SR. In case 𝑆𝑅௜  wants to apply more 
than one service quality performance metrics to evaluate 
𝑆𝑃௝, the CU will return to 𝑆𝑅௜ a 4-tuple record for each metric 
𝑚௞ as described in Section IV.B.5 earlier. How to make use 
of the information returned by the CU is a user-level decision. 
An SR, say 𝑆𝑅௜, can evaluate an SP, say 𝑆𝑃௝, by computing 
the overall subjective 𝑆𝑅௜-𝑆𝑃௝ trust score across all metrics, 

denoted by 𝑆𝑇ௌோ೔

ௌ௉ೕ,௔௟௟
, as follows:  

𝑆𝑇ௌோ೔

ௌ௉ೕ,௔௟௟
ൌ ∑ 𝑤௠ೖ

ൈ 𝑆𝑇ௌோ೔

ௌ௉ೕ,௠ೖ|ெೄುೕ
|

௞ୀଵ  (18) 

where 𝑤௠ೖ
 is the weight given for metric 𝑚௞ , |𝑀ௌ௉ೕ

| is the 

total number of metrics selected by 𝑆𝑅௜ to evaluate 𝑆𝑃௝, and 

𝑆𝑇ௌோ೔

ௌ௉ೕ,௠ೖis the subjective 𝑆𝑅௜-𝑆𝑃௝ trust score for each metric 

𝑚௞. The weight assignment is a user-level decision based on 
relative criticality/importance of all performace metrics 

selected by the user. Once 𝑆𝑇ௌோ೔

ௌ௉ೕ,௔௟௟
is calculated, there are 

several selection strategies conceivable. For example, the user 
may want to select the most trustworthy SP across all metrics 

for service, i.e., the SP with the highest 𝑆𝑇ௌோ೔

ௌ௉ೕ,௔௟௟
value is 

selected for service. Alternatively, a user may want to select 
the SP with the best projected performance value in one metric 
(e.g., least wait time) with the condition that the SP is 

reasonably  trustworthy, i.e., the overall trust score 𝑆𝑇ௌோ೔

ௌ௉ೕ,௔௟௟
 

is above the minimum trust threshold 𝑆𝑇௧௛.   
 

V. EXPERIMENTAL EVALUATION 
In this section, we conduct an experimental evaluation for a 

“smart Italian food service community” focusing on dine-in 
Italian restaurant SPs and using a single metric of “service wait 

time” (i.e., metric 𝑚 is “𝑤𝑎𝑖𝑡_𝑡”) to exemplify our approach. 
We use an event-driven simulation tool called SMPL [28] for 
experimental evaluation. 

TABLE III 
PARAMETER LIST FOR EXPERIMENTAL EVALUATION 

Parameter Meaning Default Range Type 

𝑁ௌ௉ Number of SPs 10 [5,20] I 

𝑁ௌோ Number of SRs 2200 [1000,3000] I 

𝜆ௌோ Per-SR arrival rate 0.1/hr 
[0.01-0.5] 

/hr 
I 

𝜇ௌ௉ Per-SP service rate 1/hr [0.5-3]/hr I 

𝑚ௌ௉ 
Per-SP service 
capacity 

20 [10,30] I 

𝑃ெ 
% of malicious 
 SPs and SRs 

30% [10,50]% I 

𝑅௙ Risk factor of a  
malicious SP 

100% [50,100]% I 

𝑛௥ 
# of witnesses 
accepted 

5 [3,10] D 

𝐶𝑅௧௛ 
Credibility 
threshold 

0.6 [0.5,0.8] D 

𝑆𝑇௧௛ 
Subjective trust 
threshold 

0.6 [0.5,0.8] D 

𝑡௧௛,௔ௗ௩௘௥௧௜௘ௗ Advertised wait 
time threshold 

30 min [15,60] min D 

𝑡௧௛,௔௖௧௨௔௟ 
Real wait time 
threshold 

1 hr [0.5,1.5]min D 

𝑆𝑇ௌோ೔

ௌ௉ೕ  
𝑆𝑅௜′s subjective 
trust score toward 
𝑆𝑃௝ 

0.5 [0,1] O 

𝑀ௌோ೔

ௌ௉ೕ,௪௔௜௧_௧
 

projected wait 
time 

- - O 

 

Table III lists the parameters used in the experimental 
evaluation, including symbols, meanings, ranges, default 
values, and types. The column “Type” specifies the parameter 
type as input, design or output, denoted by I, D, or O, 
respectively. Input parameters serve to characterize the 
environmental and operational conditions. Design parameters 
characterize tunable system settings. Finally, output 
parameters realize the objective of the system. Only subjective 
trust scores and projected wait times are output parameters. 
Here we note that a test scenario in our experiment is defined 
by a set of input parameter values. The column “Range” 
specifies the range of each parameter. The column “Default” 
specifies the default parameter value used in our experimental 
evaluation. In the following paragraphs, we discuss the 
reasons why the default parameter values are chosen. In 
particular, the set of input parameter values are chosen such 
that it creates an environment in which there are sufficient 
malicious SPs as well as SRs (acting as witnesses), and the 
aggregate SR arrival rate is higher than the aggregate SP rate 
so that a malicious SP will have to cheat to lure SRs to use its 
service and an SR will have to carefully select the best SP for 
service based on its own specified performance metrics. We 
intentionally create the set of default input parameter values as 
listed in Table III to stress the system and it represents a design 
point of interest, because neither more demand than supply nor 
more supply than demand scenarios relative to our chosen test 
scenario would be interesting.  
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The parameter values are selected such that the aggregate 
SR arrival rate ሺ𝑁ௌோ𝜆ௌோሻ is higher than the aggregate SP 
service rate ሺ𝑁ௌ௉𝜇ௌ௉𝑚ௌ௉ ሻ by 50% so many SRs are forced to 
choose the best SP with a short wait time for service. For 
notational convenience, we call the SP being evaluated 𝑆𝑃௝ 
and the SR who is using the service-community system as 𝑆𝑅௜. 

The smart service community comprises 𝑁ௌ௉ SPs and 𝑁ௌோ 
SRs registered with the CU. To focus on the effect of “wait 
time” performance metric, we assume all 𝑁ௌ௉  SPs provide 
similar Italian food quality service, so the concern is the wait 
time. Each SR is modeled by a Poisson process with the 
average arrival rate (to select a dine-in restaurant SP) of 𝜆ௌோ. 
So the collective arrival rate of SRs is 𝑁ௌோ𝜆ௌோ. Each SP service 
process is also a Poisson process with the average service rate 
of 𝜇ௌ௉. Further, each SP can service 𝑚ௌ௉ SRs simultaneously. 
So the collective service rate of all SPs is 𝑁ௌ௉𝜇ௌ௉𝑚ௌ௉. 

The wait time advertised by an SP denoted, 𝑀௔ௗ௩
ௌ௉,௪௔௜௧_௧, is 

one useful piece of information to be updated by the SP on a 
regular basis (minute-to-minute). It tells an SR how long the 
SR has to wait before being served if the SR were to arrive at 
the SP’s location at this moment. The service time is not 
counted toward the wait time as the SR is not considered 
waiting as soon as the service is available to the SR.  

An SR arriving at an SP will have to wait when the SP 
service capacity is full. When an SR arrives (looking for 
Italian food SPs online through the SCC’s cloud utility), it has 
the choice of which SP it wants to go based on the SP’s overall 
“subjective” trust score and SP’s projected wait time received 
from the CU. Both the percentages of malicious SPs and SRs 
are 𝑃ெ, with the default value being 30%. We vary 𝑃ெ in the 
range of [10%-50%] in increment of 20% to test the sensitivity 
of the result w.r.t. 𝑃ெ . A malicious SP advertises a false 
“advertised wait time” based on a risk factor percentage 
parameter 𝑅௙ by reducing the actual wait time by 𝑅௙ once it 
reaches the full capacity. We vary 𝑅௙ in the range of [50%-
100%] in increment of 25% to test the sensitivity of the result 
w.r.t. 𝑅௙. 

The actual wait time is known to an SP (good or bad) based 
on the arrival times and the departure times of existing SRs 
currently being served and the number of SRs currently 
waiting in the queue. A malicious SR will perform ballot-
stuffing attacks by reporting a malicious SP’s wait time being 
𝑅௙  lower than the actual wait time, which supports the 
advertised wait time broadcast by the malicious SP. A 
malicious SR also will perform bad-mouthing attacks by 
reporting a good SP’s wait time being 𝑅௙  higher than the 
actual wait time, which refutes the advertised wait time 
broadcast by the good SP. The system accepts 𝑛௥ witnesses 
with the highest credibility scores (w.r.t. a querying SR) 
among all (including self) that have submitted their service 
rating reports to the CU for calculating the SR-SP trust score 
and the SP’s projected service wait time. 

We assume that a customer (or an SR) will select an SP for 
service only if the advertised wait time is less than  
𝑡௧௛,௔ௗ௩௘௥௧௜௘ௗ ൌ 30 minutes. After a customer selects an SP and 

waits for service, the customer uses the computational 
procedure described in Section IV.B.1 to compute the service 
rating for the “wait time” performance metric toward the 
selected SP. While in reality, a customer may not wait after the 
actual wait time exceeds the advertised wait time, for 
experimental evaluation purposes, we will allow the customer 
to wait until service is rendered. Using IoT-assist smart 
devices, an SR can automatically measure the total service 
time of an SR at an SP location by sensing a sudden change of 
the ambient environment in lighting, noise, and background 
music, and measure the wait time by sensing sudden changes 
in flavor and smell only while all others environment 
conditions remain the same.  

 The following two performance metrics (as a function of 
time) are considered in our comparative performance analysis: 

1. An SP’s projected wait time as predicted by the CU 
based on (17) vs. the actual wait time experienced by a 
good SR. The difference of these two wait time values 
indicates the prediction power of the system. The 
smaller the difference, the better the prediction power. 

2. The percentage of malicious SPs selected by a good 
SR. This performance metric indicates the degree to 
which the system is trustworthy, such that malicious 
SPs are not likely to be selected by good SRs for 
service. The smaller the number, the better the 
trustworthiness of the system.  

The performance of our trust protocol is compared against 
two baseline protocols: 

1. Beta Reputation System [5]: Service ratings reported 
by individual witnesses toward an SP are combined. 
This trust protocol is different from our trust protocol 
in that an SP’s trust score computation is based on 
common belief or reputation in nature, while our trust 
protocol is one-to-one subjective trust evaluation in 
nature. However, both approaches are trust-based. 
Therefore, there is no differences in the projected wait 
time calculation (see Section IV.B.4) or application-
level user decision making (see Section IV.B.5 and 
Section IV.C). 

2. Non-Trust-based: An SR simply selects an SP for 
which it had the best prior service rating. If there is no 
prior service experience or it only had negative service 
experience, an SR randomly selects one SP out of the 
remaining eligible SPs for service. 

A. PROTOCOL PERFORMANCE 
We first evaluate accuracy, convergence and resiliency 
properties of our trust protocol. Later in Section V.B. we 
perform a comparative analysis of our trust protocol against 
the baseline protocols. 

Fig. 6 shows the subjective trust scores of a malicious SP 
with risk factor 𝑅௙ =100% and of a good SP (both arbitrarily 
chosen) from the perspective of a good SR (also arbitrary 
chosen) as time progresses to demonstrate accuracy, 
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convergence and resiliency properties of our trust-based 
service community management system.  

 

 

FIGURE 6. Subjective trust scores of a good SP (green curve) and a 
malicious SP (red curve) vs. time. 

In Fig. 6, the X coordinate marks the time points at which 
service transactions occurred in the system and the Y 
coordinate marks 𝑆𝑅௜′s  subjective trust score toward 

𝑆𝑃௝ ሺ𝑆𝑇ௌோ೔

ௌ௉ೕሻ as computed by (16). When the system starts, the 

trust score for both malicious and good SPs goes up because 
initially all SPs are free and the wait time is always less than 
20% of the projected wait time (corresponding to a rating of 
5). However, as time progresses, more SRs gather 
positive/negative service experiences based on the actual wait 
time observed. In case of the malicious SP, since the actual 
wait time will be much higher than the advertised wait time, 
many SRs log negative experience about the malicious SP. As 
a result, the trust score goes down. For the good SP, the trust 
score goes up because many SRs log positive experiences. 

As time progresses, the trust score of the good SP converges 
to 0.9 because the customers observed that the actual wait time 
is within 20% of the good node’s advertised wait time 
(corresponding to a rating of 4 to 5). On the other hand, the 
trust score of the malicious SP converges to close to 0.4 
because the customers observed that the actual wait time is 
60%-100% (corresponding to a rating of 1 to 2) over the 
malicious SP’s advertised wait time whose 𝑅௙  =100%. We 
attribute the success in filtering malicious SPs to our 
protocol’s ability to effectively filter out malicious 
recommenders. As a querying SR’s  self-experience improves 
as time progresses, it is able to effectively filter out malicious 
recommenders (30% witnesses are malicious in this scenario), 
due to a more accurate assessment of a malicious SR’s 
credibility. We conclude that our trust protocol is effective in 
trust accuracy convergence, and resilience against malicious 
attacks. 

 

FIGURE 7. A malicious SP’s projected wait time (blue curve), advertised 
wait Time (green curve), and actual wait time (red curve). 

 Fig. 7 shows the projected wait time 𝑀ௌோ೔

ௌ௉ೕ,௪௔௜௧_௧
as 

predicted from (17) vs. the advertised wait time 𝑀௔ௗ௩
ௌ௉ೕ,௪௔௜௧_௧

 

and the actual wait time of a malicious SP (arbitrarily chosen) 
experienced by all SRs over time, with each data point 
representing a wait time value experienced by an SR. 

We first observe that the plot is a wait time vs. time plot. 
The wait time is up and down because the arrival process of 
customers is stochastic, so customers may arrive at around the 
same time in which case the wait time would be high, or 
customers may arrive in an interleaving fashion in which case 
the wait time would be low. In either case, we observe that the 
difference of the projected wait time and the actual wait time 
is very small. This demonstrates the accuracy of our protocol. 
Also the projected wait time is much higher than this malicious 
SP’s own advertised wait time. The reason is that this 

malicious SP advertises 𝑀௔ௗ௩
ௌ௉ೕ,௪௔௜௧_௧

 = 0 (as it reduces the wait 
time by 𝑅௙ =100%) to attract customers, but the wait time is 
actually much higher. We observe that, for this malicious SP, 
the projected wait time curve in Fig. 7 matches the SP trust 
score curve in Fig. 6 because the trustworthiness of this 
malicious SP goes down as more witnesses (including the 
querying SR itself) report bad wait time experiences to the CU 
who uses cumulative trust evidence for the projected wait time 
calculation. The cumulative trust evidence itself is based on 
selecting 𝑛௥  witnesses ( 𝑛௥ =5 for this scenario) with the 
highest credibility among all witnesses thus ensuring the wait 
time values reported by SR's with the high credibility will 
dominate the resulting projected wait time (as computed by 
(17)). 

Fig. 8 shows the percentage of malicious SPs selected to 
provide service for a good SR (randomly selected) as time 
progresses. There are three curves corresponding to the three 
user decision policies discussed in Section IV.B.5, namely, 
“select the least wait time SP,” “select the most trustworthy 
SP,” and “select the least wait time SP among trustworthy 
SPs,” respectively.  
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FIGURE 8. Percentage of malicious SPs selected for service over time 
by a good SR under Least Wait Time (green curve), Most Trustworthy 

(red curve) and Least Wait Time Among Trustworthy (blue curve). 

Fig. 8 shows that under the “select least wait time” policy, 
the percentage of malicious nodes selected is highest in 
comparison with “select the most trustworthy SP” and “select 
the least wait time SP among trustworthy SPs”. The reason is 
that  in the “select least wait time SP” policy, SP’s are selected 
solely based on wait time without considering the 
maliciousness of the selected SP. An SP is selected as long as 
the projected wait time is the lowest among all. Consequently, 
it has the highest chance of selecting malicious nodes. On the 
other hand, the “select the most trustworthy SP” policy selects 
the SP with the highest trust score among all (i.e., with the 
highest probability of not being malicious). Consequently, it 
has the least chance of selecting malicious SPs for service. For 
this scenario in which the percentage of malicious nodes is 
30%, the “select the least wait time SP among trustworthy 
SPs” policy performs just as good as the “select the most 
trustworthy SP” policy because there are enough trustworthy 
SPs (70%) to select from. 

 

 

FIGURE 9. Comparison of actual wait time experienced by a good SR 
under Least Wait Time (green curve), Most Trustworthy (red curve) and 

Least Wait Time Among Trustworthy (blue curve). 

Fig. 9 shows the actual wait time experienced by a good SR 
(randomly selected) as time progresses. There are three curves 
corresponding to the three user decision policies. We observe 
that the wait time is the highest under the “select the most 
trustworthy SP” policy. The reason is that the “select the most 
trustworthy SP” policy (red curve) does not care if the SP 
selected will provide the least wait time and it only selects the 
SP with the highest trust score among all (i.e., with the highest 
probability of not being malicious) without considering the 
wait time, thus it tends to incur the highest wait time compared 
to the other two policies. We observe that the “select the least 
wait time SP among trustworthy SPs” policy (blue curve) 
performs just as good as (and frequently is even better than) 
the “select least wait time” policy (green curve) in terms of the 
actual wait time because the projected wait time predicted by 
the CU is accurate, even if the SP selected is malicious, w.r.t. 
the actual wait time (as demonstrated in Fig. 7 earlier). 

From comparing Fig. 8 with Fig. 9, we see that the “select 
the least wait time SP among trustworthy SPs” policy can best 
balance “the service wait time” performance metric with “the 
percentage of malicious nodes selected” performance metric 
by adjusting the magnitude of the minimum trust threshold 
𝑆𝑇௧௛ , i.e., when 𝑆𝑇௧௛ ൌ 0 it degenerates to “select the least 
wait time SP” and when 𝑆𝑇௧௛=1 it degenerates to “select the 
most trustworthy SP.” 

B. COMPARITIVE ANALYSIS 
In this section, we perform a comparative analysis of our 

protocol against Josang’s Beta Reputation System trust 
protocol [5] and the non-trust-based protocol. Fig. 10 
(corresponding to Fig. 8) shows the percentage of malicious 
SPs selected by a good SR as time progresses with 𝑃ெ=30% 
and 𝑅௙=100% for the proposed service community. The blue 
curve labeled with “TMSSC” is for the SSC with our trust 
management protocol in place under the “select the least wait 
time SP among trustworthy SPs” policy. The red curve labeled 
with “Beta Reputation System” is for the service community 
with Josang’s Beta Reputation System trust protocol [5] in 
place. The green curve labeled “Non-Trust-based” is for the 
service community without a trust protocol in place.  

With our TMSSC protocol in place (blue curve), the service 
community is able to identify malicious SPs over time. 
Initially all SPs have a trust score of 0.5 (to deal with the cold 
start problem), so SRs initially could still select malicious SPs 
for service. However, as time progresses, the trust score of 
malicious SPs goes down due to negative service experiences 
gathered by witnesses. Consequently, the projected wait time 
for malicious SPs would become much higher than the 
advertised wait time. As a result, malicious SPs would not be 
selected for service because they are identified as 

untrustworthy (i.e., 𝑆𝑇ௌோ೔

ௌ௉ೕ ൏ 𝑆𝑇௧௛ሻ and the percentage of 

malicious SPs selected to provide service goes down quickly 
as time progresses. 

With Josang’s Beta Reputation System trust protocol in 
place (red curve), the system is also able to identify malicious 
SPs over time, albeit at a slower rate because malicious 
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witnesses’ ratings are combined without filtering. Since the 
percentage of good witnesses is much higher than the 
percentage of malicious nodes, a reputation system based on 
public opinions or common belief can still maintain a healthy 
service community. However, we can see our TMSSC 
protocol outperforms Josang’s Beta Reputation System trust 
protocol by a wide margin because we take one-to-one, 
subjective witness credibility into consideration to effectively 
filter out low-credibility service rating reports to form the 
overall trust score (i.e., via (18)) instead of relying on common 
belief reputation systems which are susceptible to collusion 
and are dependent on the availability of a high percentage of 
good witnesses. 

 

FIGURE 10. Comparison of the percentage of malicious SP selected by 
a good SR under Non-Trust Based (green curve), Beta Reputation 

System (red curve), and our proposed TMSSC protocol (blue curve). 

The last case is for “Non-Trust-based” (the green curve). 
For a service community without a trust protocol in place, an 
SR needs to depend on its prior service experience, and thus 
initially can only take the advertised wait time as the projected 
wait time for decision making. So initially the percentage of 
malicious SPs selected is high. However, the percentage of 
malicious SPs selected to provide service decreases over time 
because an SR uses its own experience to select an SP for 
which the wait time service rating is high (i.e. selects a visited 
SP for which it had the best prior service rating). 

Fig. 11 (corresponding to Fig. 9) shows the actual wait time 
experienced by a good SR as time progresses with 𝑃ெ=30% 
and 𝑅௙ =100% in the smart Italian food service community 
under three protocols. The main reason for the performance 
difference depends on whether this SR is able to select SPs for 
service such that not only the “SP’s projected wait time” is 
small (thus incurring a small actual wait time), but also the 
“SP’s advertised wait time” is about the same as the “SP’s 
projected wait time” (thus selecting only trustworthy SPs). 
Unlike the two baseline protocols, our proposed TMSSC 
protocol is capable of maintaining accurate one-to-one SR-SP 
and SR-SR trust scores and thus provide accurate projected 

wait times (by means of (17)) for SP-selection decision 
making. As a result, we observe that our trust protocol 
outperforms both Josang’s Beta Reputation System trust 
protocol and the non-trust-based baseline protocol in terms of 
the wait time performance metric, which is of ultimate 
importance to users in this smart food service community. 

 

FIGURE 11. Comparison of actual wait time experienced by a good SR 
under Non-Trust Based (green curve), Beta Reputation System (red 

curve), and our TMSSC protocol (blue). 

VI. CONCLUSION 
In this paper, we proposed the notion of a “smart service 
community” (SSC) consisting of service providers (SPs), 
service requestors (SRs), and a cloud utility for a specific type 
of service typically in a smart city setting. We proposed novel 
trust-based service management designs to support this new 
notion. We investigated ways to utilize IoT-assisted 
technology for individual SRs to automatically measure one-
to-one SR-SP service ratings and SR-SR credibility ratings 
and for the cloud utility to integrate them together into one-to-
one subjective SR-SP trust scores for each pair of SR and SP 
in the system, such that an SR can subjectively select what it 
believes to be the best or most trustworthy SP among all 
available for service based on its own performance metrics. 
Our trust-based service management designs effectively fend 
off recommendation attacks and collusive attacks even if the 
majority of recommenders are malicious. We demonstrated 
the effectiveness of our trust-based SSC design over 
contemporary service ranking systems via a smart Italian food 
service community.   
    As future work, we plan to extend our work in terms of (1) 
dealing with more sophisticated attacks (e.g., [27, 29-31]); and 
(2) developing decentralized or distributed systems allowing 
the load of trust aggregation to be distributed over individual 
components of the system for better applicability. 
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